
Fall 2017
BBM 103: Introduction to Programming Laboratory I

PROGRAMMING ASSIGNMENT 4

Mobile Ad-Hoc Network (MANET) Simulator
Subject : Recursions and collections
TAs: Cemil ZALLUHOGLU, Necva BOLUCU, Selim YILMAZ, Selma DILEK

Due Date: 13.12.2017 23:59:59
Click here to accept your 4th Assignment.

1 Introduction

Nowadays, almost all of us carry mobile devices that
communicate to each other in a direct or indirect way.
Mobile ad-hoc network (MANET) is a decentralized
network which comprises of a collection of these de-
vices/nodes that interact with each other, forming a
temporary network without any aid of a centralized
administration. Since the advent of it, MANETs are
now integral components of many applications such
as military applications, virtual conferences, and dis-
aster recovery operations; they have become part of
out daily lives.

The topology of a MANET is dynamic as the nodes
belonging to MANET can enter or leave constantly.
Devices, we call them as nodes henceforth, must route
the packets to another in order to make the network
fully connected. Two chosen nodes are said to be ‘directly connected’ to each other as long
as they are located somewhere within the transmission ranges of each other so they can
communicate directly; otherwise they would require other nodes to communicate. Hence, a
route should be established first for the message delivery between two nodes.

Routing –a process of moving a packet of data from source to destination– in such dynamic,
infrastructure-less mobile ad-hoc network has always been an attractive research area for
scientists, it is known as routing in MANET in the literature. The quality of a route
between sender and receiver nodes varies depending on the network or the problem type at
hand.

In the following section, approaches for network and route construction as well as optimal
route selection are described in detail.

2 AdHocSim Simulator

In this assignment, you are expected to implement a program that simulates MANET, we call
simulator as AdHocSim. You first need to establish the network then find possible routes

Page 1 of 9

https://classroom.github.com/a/OwdgW1s8

Fall 2017
BBM 103: Introduction to Programming Laboratory I

between sender and receiver nodes finally choose optimal route among them. To accomplish
this task you have to use recursion while constructing the possible routes.

In Section 2.1, how to construct nodes and determine their neighbors are explained; Sec-
tion 2.2 describes the approach that you need to consider for finding possible routes. Finally,
the selection criteria for choosing optimal route among possible routes are detailed in Sec-
tion 2.3.

2.1 Setting-up the Nodes and the Neighbors

A

B

C

D

Figure 1: Nodes in MANET

As mentioned, MANET comprises of nodes
that communicate each other directly or in-
directly by employing other nodes as routers
in the case of they are not located within
the communication range. In this assign-
ment, a node carries three different informa-
tion: i) location, ii) transmission range, and
iii) residual battery level. For example, node
A is located at (120,45) and has 80% bat-
tery level (see Fig. 1).

In order to determine neighborhood of each
node, you first need to examine the location
and transmission range information. To say
A is one of the neighbors of B, A should be
within the transmission range of B. As mentioned, every node has location and transmission
range information which is determined by east (x1), west (x2), north (y1), and south (y2)
coordinate limits. For example B and C are the two neighbors of A (see Fig. 2).

Note: To represent neighborhood you are advised to construct a dictionary where key is node
label and its corresponding value is its neighbors, as illustrated follows. There is an example
of dictionary that stores relations:

'A': ['B', 'C']
'B': ['D', 'E']
'C': ['F', 'H']
'D': ['E', 'G']
'E': ['G']
'F': ['G', 'H']
'G': ['I']
'H': []
'I': []

2.2 Route Finding in MANET

You may think of a network as a directed graph where nodes represent vertices whereas
communication links represent edges. A graph might be cyclic or acyclic. A graph is said

Page 2 of 9

Fall 2017
BBM 103: Introduction to Programming Laboratory I

B

C

D

A

B

C

D

A

B

C

D

A

B

D

C

A

Figure 2: Determining relations in a MANET

to be cyclic if there exists some vertices that are connected in a closed chain (see Fig. 2for
an example of acyclic graph). In this assignment, you will obtain cyclic or acyclic network
once you set-up nodes and their neighbors successfully. Concretely speaking, there might be
a case where the next node is a node that has already been visited before. In such case, you
should design your program such that it refuses to visit such nodes in order to avoid infinite
loop problem.

After setting up the nodes and determining of neighbors of every node, we obtain a network
ready-to-use. Before transmission of first packet begins, it is needed to find a path through
which packets are transferred. This path is called as route that starts and ends with a
sender and destination nodes, respectively. Remember that route consists of only sender and
destination nodes if they are within each other’s transmission range. But, on the other, they
employ other nodes as intermediate nodes by treating them routers for transmission of a
collection of packets.

To clarify the routing process in MANET, we make use of Fig. 3. From the figure, sender
node A is ready to initiate a data transfer to destination node I and there exist four routes
between A and I. (Note: There might be cases where there is no route between any given
two nodes.) A step by step route finding process is demonstrated with figures at the end
of this document. With a similar way, you are expected to find every possible routes, using
recursion, with its cost whose calculation is explained in the following section.

2.3 Selecting an Optimal Route

This process is similar to what actually navigation application does. Suppose Alice wants
to visit Bob and uses his application to take a route to Bob’s house. Application returns
Alice’s request with a route within a series of possible routes, which is often shortest path

Page 3 of 9

Fall 2017
BBM 103: Introduction to Programming Laboratory I

A

B

C

D

E

F

H

J

G

I

Figure 3: Steps of route finding process in a MANET

with respect to the time or distance. In this scenario time and distance are the two costs that
determine the quality of the routes. Similar to this scenario, one needs to determine one of
the routes to use for packet transmission depending on the their costs after finding all routes.
The cost of a route is the sum of the cost of every communication links (L) between nodes
(see Eq. 1 and Fig. 4).

Cost(Router) =
∑

Cost(i, j) | i, j ∈ L (1)

You will consider distance and residual battery level for the calculation of cost of a link
between nodes i and j given by:.

Cost(i, j) =
disti,j
batteryj

(2)

where disti,j is a distance between the nodes i and j. As these nodes are actually represented
by two points on the Cartesian plane (ix and iy are two points of node i whereas jx and
jy are the two points of node j), you can get the distance between them using Euclidean
distance:

disti,j =
√

(ix − jx)2 + (iy − jy)2 (3)

In MANETs, apart from initial data transfer, it is also necessary to find routes every time
a link breakage occurs. Link breakage problem arises mostly when a node leaves the route
through which data packets are transferred. A node becomes unreachable either if it runs

Page 4 of 9

Fall 2017
BBM 103: Introduction to Programming Laboratory I

A

B

C

D

E

F

G

H

I

J

Figure 4: An example of a route cost

out of its battery or goes beyond the transmission range of a node from which it receives
packets. That’s why distance and residual battery level has been intentionally included in the
calculation of every link cost in this assignment. As the probability of a node being exceeded
transmission range gets lowered with a decrease in distance between two nodes, it is rational
to select a link having a more closer one. Similarly, a link destined to a node having higher
residual battery level should also be selected as it is lower probability of such node being left
due to the drainage of battery. Therefore, the optimal route (RouteOPT) selection among
possible routes (R) is done as follows:

RouteOPT = arg min
r

Cost(Router) | r ∈ R (4)

2.4 Simulator

The simulator you are asked to implement should start the simulation just after the network
is established in line with the commands provided in a file named commands and should
terminate itself once whole data transfer is completed. Here, you need to evaluate five types
of commands:

� CRNODE (Create a new node): It generates a new node and requires four arguments to
work properly. The first argument gives node a label (say i); second argument defines
its locations as x and y coordinates (i.e., ix and iy); transmission range is determined in
third argument in order of (x1;x2;y1;y2). Finally, residual battery level is set by forth
argument.

CRNODE y 120;40 100;0;60;40 65

Page 5 of 9

Fall 2017
BBM 103: Introduction to Programming Laboratory I

Every time you evaluate CRNODE command, the following text should be displayed on
the screen:

COMMAND *CRNODE*: New node y is created

� SEND (Send data): It initiates data transfer from a source node to a destination
node. It takes three arguments; the first two defines source and destination node labels,
respectively. The last argument is the amount of data (in Byte) to be transferred.

SEND x y 1002

Every time you evaluate SEND command the following text should be displayed on the
screen:

COMMAND *SEND*: Data is ready to send from x to y

� MOVE (Move node): It relocates a node to a pair of points that is defined as an
argument provided with itself. There exist two arguments first of which is the node
label whereas other defines its new location as x and y coordinates.

MOVE x 165;70

Every time you evaluate MOVE command the following text should be displayed on the
screen:

COMMAND *MOVE*: The location of node x is changed

� CHBTTRY (Change battery level): It simply charges or discharges the battery of a given
node. It takes two arguments: i) node label and ii) new battery level.

CHBTTRY x 90

Every time you evaluate CHBTTRY command the following text should be displayed
on the screen:

COMMAND *CHBTTRY*: Battery level of node x is changed to 90

� RMNODE (Removes an existing node): It vanishes an existing node that is determined
by an argument.

RMNODE y

Every time you evaluate RMNODE command the following text should be displayed on
the screen:

COMMAND *RMNODE*: Node y is removed

Note: Commands and their parameters are separated by <TAB> characters, each parameter
is separated from each other by <TAB> characters as well.

Once you read commands, you will see one more argument at the beginning of every line.
It represents the time (in Second) that points out when a command of interest should be
applied. For example, 20 CHBTTRY x4 90 command line should be evaluated such that
the residual battery level of node x4 will be set to 90 when simulator reaches 20th second.
The command file will always begin with SEND and CRNODE so that you set-up network
(see Section 2.1) and begin the transmission of packets.

Page 6 of 9

Fall 2017
BBM 103: Introduction to Programming Laboratory I

Any time the node is created, removed, re-localized, or battery level of it is changed; you
need to initiate route finding process, which is naturally expected. Once at least one of these
cases occurs, you must print out i) relations in the network, ii) possible routes found, and iii)
optimal route chosen in the following format:

NODES & THEIR NEIGHBORS: x1 -> x2, x3 | x2 -> x4, x5 | x3 -> x4 | x4 -> x5, x7 | x5 -> x7 | x6
-> x7, x8 | x7 -> x9 | x8 -> | x9 -> |
5 ROUTE(S) FOUND:
ROUTE 1: x1 -> x2 -> x4 -> x5 -> x7 -> x9 COST: 4.9219
ROUTE 2: x1 -> x2 -> x4 -> x7 -> x9 COST: 5.0150
ROUTE 3: x1 -> x2 -> x5 -> x7 -> x9 COST: 4.1031
ROUTE 4: x1 -> x3 -> x4 -> x5 -> x7 -> x9 COST: 4.5047
ROUTE 5: x1 -> x3 -> x4 -> x7 -> x9 COST: 4.5978
SELECTED ROUTE (ROUTE 3): x1 -> x2 -> x5 -> x7 -> x9

Note: A path might not be found between end-points at every time. In such case simulator
should terminate itself just after the message below is displayed on the screen.

NO ROUTE FROM x TO y FOUND.

Before simulator starts you need to calculate total number of packets (NP) to transfer whole
data considering the equation below:

NP =

⌈
DS

PS

⌉
(5)

where DS and PS are the data size and packet size, respectively. As mentioned DS is
provided with SEND command while PS is provided as a command-line argument.

The last thing worth to mention is that, in AdHocSim simulator, every simulation time
corresponds to one second, and only one packet is allowed to send from source to destination
in every second.

Note: You can design your implementation such that every second corresponds to one loop
step. You need to print out time stamp at every simulation time in the following format:

SIMULATION TIME: <HH>:<MM>:<SS>

The command-line argument that runs your implementation should be as follows:

python AdHocSim.py PS

In the following page, an output sample that is created from simulator when these commands
are evaluated:

0 CRNODE x1 120;40 100;0;60;40 65
0 CRNODE x2 200;50 80;10;30;5 40
0 CRNODE x3 150;15 120;0;25;10 88
0 CRNODE x4 240;60 100;10;0;40 35
0 CRNODE x5 260;45 70;0;10;25 98
0 CRNODE x6 225;15 75;10;5;10 70
0 CRNODE x7 273;20 75;0;0;0 68
0 CRNODE x8 221;5 0;0;0;0 68
0 CRNODE x9 345;20 0;0;0;0 68
0 SEND x1 x9 547
10 MOVE x3 165;70
20 CHBTTRY x4 90
32 RMNODE x5

Command-line argument:

python AdHocSim.py 15

Page 7 of 9

AD-HOC NETWORK SIMULATOR - BEGIN

SIMULATION TIME: 00:00:00
 COMMAND *CRNODE*: New node x1 is created
 COMMAND *CRNODE*: New node x2 is created
 COMMAND *CRNODE*: New node x3 is created
 COMMAND *CRNODE*: New node x4 is created
 COMMAND *CRNODE*: New node x5 is created
 COMMAND *CRNODE*: New node x6 is created
 COMMAND *CRNODE*: New node x7 is created
 COMMAND *CRNODE*: New node x8 is created
 COMMAND *CRNODE*: New node x9 is created
 COMMAND *SEND*: Data is ready to send from x1 to x9
 NODES & THEIR NEIGHBORS: x1 -> x2, x3 | x2 -> x4, x5 | x3 -> x6, x8 |

x4 -> x5, x7 | x5 -> x7 | x6 -> x7, x8 | x7 -> x9 | x8 -> | x9 -> |
 4 ROUTE(S) FOUND:
 ROUTE 1: x1 -> x2 -> x4 -> x5 -> x7 -> x9 COST: 4.9219
 ROUTE 2: x1 -> x2 -> x4 -> x7 -> x9 COST: 5.0150
 ROUTE 3: x1 -> x2 -> x5 -> x7 -> x9 COST: 4.1031
 ROUTE 4: x1 -> x3 -> x6 -> x7 -> x9 COST: 3.2837
 SELECTED ROUTE (ROUTE 4): x1 -> x3 -> x6 -> x7 -> x9
 PACKET 1 HAS BEEN SENT
 REMAINING DATA SIZE: 532.0 BYTE
SIMULATION TIME: 00:00:01
 PACKET 2 HAS BEEN SENT
 REMAINING DATA SIZE: 517.0 BYTE
SIMULATION TIME: 00:00:02
 PACKET 3 HAS BEEN SENT
 REMAINING DATA SIZE: 502.0 BYTE
SIMULATION TIME: 00:00:03
 PACKET 4 HAS BEEN SENT
 REMAINING DATA SIZE: 487.0 BYTE
SIMULATION TIME: 00:00:04
 PACKET 5 HAS BEEN SENT
 REMAINING DATA SIZE: 472.0 BYTE
SIMULATION TIME: 00:00:05
 PACKET 6 HAS BEEN SENT
 REMAINING DATA SIZE: 457.0 BYTE
SIMULATION TIME: 00:00:06
 PACKET 7 HAS BEEN SENT
 REMAINING DATA SIZE: 442.0 BYTE
SIMULATION TIME: 00:00:07
 PACKET 8 HAS BEEN SENT
 REMAINING DATA SIZE: 427.0 BYTE
SIMULATION TIME: 00:00:08
 PACKET 9 HAS BEEN SENT
 REMAINING DATA SIZE: 412.0 BYTE
SIMULATION TIME: 00:00:09
 PACKET 10 HAS BEEN SENT
 REMAINING DATA SIZE: 397.0 BYTE
SIMULATION TIME: 00:00:10
 COMMAND *MOVE*: The location of node x3 is changed
 NODES & THEIR NEIGHBORS: x1 -> x2, x3 | x2 -> x4, x5 | x3 -> x4 |

x4 -> x5, x7| x5 -> x7 | x6 -> x7, x8 | x7 -> x9 | x8 -> | x9 -> |
 5 ROUTE(S) FOUND:
 ROUTE 1: x1 -> x2 -> x4 -> x5 -> x7 -> x9 COST: 4.9219
 ROUTE 2: x1 -> x2 -> x4 -> x7 -> x9 COST: 5.0150
 ROUTE 3: x1 -> x2 -> x5 -> x7 -> x9 COST: 4.1031
 ROUTE 4: x1 -> x3 -> x4 -> x5 -> x7 -> x9 COST: 4.5047
 ROUTE 5: x1 -> x3 -> x4 -> x7 -> x9 COST: 4.5978
 SELECTED ROUTE (ROUTE 3): x1 -> x2 -> x5 -> x7 -> x9
 PACKET 11 HAS BEEN SENT
 REMAINING DATA SIZE: 382.0 BYTE
SIMULATION TIME: 00:00:11
 PACKET 12 HAS BEEN SENT
 REMAINING DATA SIZE: 367.0 BYTE
SIMULATION TIME: 00:00:12
 PACKET 13 HAS BEEN SENT
 REMAINING DATA SIZE: 352.0 BYTE
SIMULATION TIME: 00:00:13
 PACKET 14 HAS BEEN SENT
 REMAINING DATA SIZE: 337.0 BYTE
SIMULATION TIME: 00:00:14
 PACKET 15 HAS BEEN SENT
 REMAINING DATA SIZE: 322.0 BYTE
SIMULATION TIME: 00:00:15
 PACKET 16 HAS BEEN SENT
 REMAINING DATA SIZE: 307.0 BYTE
SIMULATION TIME: 00:00:16
 PACKET 17 HAS BEEN SENT

 REMAINING DATA SIZE: 292.0 BYTE
SIMULATION TIME: 00:00:17
 PACKET 18 HAS BEEN SENT
 REMAINING DATA SIZE: 277.0 BYTE
SIMULATION TIME: 00:00:18
 PACKET 19 HAS BEEN SENT
 REMAINING DATA SIZE: 262.0 BYTE
SIMULATION TIME: 00:00:19
 PACKET 20 HAS BEEN SENT
 REMAINING DATA SIZE: 247.0 BYTE
SIMULATION TIME: 00:00:20
 COMMAND *CHBTTRY*: Battery level of node x4 is changed to 90
 NODES & THEIR NEIGHBORS: x1 -> x2, x3 | x2 -> x4, x5 | x3 -> x4 |

x4 -> x5, x7| x5 -> x7 | x6 -> x7, x8 | x7 -> x9 | x8 -> | x9 -> |
 5 ROUTE(S) FOUND:
 ROUTE 1: x1 -> x2 -> x4 -> x5 -> x7 -> x9 COST: 4.2020
 ROUTE 2: x1 -> x2 -> x4 -> x7 -> x9 COST: 4.2951
 ROUTE 3: x1 -> x2 -> x5 -> x7 -> x9 COST: 4.1031
 ROUTE 4: x1 -> x3 -> x4 -> x5 -> x7 -> x9 COST: 3.1836
 ROUTE 5: x1 -> x3 -> x4 -> x7 -> x9 COST: 3.2767
 SELECTED ROUTE (ROUTE 4): x1 -> x3 -> x4 -> x5 -> x7 -> x9
 PACKET 21 HAS BEEN SENT
 REMAINING DATA SIZE: 232.0 BYTE
SIMULATION TIME: 00:00:21
 PACKET 22 HAS BEEN SENT
 REMAINING DATA SIZE: 217.0 BYTE
SIMULATION TIME: 00:00:22
 PACKET 23 HAS BEEN SENT
 REMAINING DATA SIZE: 202.0 BYTE
SIMULATION TIME: 00:00:23
 PACKET 24 HAS BEEN SENT
 REMAINING DATA SIZE: 187.0 BYTE
SIMULATION TIME: 00:00:24
 PACKET 25 HAS BEEN SENT
 REMAINING DATA SIZE: 172.0 BYTE
SIMULATION TIME: 00:00:25
 PACKET 26 HAS BEEN SENT
 REMAINING DATA SIZE: 157.0 BYTE
SIMULATION TIME: 00:00:26
 PACKET 27 HAS BEEN SENT
 REMAINING DATA SIZE: 142.0 BYTE
SIMULATION TIME: 00:00:27
 PACKET 28 HAS BEEN SENT
 REMAINING DATA SIZE: 127.0 BYTE
SIMULATION TIME: 00:00:28
 PACKET 29 HAS BEEN SENT
 REMAINING DATA SIZE: 112.0 BYTE
SIMULATION TIME: 00:00:29
 PACKET 30 HAS BEEN SENT
 REMAINING DATA SIZE: 97.0 BYTE
SIMULATION TIME: 00:00:30
 PACKET 31 HAS BEEN SENT
 REMAINING DATA SIZE: 82.0 BYTE
SIMULATION TIME: 00:00:31
 PACKET 32 HAS BEEN SENT
 REMAINING DATA SIZE: 67.0 BYTE
SIMULATION TIME: 00:00:32
 COMMAND *RMNODE*: Node x5 is removed

 NODES & THEIR NEIGHBORS: x1 -> x2, x3 | x2 -> x4 | x3 -> x4 | x4 -> x7 |
x6 -> x7, x8 | x7 -> x9 | x8 -> | x9 -> |

 2 ROUTE(S) FOUND:
 ROUTE 1: x1 -> x2 -> x4 -> x7 -> x9 COST: 4.2951
 ROUTE 2: x1 -> x3 -> x4 -> x7 -> x9 COST: 3.2767
 SELECTED ROUTE (ROUTE 2): x1 -> x3 -> x4 -> x7 -> x9
 PACKET 33 HAS BEEN SENT
 REMAINING DATA SIZE: 52.0 BYTE
SIMULATION TIME: 00:00:33
 PACKET 34 HAS BEEN SENT
 REMAINING DATA SIZE: 37.0 BYTE
SIMULATION TIME: 00:00:34
 PACKET 35 HAS BEEN SENT
 REMAINING DATA SIZE: 22.0 BYTE
SIMULATION TIME: 00:00:35
 PACKET 36 HAS BEEN SENT
 REMAINING DATA SIZE: 7.0 BYTE
SIMULATION TIME: 00:00:36
 PACKET 37 HAS BEEN SENT
 REMAINING DATA SIZE: 0.0 BYTE

AD-HOC NETWORK SIMULATOR - END

A

B

C

D

E

F

H

J

G

I

A

B

C

D

E

F

H

J

G

I

A

B

C

D

E

F

H

J

G

I

A

B

C

D

E

F

H

J

G

I

A

B

C

D

E

F

H

J

G

I

A

B

C

D

E

F

H

J

G

I

A

B

C

D

E

F

H

J

G

I

A

B

C

D

E

F

H

J

G

I

A

B

C

D

E

F

H

J

G

I

A

B

C

D

E

F

H

J

G

I

A

B

C

D

E

F

H

J

G

I

A

B

C

D

E

F

H

J

G

I

	Introduction
	AdHocSim Simulator
	Setting-up the Nodes and the Neighbors
	Route Finding in MANET
	Selecting an Optimal Route
	Simulator

