Lecture #06 – Recursion
Last time... Testing, debugging, exceptions

Exceptions

```
try:
    ....
    ....
except:
    ....
finally:
    ....
```

Debugging
Lecture Overview

• Notion of state in computation
• Recursion as a programming concept
• Mutual recursion
• Recursion tree
• Pitfalls of recursion

Disclaimer: Much of the material and slides for this lecture were borrowed from
— E. Grimson, J. Guttag and C. Terman in MITx 6.00.1x,
— J. DeNero in CS 61A (Berkeley),
— T. Cortina in 15110 Principles of Computing (CMU)
— R. Sedgewick, K. Wayne and R. Dondero (Princeton)
Recursion

- **Recursion** is a programming concept whereby a function invokes itself.

- Recursion is typically used to solve problems that are decomposable into subproblems which are just like the original problem, but a step closer to being solved.

Drawing Hands, by M. C. Escher (lithograph, 1948)
Computation

• All **computation** consists of chugging along from **state** to state to state ...

• There is a set of **rules** that tells us, given the current state, which state to go to next.
Arithmetic as Rewrite Rules

• 2 + 3 + 4
• 5 + 4
• 9

• Expression evaluation
• We stop when we reach a number
Functions as New Rules

def square(n):
 return n * n

When we see: \texttt{square(something)}

Rewrite it as: \texttt{something * something}
Functions as Rewrite Rules

def square(n):
 return n * n

• square(3)
• 3 * 3
• 9
Piecewise Functions

\[f(n) = \begin{cases}
1 & \text{if } n = 1 \\
 n - 1 & \text{if } n > 1
\end{cases} \]

\[f(4) \]

\[4 - 1 \]

3
In Python

```python
def f(n):
    if n == 1:
        return 1
    else:
        return n - 1
```
This is just math, right?

• Difference between mathematical functions and computation functions.
 – Computation functions must be effective.

• For example, we can define the square-root function as

\[\sqrt{x} = y \text{ such that } y \geq 0 \text{ and } y^2 = x \]

• This defines a valid mathematical function, but it doesn't tell us how to compute the square root of a given number.
Fancier Functions

```python
def f(n):
    return n + (n - 1)
```

Find $f(4)$
Fancier Functions

def f(n):
 return n + (n - 1)

def g(n):
 return n + f(n - 1)

Find \(g(4) \)
Fancier Functions

```python
def f(n):
    return n + (n - 1)

def g(n):
    return n + f(n - 1)

def h(n):
    return n + h(n - 1)

Find h(4)
```
Recursion

def h(n):
 return n + h(n - 1)

• h is a recursive function, because it is defined in terms of itself.
Definition

Recursion

• See: "Recursion".
Recursion

```python
def h(n):
    return n + h(n - 1)
```

```
h(4)
4 + h(3)
4 + 3 + h(2)
4 + 3 + 2 + h(1)
4 + 3 + 2 + 1 + h(0)
4 + 3 + 2 + 1 + 0 + h(-1)
4 + 3 + 2 + 1 + 0 + -1 + h(-2)
...```

Evaluating $h$ leads to an infinite loop!
What you are thinking?

"Ok, recursion is bad. What's the big deal?"
Recursion

def f(n):
    if n == 1:
        return 1
    else:
        return f(n - 1)

Find $f(1)$
Find $f(2)$
Find $f(3)$
Find $f(100)$
Recursion

def f(n):
    if n == 1:
        return 1
    else:
        return f(n - 1)

f(3)
f(3 - 1)
f(2)
f(2 - 1)
f(1)
1
def f(n):
    if n == 1:
        return 1
    else:
        return f(n - 1)

"Useful" recursive functions have:
• at least one recursive case
• at least one base case so that the computation terminates
Recursion

def f(n):
    if n == 1:
        return 1
    else:
        return f(n + 1)

Find f(5)

We have a base case and a recursive case. What's wrong?

The recursive case should call the function on a simpler input, bringing us closer and closer to the base case.
Recursion

def f(n):
    if n == 0:
        return 0
    else:
        return 1 + f(n - 1)

Find f(0)
Find f(1)
Find f(2)
Find f(100)
Recursion

def f(n):
    if n == 0:
        return 0
    else:
        return 1 + f(n - 1)

f(3)
1 + f(2)
1 + 1 + f(1)
1 + 1 + 1 + f(0)
1 + 1 + 1 + 0
3
Iterative algorithms

- Looping constructs (e.g. while or for loops) lead naturally to iterative algorithms.
- Can conceptualize as capturing computation in a set of “state variables” which update on each iteration through the loop.
Iterative multiplication by successive additions

• Imagine we want to perform multiplication by successive additions:
  – To multiply a by b, add a to itself b times

• State variables:
  – i – iteration number; starts at b
  – result – current value of computation; starts at 0

• Update rules
  – i ← i - 1; stop when 0
  – result ← result + a
def iterMul(a, b):
    result = 0
    while b > 0:
        result += a
        b -= 1
    return result
Recursive version

• An alternative is to think of this computation as:

\[
a \times b = a + a + \ldots + a
\]

\[
= a + a + \ldots + a
\]

\[
= a + a \times (b - 1)
\]
Recursion

• This is an instance of a **recursive** algorithm
  – Reduce a problem to a simpler (or smaller) version of the same problem, plus some simple computations
    [Recursive step]
  – Keep reducing until reach a simple case that can be solved directly
    [Base case]

• \( a*b=a; \) if \( b=1 \)
  (Base case)

• \( a \times b = a + a \times (b-1); \) otherwise
  (Recursive case)
Recursive Multiplication

def recurMul(a,b):
    if b == 1:
        return a
    else:
        return a + recurMul(a,b-1)
Let’s try it out

def recurMul(a,b):
    if b == 1:
        return a
    else:
        return a + recurMul(a,b-1)
Let’s try it out

def recurMul(a,b):
    if b == 1:
        return a
    else:
        return a + recurMul(a,b-1)

recurMul(2,3)
Let’s try it out

def recurMul(a, b):
    if b == 1:
        return a
    else:
        return a + recurMul(a, b-1)

recurMul(2, 3)
Let’s try it out

def recurMul(a, b):
    if b == 1:
        return a
    else:
        return a + recurMul(a, b-1)

recurMul(2, 3)
Let’s try it out

def recurMul(a, b):
    if b == 1:
        return a
    else:
        return a + recurMul(a, b-1)

recurMul(2, 3)
The Anatomy of a Recursive Function

- The def statement header is similar to other functions
- Conditional statements check for base cases
- Base cases are evaluated without recursive calls
- Recursive cases are evaluated with recursive calls
Inductive Reasoning

- How do we know that our recursive code will work?

- $\text{iterMul}$ terminates because $b$ is initially positive, and decrease by 1 each time around loop; thus must eventually become less than 1

- $\text{recurMul}$ called with $b = 1$ has no recursive call and stops

- $\text{recurMul}$ called with $b > 1$ makes a recursive call with a smaller version of $b$; must eventually reach call with $b = 1$
Mathematical Induction

• To prove a statement indexed on integers is true for all values of n:

  – Prove it is true when n is smallest value (e.g. n = 0 or n = 1)

  – Then prove that if it is true for an arbitrary value of n, one can show that it must be true for n+1
Example

• $0+1+2+3+...+n=(n(n+1))/2$

• Proof
  – If $n = 0$, then LHS is 0 and RHS is $0*1/2 = 0$, so true
  – Assume true for some $k$, then need to show that
    • $0 + 1 + 2 + ... + k + (k+1) = ((k+1)(k+2))/2$
    • LHS is $k(k+1)/2 + (k+1)$ by assumption that property holds for problem of size $k$
      • This becomes, by algebra, $((k+1)(k+2))/2$
  – Hence expression holds for all $n >= 0$
What does this have to do with code?

• Same logic applies

```python
def recurMul(a, b):
 if b == 1:
 return a
 else:
 return a + recurMul(a, b-1)
```

• Base case, we can show that `recurMul` must return correct answer

• For recursive case, we can assume that `recurMul` correctly returns an answer for problems of size smaller than `b`, then by the addition step, it must also return a correct answer for problem of size `b`

• Thus by induction, code correctly returns answer
Sum digits of a number

def split(n):
    """Split positive n into all but its last digit and its last digit."""
    return n // 10, n % 10

def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last

Verify the correctness of this recursive definition.
Some Observations

• Each recursive call to a function creates its own environment, with local scoping of variables

• Bindings for variable in each frame distinct, and not changed by recursive call

• Flow of control will pass back to earlier frame once function call returns value
The “classic” Recursive Problem

• Factorial

\[ n! = n \times (n-1) \times \ldots \times 1 \]

\[
\begin{cases} 
1 & \text{if } n = 0 \\
 n \times (n-1)! & \text{otherwise}
\end{cases}
\]
Recursion in Environment Diagrams

```python
def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

fact(3)
```
Recursion in Environment Diagrams

```python
1 def fact(n):
 2 if n == 0:
 3 return 1
 4 else:
 5 return n * fact(n-1)
 6
7 fact(3)
```

(Demo)

```
Global frame

func fact(n) [parent=Global]

f1: fact [parent=Global]
 n 3

f2: fact [parent=Global]
 n 2

f3: fact [parent=Global]
 n 1

f4: fact [parent=Global]
 n 0
 Return value
 1
```
Recursion in Environment Diagrams

```
1 def fact(n):
 2 if n == 0:
 3 return 1
 4 else:
 5 return n * fact(n-1)
 6
 7 fact(3)
```

- The same function `fact` is called multiple times
Recursion in Environment Diagrams

```python
def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

fact(3)
```

- The same function `fact` is called multiple times.
- Different frames keep track of the different arguments in each call.
Recursion in Environment Diagrams

```python
1 def fact(n):
2 if n == 0:
3 return 1
4 else:
5 return n * fact(n-1)
6
7 fact(3)
```

- The same function `fact` is called multiple times
- Different frames keep track of the different arguments in each call
- What `n` evaluates to depends upon the current environment
Recursion in Environment Diagrams

```python
1 def fact(n):
2 if n == 0:
3 return 1
4 else:
5 return n * fact(n-1)
6
7 fact(3)
```

- The same function `fact` is called multiple times
- Different frames keep track of different arguments in each call
- What `n` evaluates to depends upon the current environment
- Each call to `fact` solves a simpler problem than the last: smaller `n`
Iteration vs. Recursion

\[ 4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 \]

Using while:

```
def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total * k, k + 1
 return total
```

Using recursion:

```
def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n - 1)
```
Iteration vs. Recursion

\[4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24\]

Using while:

```python
def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total
```

Math:

\[n! = \prod_{k=1}^{n} k\]

Names: \(n, total, k, fact_iter\)
Iteration vs. Recursion

4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24

Using while:

```
def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total\ast k, k+1
 return total
```

Using recursion:

```
def fact(n):
 if n == 0:
 return 1
 else:
 return n \ast fact(n-1)
```

Math:

\[ n! = \prod_{k=1}^{n} k \]

Names:

\( n, \text{total}, k, \text{fact_iter} \) \hspace{1cm} \( n, \text{fact} \)
Recursion on Non-numerics

• How could we check whether a string of characters is a palindrome, i.e., reads the same forwards and backwards

  – "Able was I ere I saw Elba"
    attributed to Napoleon

  – "Are we not drawn onward, we few, drawn onward to new era?"

  – "Ey Edip Adana’da pide ye"
How to solve this recursively?

• First, convert the string to just characters, by stripping out punctuation, and converting upper case to lower case

• Then
  – a string of length 0 or 1 is a palindrome [Base case]
  – If the first character matches the last character, then is a palindrome if middle section is a palindrome [Recursive case]
Example

- "Able was I ere I saw Elba" → "ablewasiereisawelba"

- `isPalindrome("ablewasiereisawelba")`
  is same as
  "a"=="a" and `isPalindrome("blewasiereisawleb")`
Palindromes or not?

def toChars(s):
    s = s.lower()
    ans = ''
    for c in s:
        if c in 'abcdefghijklmnopqrstuvwxyz':
            ans = ans + c
    return ans
def isPal(s):
    if len(s) <= 1:
        return True
    else:
        return s[0] == s[-1] and isPal(s[1:-1])

def isPalindrome(s):
    return isPal(toChars(s))
Divide and Conquer

• This is an example of a “divide and conquer” algorithm

  – Solve a hard problem by breaking it into a set of sub-problems such that:

    – Sub-problems are easier to solve than the original.

    – Solutions of the sub-problems can be combined to solve the original.
Global Variables

• Suppose we wanted to count the number of times \texttt{fact} calls itself recursively

• Can do this using a global variable

• So far, all functions communicate with their environment through their parameters and return values

• But, (though a bit dangerous), can declare a variable to be global – means name is defined at the outermost scope of the program, rather than scope of function in which appears
Example

def factMetered(n):
    global numCalls
    numCalls += 1
    if n == 0:
        return 1
    else:
        return n * factMetered(n-1)

def testFac(n):
    for i in range(n+1):
        global numCalls
        numCalls = 0
        print('fac of ' + str(i) + ' = ' + str(factMetered(i)))
    print('fac called ' + str(numCalls) + ' times')

testFac(4)
Global Variables

• Use with care!!
• Destroy locality of code
• Since can be modified or read in a wide range of places, can be easy to break locality and introduce bugs!!
Mutual Recursion

- Mutual recursion is a form of recursion where two functions or data types are defined in terms of each other.
Mutual Recursion Example

def even(n):
    if n == 0:
        return True
    else:
        return odd(n - 1)

def odd(n):
    if n == 0:
        return False
    else:
        return even(n - 1)

even(4)
The Luhn Algorithm

- A simple checksum formula used to validate a variety of identification numbers, such as credit card numbers, IMEI numbers, etc.
The Luhn Algorithm


- **First:** From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * 2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5)

- **Second:** Take the sum of all the digits

```
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1+6=7</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
```

\[ = 30 \]

- The Luhn sum of a valid credit card number is a multiple of 10
The Luhn Algorithm

def luhn_sum(n):
    """Return the digit sum of n computed by the Luhn algorithm""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return luhn_sum_double(all_but_last) + last

def luhn_sum_double(n):
    """Return the Luhn sum of n, doubling the last digit.""
    all_but_last, last = split(n)
    luhn_digit = sum_digits(2 * last)
    if n < 10:
        return luhn_digit
    else:
        return luhn_sum(all_but_last) + luhn_digit
Tree Recursion

• Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call.
Tree Recursion

- Fibonacci numbers
- Leonardo of Pisa (aka Fibonacci) modeled the following challenge
  - Newborn pair of rabbits (one female, one male) are put in a pen
  - Rabbits mate at age of one month
  - Rabbits have a one month gestation period
  - Assume rabbits never die, that female always produces one new pair (one male, one female) every month from its second month on.
  - How many female rabbits are there at the end of one year?

68
Fibonacci

• After one month (call it 0) – 1 female
• After second month – still 1 female (now pregnant)
• After third month – two females, one pregnant, one not
• In general, females(n) = females(n-1) + females(n-2)
  – Every female alive at month n-2 will produce one female in month n;
  – These can be added those alive in month n-1 to get total alive in month n

<table>
<thead>
<tr>
<th>Month</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
</tr>
</tbody>
</table>
Fibonacci

• Base cases:
  – Females(0) = 1
  – Females(1) = 1

• Recursive case
  – Females(n) = Females(n-1) + Females(n-2)
Fibonacci

def fib(n):
    """assumes n an int >= 0
    returns Fibonacci of n""
    assert type(n) == int and n >= 0
    if n == 0:
        return 1
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)
Tiling Squares

Rewrite rule: Add square to long side.
Tiling Squares

What is the side length of each square?
Tiling Squares
Spiral
Fibonacci

1 ÷ 1 = 1
2 ÷ 1 = 2
3 ÷ 2 = 1.5
5 ÷ 3 = 1.666...
8 ÷ 5 = 1.6
13 ÷ 8 = 1.625
21 ÷ 13 = 1.615...
34 ÷ 21 = 1.619...
Limit

What is the limit of \( \frac{\text{fib}(n)}{\text{fib}(n - 1)} \)

as \( n \) approaches infinity?

1.6180339887498948482...

What's that called?
The Golden Ratio

The proportions of a rectangle that, when a square is added to it results in a rectangle with the same proportions.
The Golden Ratio

\[ \varphi = \frac{1}{1} = \frac{\varphi - 1}{1} \]

\[ \varphi^2 - \varphi - 1 = 0 \]

\[ \varphi = \frac{1 + \sqrt{5}}{2} \]

\[ = 1.618... \]
Fibonacci

\[
\text{fib}(n) = \begin{cases} 
1 & n = 1, 2 \\
\text{fib}(n-1) + \text{fib}(n-2) & n > 2
\end{cases}
\]

\[
\text{fib}(n) = \frac{\phi^n - (1 - \phi)^n}{\sqrt{5}}
\]
Recursion Tree

- The computational process of $\text{fib}$ evolves into a tree structure
Recursion Tree

• The computational process of \texttt{fib} evolves into a tree structure:

  \[
  \text{fib}(5)
  \]
Recursion Tree

- The computational process of $\text{fib}$ evolves into a tree structure
Recursion Tree

- The computational process of \texttt{fib} evolves into a tree structure

```
 fib(5)
 / \
fib(3) fib(4)
```
Recursion Tree

- The computational process of $\text{fib}$ evolves into a tree structure

```
 fib(5)
 / /
 fib(3) fib(2)
 / \\
fib(1) fib(0) fib(1)
 / \\
0 1
```
Recursion Tree

- The computational process of \texttt{fib} evolves into a tree structure
Recursion Tree

- The computational process of \texttt{fib} evolves into a tree structure
Recursion Tree

- The computational process of $\text{fib}$ evolves into a tree structure
Pitfalls of Recursion

• With recursion, you can compose compact and elegant programs that fail spectacularly at runtime.
  
  – Missing base case
  – No guarantee of convergence
  – Excessive space requirements
  – Excessive recomputation
def H(n):
    return H(n-1) + 1.0/n;

• This recursive function is supposed to compute Harmonic numbers, but is missing a base case.

• If you call this function, it will repeatedly call itself and never return.
No guarantee of convergence

def H(n):
    if n == 1:
        return 1.0
    return H(n) + 1.0/n

• This recursive function will go into an infinite recursive loop if it is invoked with an argument n having any value other than 1.

• Another common problem is to include within a recursive function a recursive call to solve a subproblem that is not smaller.
Excessive space requirements

- Python needs to keep track of each recursive call to implement the function abstraction as expected.

- If a function calls itself recursively an excessive number of times before returning, the space required by Python for this task may be prohibitive.

```python
def H(n):
 if n == 0:
 return 0.0
 return H(n-1) + 1.0/n
```

- This recursive function correctly computes the \( n^{th} \) harmonic number.

- However, we cannot use it for large \( n \) because the recursive depth is proportional to \( n \), and this creates a StackOverflowError.
Excessive recomputation

• A simple recursive program might require exponential time (unnecessarily), due to excessive recomputation.
• For example, \texttt{fib} is called on the same argument multiple times
Recursive Graphics

• Simple recursive drawing schemes can lead to pictures that are remarkably intricate – Fractals
• For example, an *H-tree of order n* is defined as follows:
  – The base case is null for $n = 0$.
  – The reduction step is to draw, within the unit square three lines in the shape of the letter H four H-trees of order $n-1$.
  – One connected to each tip of the H with the additional provisos that the H-trees of order $n-1$ are centered in the four quadrants of the square, halved in size.
More recursive graphics

- Sierpinski triangles

- Recursive trees