Lecture #12 – Algorithmic Speed
Last time... Understanding Data

Data science is the study of data.

Data scientist is part mathematician, part statistician, part computer scientist and part trend-spotter.

Machine Learning
Lecture Overview

• Algorithmic Complexity
Computational complexity

• How much time will it take a program to run?
• How much memory will it need to run?

• Need to balance minimizing computational complexity with conceptual complexity
 – Keep code simple and easy to understand, but where possible optimize performance
Measuring complexity

• Goals in designing programs
 1. It returns the correct answer on all legal inputs
 2. It performs the computation efficiently

• Typically (1) is most important, but sometimes (2) is also critical, e.g., programs for collision detection, avionic systems, drive assistance etc.

• Even when (1) is most important, it is valuable to understand and optimize (2)
How do we measure complexity?

• Given a function, would like to answer: “How long will this take to run?”

• Could just run on some input and time it.

• Problem is that this depends on:
 1. Speed of computer
 2. Specifics of Programming Language implementation
 3. Value of input

• Avoid (1) and (2) by measuring time in terms of number of basic steps executed
Measuring basic steps

• Use a **random access machine (RAM)** as model of computation
 • Steps are executed sequentially
 • Step is an operation that takes constant time
 • Assignment
 • Comparison
 • Arithmetic operation
 • Accessing object in memory

• For point (3), measure time in terms of size of input
But complexity might depend on value of input?

```python
def linearSearch(L, x):
    for e in L:
        if e == x:
            return True
    return False
```

• If x happens to be near front of L, then returns True almost immediately
• If x not in L, then code will have to examine all elements of L
• Need a general way of measuring
Cases for measuring complexity

• **Best case**: minimum running time over all possible inputs of a given size
 • For linearSearch – constant, i.e. independent of size of inputs

• **Worst case**: maximum running time over all possible inputs of a given size
 • For linearSearch – linear in size of list

• **Average (or expected) case**: average running time over all possible inputs of a given size

• We will focus on worst case – a kind of upper bound on running time
Example

```python
def fact(n):
    answer = 1
    while n > 0:
        answer *= n
        n -= 1
    return answer
```

- Number of steps
 - 1 (for assignment)
 - $5n$ (1 for test, plus 2 for first assignment, plus 2 for second assignment in while; repeated n times through while)
 - 1 (for return)
- $5n + 2$ steps
- But as n gets large, 2 is irrelevant, so basically $5n$ steps
Example

• What about the multiplicative constant (5 in this case)?

• We argue that in general, multiplicative constants are not relevant when comparing algorithms
Example

def sqrtExhaust(x, eps):
 step = eps**2
 ans = 0.0
 while abs(ans**2 - x) >= eps and ans <= max(x, 1):
 ans += step
 return ans

• If we call this on 100 and 0.0001, will take one billion iterations of the loop
 – Have roughly 8 steps within each iteration
Example

def sqrtBi(x, eps):
 low = 0.0
 high = max(1, x)
 ans = (high + low)/2.0
 while abs(ans**2 - x) >= eps:
 if ans**2 < x:
 low = ans
 else:
 high = ans
 ans = (high + low)/2.0
 return ans

• If we call this on 100 and 0.0001, will take thirty iterations of the loop
 – Have roughly 10 steps within each iteration

• 1 billion or 8 billion versus 30 or 300 – it is size of problem that matters
Measuring complexity

• Given this difference in iterations through loop, multiplicative factor (number of steps within loop) probably irrelevant

• Thus, we will focus on measuring the complexity as a function of input size
 – Will focus on the largest factor in this expression
 – Will be mostly concerned with the worst case scenario
Asymptotic notation

• Need a formal way to talk about relationship between running time and size of inputs

• Mostly interested in what happens as size of inputs gets very large, i.e. approaches infinity
Example

def f(x):
 for i in range(1000):
 ans = i
 for i in range(x):
 ans += 1
 for i in range(x):
 for j in range(x):
 ans += 1

Complexity is 1000 + 2x + 2x², if each line takes one step
Example

• $1000+2x+2x^2$

• If x is small, constant term dominates
 • E.g., $x = 10$ then 1000 of 1220 steps are in first loop

• If x is large, quadratic term dominates
 • E.g. $x = 1,000,000$, then first loop takes 0.0000000005% of time, second loop takes 0.0001% of time (out of 2,000,002,001,000 steps)!
Example

• So really only need to consider the nested loops (quadratic component)

• Does it matter that this part takes $2x^2$ steps, as opposed to say x^2 steps?

 – For our example, if our computer executes 100 million steps per second, difference is ~5.5 hours versus ~2.75 hours

 – On the other hand if we can find a linear algorithm, this would run in a fraction of a second

 – So multiplicative factors probably not crucial, but order of growth is crucial
Rules of thumb for complexity

• Asymptotic complexity
 – Describe running time in terms of number of basic steps
 – If running time is sum of multiple terms, keep one with the largest growth rate
 – If remaining term is a product, drop any multiplicative constants

• Use “Big O” notation (aka Omicron)
 • Gives an upper bound on asymptotic growth of a function
Complexity classes

- $O(1)$ denotes constant running time
- $O(\log n)$ denotes logarithmic running time
- $O(n)$ denotes linear running time
- $O(n \log n)$ denotes log-linear running time
- $O(n^c)$ denotes polynomial running time (c is a constant)
- $O(c^n)$ denotes exponential running time (c is a constant being raised to a power based on size of input)
Constant complexity

• Complexity independent of inputs

• Very few interesting algorithms in this class, but can often have pieces that fit this class

• Can have loops or recursive calls, but number of iterations or calls independent of size of input
Logarithmic complexity

• Complexity grows as log of size of one of its inputs

• Example:
 - Bisection search
 - Binary search of a list
def binarySearch(alist, item):
 first = 0
 last = len(alist)-1
 found = False

 while first<=last and not found:
 midpoint = (first + last)//2
 if alist[midpoint] == item:
 found = True
 elif item < alist[midpoint]:
 last = midpoint-1
 else:
 first = midpoint+1

 return found
Logarithmic complexity

```python
def binarySearch(alist, item):
    first = 0
    last = len(alist)-1
    found = False

    while first<=last and not found:
        midpoint = (first + last)//2
        if alist[midpoint] == item:
            found = True
        elif item < alist[midpoint]:
            last = midpoint-1
        else:
            first = midpoint+1

    return found
```

- Only have to look at loop as no function calls
- Within while loop constant number of steps
- How many times through loop?
 - How many times can one divide indexes to find midpoint?
 - $O(\log(len(alist)))$
Linear complexity

• Searching a list in order to see if an element is present
• Add characters of a string, assumed to be composed of decimal digits

```python
def addDigits(s):
    val = 0
    for c in s:
        val += int(c)
    return val
```

• $O(len(s))$
Linear complexity

• Complexity can depend on number of recursive calls

```python
def fact(n):
    if n == 1:
        return 1
    else:
        return n*fact(n-1)
```

• Number of recursive calls?
 - Fact(n), then fact(n-1), etc. until get to fact(1)
 - Complexity of each call is constant
 - $O(n)$
Log-linear complexity

• Many practical algorithms are log-linear
• Very commonly used log-linear algorithm is merge sort
Polynomial complexity

• Most common polynomial algorithms are quadratic, i.e., complexity grows with square of size of input

• Commonly occurs when we have nested loops or recursive function calls
def isSubset(L1, L2):
 for e1 in L1:
 matched = False
 for e2 in L2:
 if e1 == e2:
 matched = True
 break
 if not matched:
 return False
 return True
Quadratic complexity

def isSubset(L1, L2):
 for e1 in L1:
 matched = False
 for e2 in L2:
 if e1 == e2:
 matched = True
 break
 if not matched:
 return False
 return True

• Outer loop executed len(L1) times

• Each iteration will execute inner loop up to len(L2) times

• $O(len(L1) \times len(L2))$

• Worst case when L1 and L2 same length, none of elements of L1 in L2

• $O(len(L1)^2)$
Quadratic complexity

Find intersection of two lists, return a list with each element appearing only once

def intersect(L1, L2):
 tmp = []
 for e1 in L1:
 for e2 in L2:
 if e1 == e2:
 tmp.append(e1)

 res = []
 for e in tmp:
 if not(e in res):
 res.append(e)

 return res
Quadratic complexity

def intersect(L1, L2):
 tmp = []
 for e1 in L1:
 for e2 in L2:
 if e1 == e2:
 tmp.append(e1)
 res = []
 for e in tmp:
 if not(e in res):
 res.append(e)
 return res

• First nested loop takes \(\text{len}(L1) \times \text{len}(L2) \) steps

• Second loop takes at most \(\text{len}(L1) \) steps

• Latter term overwhelmed by former term

• \(O(\text{len}(L1) \times \text{len}(L2)) \)
Exponential complexity

• Recursive functions where more than one recursive call for each size of problem
 • Towers of Hanoi
 • Fibonacci series

• Many important problems are inherently exponential
 • Unfortunate, as cost can be high
 • Will lead us to consider approximate solutions more quickly
Exponential Complexity

def fib(N):
 if N == 1 or N == 0:
 return N
 else:
 return fib(N-1) + fib(N-2)
Exponential Complexity

def fib(N):
 if N == 1 or N == 0:
 return N
 else:
 return fib(N-1) + fib(N-2)

• Assuming return statement is constant time

• Recall the recursive tree

• Complexity of this function is $O(\sim 2^n)$
Factorial Complexity

• The travelling salesperson problem.
• A salesperson has to visit n towns. Each pair of towns is joined by a route of a given length. Find the shortest possible route that visits all the towns and returns to the starting point.

1. Consider city 1 as the starting and ending point.
2. Generate all \((n-1)!\) Permutations of cities.
3. Calculate cost of every permutation and keep track of minimum cost permutation.
4. Return the permutation with minimum cost.
Complexity classes

- $O(1)$ denotes constant running time
- $O(\log n)$ denotes logarithmic running time
- $O(n)$ denotes linear running time
- $O(n \log n)$ denotes log-linear running time
- $O(n^c)$ denotes polynomial running time (c is a constant)
- $O(c^n)$ denotes exponential running time (c is a constant being raised to a power based on size of input)
- $O(n!)$ denotes factorial running time
Comparing complexities

• So does it really matter if our code is of a particular class of complexity?

• Depends on size of problem, but for large scale problems, complexity of worst case makes a difference
Comparing complexities - example

- There are alternative approaches with differing algorithm complexities for doing *something* on a list of *n* elements.

- Now you want to compare them. Assume that computer makes three billion calculations per second. Let's look for the running time of the algorithms.

<table>
<thead>
<tr>
<th>Complexity</th>
<th>n=10</th>
<th>n=1000</th>
<th>n=10^5</th>
<th>n=10^10</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(logn)</td>
<td>< 1msec</td>
<td>< 1msec</td>
<td>< 1msec</td>
<td>< 1msec</td>
</tr>
<tr>
<td>O(n)</td>
<td>< 1msec</td>
<td>< 1msec</td>
<td>< 1msec</td>
<td>< 1 min</td>
</tr>
<tr>
<td>O(nlogn)</td>
<td>< 1msec</td>
<td>< 1msec</td>
<td>< 1 sec</td>
<td>< 2 min</td>
</tr>
<tr>
<td>O(n^2)</td>
<td>< 1msec</td>
<td>< 1msec</td>
<td>< 1 min</td>
<td>~1000 year</td>
</tr>
<tr>
<td>O(2^n)</td>
<td>< 1 sec</td>
<td>< 1000 year</td>
<td>< 1000 year</td>
<td>< 1000 year</td>
</tr>
<tr>
<td>O(n!)</td>
<td>< 1 sec</td>
<td>< 1000 year</td>
<td>> 1000 year</td>
<td>> 1000 year</td>
</tr>
</tbody>
</table>
Comparing the Complexities

Big-O Complexity Chart

Operations

Elements

O(n!) O(2^n) O(n^2) O(n log n) O(n)
O(log n), O(1)

Horrible Bad Fair Good Excellent
Constant versus Logarithmic
Observations

• A logarithmic algorithm is often almost as good as a constant time algorithm
• Logarithmic costs grow very slowly
Logarithmic versus Linear

Log vs. Linear

Input Size

Time

log
linear
Observations

• Logarithmic clearly better for large scale problems than linear
• Does not imply linear is bad, however
Linear versus Log-linear

![Graph showing linear versus log-linear comparison](image)
Observations

• While $\log(n)$ may grow slowly, when multiplied by a linear factor, growth is much more rapid than pure linear

• $O(n \log n)$ algorithms are still very valuable.
Log-linear versus Quadratic

![Log-linear vs. Quadratic Graph]

- **Log-linear**
- **Quadratic**

Time vs. **Input Size**

- Blue line: log-linear
- Green line: quadratic
Observations

• Quadratic is often a problem, however.
• Some problems inherently quadratic but if possible always better to look for more efficient solutions
Quadratic versus Exponential

• Exponential algorithms very expensive
 - Right plot is on a log scale, since left plot almost invisible
given how rapidly exponential grows

• Exponential generally not of use except for small problems

![Graph showing quadratic vs. exponential growth]

- The left graph is linear, showing a straight line for both quadratic and exponential growth.
- The right graph is on a log scale, highlighting the exponential growth which becomes much steeper than quadratic growth as the input size increases.
Warning

• Execution time and the algorithm complexity are different paradigms.
• Running time may differ even if two algorithms have the same algorithm complexity (Even when their purposes are the same).

```python
def factIT(n):
    answer = 1
    while n > 0:
        answer *= n
        n -= 1
    return answer

def factREC(n):
    if n == 0:
        return 1
    else:
        return n*factREC(n-1)
```

They have same complexity $O(n)$. But their execution times are different.
Tips

• We know that, \(O(2^n) \) algorithm complexity is bad. But, if we sure that \(n \) won’t be up too high, it won’t be matter.

• When we calculate the big-O, we did not care about constant factors.
 - \(5n + 37 \rightarrow O(n) \)

• But, sometimes improving the constants does matter, e.g. in game development
 - \(5n+37 \rightarrow 5n+10 \) (not worthy, but better than nothing)
 - \(5n+37 \rightarrow 3n+12 \) (better)