
Lecture #02 – Introduction to Algorithms

Tunca Doğan & Fuat Akal & Aydın Kaya // Fall 2023

BBM 101
Introduction to
Programming I

Illustration: Antoine Doré // Quanta Magazine

Last time… What is computation

2

Computer science is about logic,
problem solving, and creativity

• Declarative knowledge

– Axioms (definitions)

– Statements of fact

• Imperative knowledge

– How to do something

– A sequence of specific instructions
(what computation is about)

Fixed Program Computers
• Abacus
• Antikythera Mechanism
• Pascaline
• Leibniz Wheel
• Jacquard’s Loom
• Babbage Difference Engine
• The Hollerith Electric Tabulating

System
• Atanasoff-Berry Computer (ABC)
• Turing Bombe

Stored Program Computers
• Problem solving

• What if input is a machine (description) itself?

• Universal Turing machines

– An abstract general purpose computer

MachineInput Output

Lecture Overview

• Your first algorithms

• Search algorithms

– Three flavors of search (Random, Linear, Binary)

• Sorting algorithms
– Two flavors of sorting (Random, Selection)

• Program Development Strategies

3

Disclaimer: Much of the material and slides for this lecture were borrowed from

—Michael Littman’s Brown CS8: A First Byte of Computer Science course

—Ruth Anderson’s University of Washington CSE 140 course

Lecture Overview

• Your first algorithms

• Search Algorithms

– Three flavors of search (Random, Linear, Binary)

• Sorting Algorithms
– Two flavors of sorting (Random, Selection)

• Program Development Strategies

4

Your First Algorithms

• Get two integers from the user and print them
from smaller to larger.

5

Algorithm:

Input: the first number

Input: the second number

If first < second

Print first

Print second

Else

Print second

Print first

* Notice that arbitrary notations were used to outline your first algorithms.

Python Code:

first = input("The first number: ")

second = input("The second number: ")

if first < second:

print(first)

print(second)

else:

print(second)

print(first)

Your First Algorithms

• Get three integers from the user and print them from
smaller to larger.

6

Algorithm:

Input: the first number

Input: the second number

Input: the third number

If first > second

greater = first

lesser = second

Else

greater = second

lesser = first

If third > greater

middle = greater

greater = third

Else

If third > lesser

middle = third

Else

middle = lesser

lesser = third

Print lesser, middle, greater

Python Code:

first = input("The first number: ")

second = input("The second number: ")

third = input("The third number: ")

if first > second:

greater = first

lesser = second

else:

greater = second

lesser = first

if third > greater:

middle = greater

greater = third

else:

if third > lesser:

middle = third

else:

middle = lesser

lesser = third

print(lesser, middle, greater)

Your First Algorithms

• Find the factorial of a given number.

7

Get the number as n

result = 1

If n is 0 OR n is 1

print result

end

Else

while n > 1

result = result * n

n = n - 1

print result

Your First Algorithms

• Find the Fibonacci sequence
for a given number.

8

Input n

Set first to 0

Set second to 1

Set index to 2

print first

If n > 0

print second

While index <= n

current <- first + second

first <- second

second <- current

print current

index <- index + 1

The Fibonacci Sequence is the
series of numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

The next number is found by
adding up the two numbers
before it.

Lecture Overview

• Algorithm Examples

• Search Algorithms

– Three flavors of search (Random, Linear, Binary)

• Sorting Algorithms
– Two flavors of sorting (Random, Selection)

• Program Development Strategies

9

Search Algorithms

Problem Specification

• Input:

– a collection of objects, call it “Basket”

– a specific object, call it “Snozzberry”

• Output:

– True if “Snozzberry” is in “Basket”

– False if “Snozzberry” is not in “Basket”

10

Search Algorithms

Problem Specification

• Input:

– a list of objects, call it “Basket”

– a specific object, call it “Snozzberry”

• Output:

– True if “Snozzberry” is in “Basket”

– False if “Snozzberry” is not in “Basket”

11

Search Algorithms

• Input:

– a list of objects, call it “Basket”

– a specific object, call it “Snozzberry”

• Output:

– True if “Snozzberry” is in “Basket”

– False if “Snozzberry” is not in “Basket”

12

Search Algorithm #1

• Random Search

1. Pick a random item from “Basket”.

2. If it’s the item we’re looking for (“Snozzberry”),
report True!

3. Otherwise, go back to Step 1.

13

Question!

• Q: Does Random Search solve the Search Problem?

[A] Yes! [B] No! [C] I have no idea...

14

Random Search

1. Pick a random item from “Basket”.

2. If it’s the item we’re looking for
(“Snozzberry”), report True!

3. Otherwise, go back to Step 1.

Search Problem

• Input:
– a collection of objects, call it “Basket”

– a specific object, call it “Snozzberry”

• Output:
– True if “Snozzberry” is in “Basket”

– False if “Snozzberry” is not in “Basket”

Question!

• Q: Does Random Search solve the Search Problem?

[A] Yes! [B] No! [C] I have no idea...

15

Random Search

1. Pick a random item from “Basket”.

2. If it’s the item we’re looking for
(“Snozzberry”), report True!

3. Otherwise, go back to Step 1.

Search Problem

• Input:
– a collection of objects, call it “Basket”

– a specific object, call it “Snozzberry”

• Output:
– True if “Snozzberry” is in “Basket”

– False if “Snozzberry” is not in “Basket”

Question!

• Q: Does Random Search solve the Search Problem?

[A] Yes! [B] No! [C] I have no idea...

16

Random Search

1. Pick a random item from “Basket”.

2. If it’s the item we’re looking for
(“Snozzberry”), report True!

3. Otherwise, go back to Step 1.

Search Problem

• Input:
– a collection of objects, call it “Basket”

– a specific object, call it “Snozzberry”

• Output:
– True if “Snozzberry” is in “Basket”

– False if “Snozzberry” is not in “Basket”

Q: What if the item is not in
“Basket”?

Search Algorithm #2

• Linear Search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index 2,
and so on)

3. If, at any point, the index we’re looking at in
the list contains the item, report True!

4. If we get to the end of the list and haven’t seen
it, report False!

17

Search Algorithm #2
• Linear Search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index 2,
and so on)

3. If, at any point, the index we’re looking at in the
list contains the item, report True!

4. If we get to the end of the list and haven’t seen
it, report False!

18

Q: Is “lime” in the list?

Search Algorithm #2
• Linear Search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index 2,
and so on)

3. If, at any point, the index we’re looking at in the
list contains the item, report True!

4. If we get to the end of the list and haven’t seen
it, report False!

19

Q: Is “lime” in the list?

Search Algorithm #2
• Linear Search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index 2,
and so on)

3. If, at any point, the index we’re looking at in the
list contains the item, report True!

4. If we get to the end of the list and haven’t seen
it, report False!

20

Q: Is “lime” in the list?

Search Algorithm #2
• Linear Search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index 2,
and so on)

3. If, at any point, the index we’re looking at in the
list contains the item, report True!

4. If we get to the end of the list and haven’t seen
it, report False!

21

Q: Is “lime” in the list?

Search Algorithm #2
• Linear Search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index 2,
and so on)

3. If, at any point, the index we’re looking at in
the list contains the item, report True!

4. If we get to the end of the list and haven’t seen
it, report False!

22

Q: Is “lime” in the list?

Question!

• Q: Does Linear Search solve the Search Problem?

[A] Yes! [B] No! [C] I have no idea...

23

Linear Search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index
2, and so on)

3. If, at any point, the index we’re looking at in
the list contains the item, report True!

4. If we get to the end of the list and haven’t
seen it, report False!

Search Problem

• Input:
– a collection of objects, call it “Basket”

– a specific object, call it “Snozzberry”

• Output:
– True if “Snozzberry” is in “Basket”

– False if “Snozzberry” is not in “Basket”

Question!

• Q: Does Linear Search solve the Search Problem?

24

Linear Search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index
2, and so on)

3. If, at any point, the index we’re looking at in
the list contains the item, report True!

4. If we get to the end of the list and haven’t
seen it, report False!

Search Problem

• Input:
– a collection of objects, call it “Basket”

– a specific object, call it “Snozzberry”

• Output:
– True if “Snozzberry” is in “Basket”

– False if “Snozzberry” is not in “Basket”

A: Yes! For any list, for any item, linear search
will solve the Search problem!

Search Algorithm #3

• Binary Search: assumes a sorted list

• Idea: if we assume the list is sorted, surely
finding our item is easier!

25

You Try It

Q: Is 16 in the list?

26

You Try It

Q: Is 91 in the list?

27

Which Was Easier?

Q: Is 91 in the list?

28

Q: Is 16 in the list?

Search Algorithm #3

• Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less
than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

29

Binary Search

30

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Binary Search

31

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 3 in the list?

Binary Search

32

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 3 in the list?

Binary Search

33

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 3 in the list?

Binary Search

34

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 3 in the list?

Binary Search

35

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 3 in the list?

3 < 5

Binary Search

36

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 3 in the list?

3 < 5

Binary Search

37

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 3 in the list?

3 < 5

Binary Search

38

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 3 in the list?

3 < 5

Because list is sorted, if our number is
in the list, it has to be to the left of 5!!!

Binary Search

39

Binary Search

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 3 in the list?

3 < 5

Binary Search

40

Binary Search

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 3 in the list?

Binary Search

41

Binary Search

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 3 in the list?

Binary Search

42

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 6 in the list?

Binary Search

43

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 6 in the list?

Binary Search

44

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 6 in the list?

5 < 6

Binary Search

45

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 6 in the list?

5 < 6

Binary Search

46

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 6 in the list?

Binary Search

47

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 6 in the list?

Binary Search

48

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 6 in the list?

6 < 8

Binary Search

49

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 6 in the list?

6 < 8

Binary Search

50

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 6 in the list?

6 < 8

Binary Search

51

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 6 in the list?

Binary Search

52

1 3 4 5 7 8 9

Another way of thinking about it:

Linear Search = check every item in
the worst case!

Binary Search = uses
sorted property to avoid checking

every item

Q: Is 6 in the list?

Question

53

1 3 4 5 7 8 9 11 12 14 16

Q: How many items will Binary Search
inspect when searching for 6?

Question

54

1 3 4 5 7 8 9 11 12 14 16

Q: How many items will Binary Search
inspect when searching for 6?

[A] 1 [B] 2 [C] 3 [D] 4 [E] 5

Question

55

1 3 4 5 7 8 9 11 12 14 16

Q: How many items will Binary Search
inspect when searching for 6?

[A] 1 [B] 2 [C] 3 [D] 4 [E] 5

Question

56

1 3 4 5 7 8 9 11 12 14 16

Q: How many items will Binary Search
inspect when searching for 6?

[A] 1 [B] 2 [C] 3 [D] 4 [E] 5

Inspections: 1

Question

57

1 3 4 5 7 8 9 11 12 14 16

Q: How many items will Binary Search
inspect when searching for 6?

[A] 1 [B] 2 [C] 3 [D] 4 [E] 5

Inspections: 1

Question

58

1 3 4 5 7 8 9 11 12 14 16

Q: How many items will Binary Search
inspect when searching for 6?

[A] 1 [B] 2 [C] 3 [D] 4 [E] 5

Inspections: 2

Question

59

1 3 4 5 7 8 9 11 12 14 16

Q: How many items will Binary Search
inspect when searching for 6?

[A] 1 [B] 2 [C] 3 [D] 4 [E] 5

Inspections: 2

Question

60

1 3 4 5 7 8 9 11 12 14 16

Q: How many items will Binary Search
inspect when searching for 6?

[A] 1 [B] 2 [C] 3 [D] 4 [E] 5

Inspections: 3

Question

61

1 3 4 5 7 8 9 11 12 14 16

Q: How many items will Binary Search
inspect when searching for 6?

[A] 1 [B] 2 [C] 3 [D] 4 [E] 5

Inspections: 4

Properties of Algorithms

1. Correctness: does the algorithm satisfy the
problem specification?

2. Growth Rate: how many “primitive”
operations must the computer execute to solve
the problem for various sized inputs?

62

Growth Rates

• Linear Search vs. Binary Search

• Well we already said that Binary is faster, but by
how much?

63

Growth Rates

• Linear Search vs. Binary Search

• Well we already said that Binary is faster, but by
how much?

64

More about the growth rates
at the end of the semester!

Lecture Overview

• Algorithm Examples

• Search Algorithms

– Three flavors of search (Random, Linear, Binary)

• Sorting Algorithms
– Two flavors of sorting (Random, Selection)

• Program Development Strategies

65

Sort Algorithms

66

Problem Specification

• Input:

– a collection of orderable objects, call it “Basket”

• Output:

– “Basket”, where each item is in order

Sort Algorithms

67

Problem Specification

• Input:
– a collection of orderable objects, call it

“Basket”

• Output:
– “Basket”, where each item is in order

Sort Algorithm #1

Random Sort

1. Shuffle the list up randomly (like shuffling a
deck).

2. Check to see if the list is in order. If it is, return
the list.

3. If it is not, repeat from step 1.

68

Sort Algorithm #1

Random Sort

1. Shuffle the list up randomly (like shuffling a
deck).

2. Check to see if the list is in order. If it is, return
the list.

3. If it is not, repeat from step 1.

Let’s take a look!

69

Sort Algorithm #1

Random Sort

70
https://www.youtube.com/watch?v=C9mdDUutRRg

https://www.youtube.com/watch?v=C9mdDUutRRg

Sort Suggestions?

Any proposals?

71

Sort Algorithm #2

Selection Sort

1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it at the 2nd position from the beginning.

5. Rinse and repeat....
(for the 3rd smallest, 4th smallest, …)

72

Sort Algorithm #2
Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, …)

73

Sort Algorithm #2
Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, …)

74

Sort Algorithm #2
Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, …)

75

Sort Algorithm #2
Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, …)

76

Sort Algorithm #2
Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, …)

77

Sort Algorithm #2
Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, …)

78

Sort Algorithm #2
Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, …)

79

Sort Algorithm #2
Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, …)

80

Sort Algorithm #2
Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, …)

81

Sort Algorithm #2
Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, …)

82

Sort Algorithm #2

Selection Sort

83
https://www.youtube.com/watch?v=hqBPYhAQeTI

https://www.youtube.com/watch?v=hqBPYhAQeTI

Lecture Overview

• Algorithm Examples

• Search Algorithms

– Three flavors of search (Random, Linear, Binary)

• Sorting Algorithms

– Two flavors of sorting (Random, Selection)

• Program Development Strategies

84

Program development methodology

Algorithm first, then Implementation:

1. Define the problem

2. Decide upon an algorithm

3. Translate it into code

Try to do these steps in order

85

Program development methodology

Algorithm first, then Implementation:

1. Define the problem

A. Write the problem specification:

A natural language description of the input and output for
the whole program. (Do not give details about how you will
compute the output.)

B. Create test cases for the whole program

• Input and expected output

2. Decide upon an algorithm

3. Translate it into code

Try to do these steps in order

86

Program development methodology

Algorithm first, then Implementation:

1. Define the problem

2. Decide upon an algorithm

A. Implement it in an algorithmic manner (e.g. in English)

• Write the recipe or step-by-step instructions

B. Test it using paper and pencil

• Use small but not trivial test cases

• Play computer, animating the algorithm

• Be introspective

– Notice what you really do

– May be more or less than what you wrote down

– Make the algorithm more precise

3. Translate it into code

Try to do these steps in order
87

Program development methodology

Algorithm first, then Implementation:

1. Define the problem

2. Decide upon an algorithm

3. Translate it into code

A. Implement it using a programming language

• Decompose it into logical units (functions)

Try to do these steps in order

88

Why functions?

There are several reasons:

• Creating a new function gives you an opportunity to name
a group of statements, which makes your program easier
to read and debug.

• Functions can make a program smaller by eliminating
repetitive code. Later, if you make a change, you only have
to make it in one place.

• Dividing a long program into functions allows you to debug
the parts one at a time and then assemble them into a
working whole.

• Well-designed functions are often useful for many
programs. Once you write and debug one, you can reuse it.

89

We will cover functions
in week #5.

Program development methodology

Algorithm first, then Implementation:

1. Define the problem

2. Decide upon an algorithm

3. Translate it into code

Try to do these steps in order
– It’s OK (even common) to back up to a previous step

when you notice a problem

– You are incrementally learning about the problem,
the algorithm, and the code

– “Iterative development”

90

Waterfall Development Strategy

• Before the iterative model,
we had the waterfall
strategy.

• The waterfall model is a
breakdown of project
activities into
linear sequential phases

• Each step handled once.

• The model had a limited
capability and received
too many criticism.

• Better than nothing!!

• Do not dive in to code!!

• Please!!
91

* From wikipedia waterfall development model

https://en.wikipedia.org/wiki/Sequence

Iterative Development Strategy

• Software development is a living process.
• Pure waterfall model wasn’t enough.
• Iterative development strategy suits best to our needs (for now).

92

* From wikipedia Iterative development model

• The basic idea behind
the iterative
development is to
develop a system
through repeated
cycles and in smaller
portions at a time
(incremental)

• Allows software
developers to take
advantage of what was
learned during
development of earlier
parts or versions of the
system.

https://en.wikipedia.org/wiki/Software_developer

