John von Neumann in front of the IAS machine (1952)
" 4

L)

:
:

T

‘;ﬁjvv-vaqr }
3 I‘&A :‘.
| --‘ A 1\..‘
)|

‘I l’ ‘y: ‘B

e eTTIRIRL L !

3 S
»X‘;"‘}«H,

=

2
A
—

I\

A

Last time... Introduction to Algorithms

An algorithm is a recipe for solving a problem.

Problem Specification
Input: Some stuff!
OUTPUT: Information about the stuff!

Search Problem (basket)
1
* Input: 2
; - 3
— alist of objects |
— a specific object :=
° . 14| grapefruit
— True if the object is in list o coconut___|
— False if the object is notin list + length:9

Requirements

Planning

Initial
Planning

Deployment
Evaluation
Testing

Analysis & Design

Implementation

Sorting Problem

* Input:

— acollection of orderable objects

* Output:

— acollection where each item is in order

(basket p - o
oooe | _—
Moppe |
73| pineapple 3 e
N trawbory | e B
: (o Nomporrat |
-
: — |
Jommge |
74| grapefruit B
s CICTI S
N coconut | i
Notrawbory |
Lt length: 9 Y T length: 9 Y

Lecture Overview

* Building a Computer

 The Harvey Mudd Miniature Machine (HMMM)

Disclaimer: Much of the material and slides for this lecture were borrowed from
— Gregory Kesden’s CMU 15-110 class

—David Stotts” UNC-CH COMP 110H class
—Swami lyer’s Umass Boston CS110 class

Lecture Overview

* Building a Computer Read the

reference

. _ book
* The Harvey Mudd Miniature Machine CS for All, by C. Alvarado,

(HMMM) _J Z.Dodds, G. Kuenning &

R. Libeskind-Hadas

Disclaimer: Much of the material and slides for this lecture were borrowed from
— Gregory Kesden’s CMU 15-110 class

—David Stotts” UNC-CH COMP 110H class
—Swami lyer’s Umass Boston CS110 class

Lecture Overview

* Building a Computer

Building a Computer

* Numbers

e Letters and Strings

e Structured Information

* Memory

 von Neumann Architecture

Numbers

At the most fundamental level, a computer manipulates electricity according

to specific rules

To make those rules produce something useful, we need to associate the
electrical signals with the numbers and symbols that we, as humans, like to

use

To represent integers, computers use combinations of numbers that are
powers of 2, called the base 2 or binary representation

— bit=0or1
e False or True
e Off or On

* Low voltage or High voltage

C— O >
3.3V —
2.8V —

0.5V —
0.0V —

\ 4

— () —

Numbers

* With four consecutive powers 29, 21, 22, 23, we can make all of
the integers from 0 to 15 using 0 or 1 of each of the four powers

* Forexample, 13,,=1-23+1:22+0-21 +1-2°=1101,; in other
words, 1101 in base 2 means 1101, =1-23 +1-22 +0-21 +1-20 =
1344

* Analogously, 603 in base 10 means 603,, = 6:10% +0-10! +3-10°
and 207 in base 8 means 207 = 2-8% +0-8! +7-8° = 135,

* Ingeneral, if we choose some base b > 2, every positive integer
between 0 and b? - 1 can be uniquely represented using d digits,
with coefficients having values 0 through b-1

* A modern 64-bit computer can represent integers up to 2% -1

Numbers

Arithmetic in any base is analogous to arithmetic in base 10

 Examples of addition in base 10 and base 2

Ohs O O
17 {1 1 1
+ 2 5 + 1 1 0
a2 I 1 0 1

To represent a negative integer, a computer typically uses a system

called two’s complement, which involves flipping the bits of the
positive number and then adding 1

For example, on an 8-bit computer, 3 = 00000011, so
-3=11111101

Numbers

* |f we are using base 10 and only have eight digits to represent our
numbers, we might use the first six digits for the fractional part of a
number and last two for the exponent

* For example, 31415901 would represent 0.314159 x 10! = 3.14159

 Computers use a similar idea to represent fractional numbers

8-bit field

HEEREEER |IEEE 754 Floating Point Standard
Implied :
binary polnt [s [e=exponent| m=mantissa |
| R bt 8bits 23 bits

onan 2=0 |] | ‘ [s e
+2' = +2 +22= +0.25

+20= 41 *2'=45 1000000110100000000000000000000 = ~1°x1.101,x2125-127
An 8-bit field representing a fixed-point number \———rd Y) = 1.625x22

27+20=129 2-1423=0.625 =6.5

10

Letters and Strings

USASCIl code chart

* In order to represent letters numerically, Re,: % (% 1% %,] o, i
. . o Paloa b, o, [N
we need a convention on the encoding Aelif] O | v 2|3 [4]5]6 |7
ojojofo]| O |JNuL |OLE SP 0 @ P \ P
ojojo| | SOH | DC1 ! 1 A Q o qQ
. . (o] 2 ST r
* The American National Standards 2 N N O S TN 3 S A I S
o|1{0}0 4 EOT | DC4 [4 D T d t
Institute (ANSI) has established such a ofifoli]'5 fevofwax % 5 T e] vlelo
o1]V {O 6 ACK | SYN 8 6 F \ f v
convention, called ASCIlI (American T
] IJofo[ir] 9 [HT | EM) 9 1 Y i y
Standard Code for Information 8 N 20 T Y T T A B
1{o vt | Esc + ; K K
Interchange) o T e T T T T 13
vJr]i1]o] 14] so | RS > N ~ n |~
1i1 111115 | s1 | us / ? 0 — o | DEL
* ASCII defines encodings for the upper-
and lower-case letters, numbers, and b g B S ed B B
a selected set of special characters g i
1
- - 2 |sP| ! #1S|%| & [C|I)|*|+]|,]|-
* ASCII, being an 8-bit code, can only 3{ol1|2|3(a]5|6|7|8]9]:|;|<|=
represent 256 different symbols, and i bt et L 2 L] L SR B L2 L
SIPIQ|IR|S|TIU[VIW|X|Y[Z[[[\]]
does not provide for characters used 6| |a|b|c|d|e[f|g|h[i|i[k[1]m
7lpla|r|s|t|ulv|w|x|y|z|[{]|]|]}

in many languages

Hexadecimal to ASCII conversion table

Letters and Strings

* The International Standards Organization’s (ISO) 16-bit
Unicode system can represent every character in every
known language, with room for more

* Unicode being somewhat wasteful of space for English
documents, ISO also defined several “Unicode Transformation
Formats” (UTF), the most popular being UTF-8

Aaodb®
U+0041 U+O0OE1 U+2202 U+1D50A

Unicode characters

Letters and Strings

* Emojis are just like characters, and they have a standard, too

Smileys & People

face-positive
Ne Code Browser Appl Googd Twir. One FB FBM Sams. Wind. GMaili SB DCM KDDI CLDR Short Name

1 zearsce Y e = s a5 SR B | & = - grinning face
| = © v v o | vV w & &

2|z-1r601 —N - D 2 S5 YW Y= = @ e beaming face with smiling
< & o <O @ U e © eyes

3|u-1r602 = £ Y YW = z iz face with tears of joy
= oSO E® @ ¢

4 ve1reas > = pe R v, Lok rolling on the floor
& DD @HB i

§|z-1r603 53 grinning face with big

) " 00 "l [X} (50 00 O an

\ ¥ v v ¢ ¥ v & (:) 4 @ eyes

6/ u-1rs0s N p= o 2 & AR A & - — grinning face with smiling
= & = < v = | - eyes

7 u=1r6o n | - ; grinning face with sweat

“) ~al il AN ~ -~ R o7
& @O S OO s i
U-1F606 <2 inni inting face

= - W Y Y s2 . grinning squin

Q u-1rs0s 4 ~ - —— winking face
* ® 00000 ® | & R

* Full Emoji List, v5.0
https://unicode.org/emoiji/charts/full-emoji-list.html

13

https://unicode.org/emoji/charts/full-emoji-list.html

Letters and Strings

e Astring is represented as a
sequence of numbers, with
a “length field” at the very
beginning that specifies the
length of the string

* For example, in ASCII the
sequence 99, 104, 111, 99,
111, 108, 97, 116, 101
translates to the string
“chocolate”, with the
length field setto 9

Binary ¢

110 0001
110 0010
110 0011
110 0100
110 0101
110 0110
110 0111
110 1000
110 1001
110 1010
110 1011
110 1100
110 1101
110 1110
110 1111
111 0000
111 0001
111 0010
111 0011
111 0100

Oct ¢ Dec 4

141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111

112
113
114
115
116

Hex

61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74

Structured Information

* We can represent any information as a sequence of numbers
 Examples

— A picture can be represented as a sequence of pixels, each

represented as three numbers giving the amount of red, green, and
blue at that pixel

— A sound can be represented as a temporal sequence of “sound
pressure levels” in the air

— A movie can be represented as a temporal sequence of individual

pictures, usually 24 or 30 per second, along with a matching sound
sequence

Recall: Stored Program Concept

e Stored-program concept is the fundamental principle
of the ENIAC’s successor, the EDVAC (Electronic
Discrete Variable Automatic Computer)

* Instructions were stored in memory sequentially
with their data

* |Instructions were executed sequentially except
where a conditional instruction would cause a jump
to an instruction some place other than the next
Instruction

Stored Program Concept

* John von Neumann publishes a draft
report that describes the concept and
earns the recognition as the inventor of
the concept

— “von Neumann architecture”

— A First Draft of a Report of the EDVAC
published in 1945

* Mauchly and Eckert are generally
credited with the idea of the
stored-program

von Neumann,
Member of the Navy
Bureau of Ordinance
1941-1955

17

Memory Hierarchy

1 cycle On CPU

Registers)
Primary

Storage

~10 cycles

Caches

Faster Access,
Higher Cost ~
Main Memory 100 cycles

Slower Access,

Lower Cost _ ~1 M cycles
Flash Disk

~10 M cycles ;i:gn(iary
Traditional Disk g
! / Remote Secondary Storage (e.g., Internet) \

The Memory Hierarchy

I\

v

S

Storage Capacity

https://diveintosystems.org/book/C11-MemHierarchy/mem_hierarchy.html

Stored Program Concept

* “Fetch-Decode-Execute” cycle

Registers

Arithmetic
Logic Unit

19

Stored Program Concept

* “Fetch-Decode-Execute” cycle

Arithmetic
Logic Unit

Registers Central Processing Unit (CPU)

 The CPU is where all the computation
takes place

e ALU + Control = Processor

* The CPU has devices such as adders,
multipliers, etc. for doing arithmetic. It
has a small amount of (scratch)
memory called registers

Stored Program Concept

* “Fetch-Decode-Execute” cycle

Arithmetic
Logic Unit

Registers

: ALU

BUS

 Abusis a collection of parallel wires

that carry address, data, and control
signals.

* Buses are typically shared by multiple

| devices.

: System bus Memory bus

l

Bus interface

fo) Man
bridge memory

21

Stored Program Concept

Registers

Arithmetic
Logic Unit

Memory

A program, a long list of instructions, is
stored in the main memory,

* One instruction at a time, taken
into register in the CPU for
execution

The CPU has some special and general
purpose registers.

Program counter is the most
important register that keeps track of
the instructions to be executed.

Stored Program Concept

Memory

Arithmetic * Instructions, like data, can be encoded
Logic Unit as numbers

Registers Address Contents

200 1000 0001 (ADD to R1)

201 01100110 (data value 102)

202 1001 0001 (ADD to R1)

203 01100110 (data at address 102)
204 11110111 (JUMP 7 bytes)

von Neumann Architecture

* Let’s assume an 8-bit computer with only four Opcode Meaning
instructions: 00 Add
01 Subtract
— add, subtract, multiply, and divide 10 Multiply
11 Divide

* Each of the instructions will need a number,
which is called an operation code (or opcode), to represent it

* Next, let’s assume that our computer has four registers, numbered 0
through 3, and 256 8-bit memory cells

* Aninstruction will be encoded as: the first two bits represent the
instruction, the next two bits encode the “destination register”, the next
four bits encode the registers containing two operands

* For example, the instruction add 3 0 2 (meaning add the contents of
register 2 and register 0 and store the result in register 3) will be encoded
as 00110010

The Fetch-Execute Cycle

Store:
The newly processed is written
back into the memory location on

" RAMTTT

Execute:

The CPU assigns the specific
actions to the relevant system
components in order to carry out
the initial program instructions,
processing the actual data.

E-Time

Execution Time:

Instructions are
retrieved from
memory and
decoded by the CPU

[~Tme
Instruction Time:
Instructions are
retrieved from
memory and decoded
by the CPU

Source: https://www.youtube.com/watch?v=xs509-i_rTc

Fetch:
The CPU retrieves instructions from

2 ststeme ol
and stores them in a register

ocation.

Decode:

The CPU determines which system
components are required in the
execution of the instruction,
outlining parameters for a
successful execution.

Algorithm for Program Execution

 PC (program counter) is set to the address where the
first program instruction is stored in memory.

* Repeat until HALT instruction or fatal error
- Fetch instruction
- Decode instruction
- Execute instruction

End of loop

Levels of Program Code

« High-level language

Level of abstraction closer to
problem domain

Provides for productivity and
portability

« Assembly language
= Textual representation of

instructions

« Hardware representation

Binary digits (bits)
Encoded instructions and data

High-level
language
program

(in C)

Assembly
language
program
(for MIPS)

Binary machine
language
program

(for MIPS)

swap(int v[], int k)
{int temp;
temp = v[k];
vlk] = v[k+1];
vik+1] = temp;
}

swap:
muli $2, $5.,4
add $2, $4,%2
Tw $15, 0(%$2)
Tw $16, 4(%$2)
Sw $16, 0($2)
Sw $15, 4(%$2)
jr $31

00000000101000010000000000011000
00000000000110000001100000100001
10001100011000100000000000000000
10001100111100100000000000000100
10101100111100100000000000000000
10101100011000100000000000000100
00000011111000000000000000001000

Assembly Language

A low-level programming
language for computers

More readable, English-
like abbreviations for
instructions

Architecture-specific

Example:

MOV AL, 61h

MOV AX, BX
ADD EAX, 10
XOR EAX, EAX

For example, the instruction below tells an x86/IA-32 processor to move an immediate
8-bit value into a register. The binary code for this instruction is 10110 followed by a 3-
bit identifier for which register to use. The identifier for the AL register is 000, so the
following machine code loads the AL register with the data 01100001 17l

10110000 01100001

This binary computer code can be made more human-readable by expressing it in
hexadecimal as follows.

BO 61

Here, BO means 'Move a copy of the following value into AL, and 61 is a
hexadecimal representation of the value 01100001, which is 97 in decimal. Assembly
language for the 8086 family provides the mnemonic MOV (an abbreviation of move)
for instructions such as this, so the machine code above can be written as follows in
assembly language, complete with an explanatory comment if required, after the
semicolon. This is much easier to read and to remember.

MOV AL, 61h ; Load AL with 97 decimal (61 hex)

28

Continuum of Programming
Languages

Machine Assembly Programming languages English, Spanish,
language language such as C++, Java, Python Pseudocode Japanese, . . .

Low-level languages < High-level languages) €mNatural languages

(not related to

(closely related to
the hardware)

the hardware) (more removed from details of the hardware)

Summary: Components of a Computer

Sequential execution of machine
instructions

— The sequence of instructions are
stored in the memory.

m One instruction at a time is fetched
from the memory to the control unit.

— They are read in and treated
just like data.

PC (program counter) is responsible from the flow of control.

Memory

Control

ALU

@

> inst;
inst,
inst;

insty,

PC points at a memory location containing the instruction being

executed at the current time.

Early programmers (coders) used to write programs via machine

instructions.

Lecture Overview

 The Harvey Mudd Miniature Machine (HMMM)

The Harvey Mudd Miniature Machine
(HMMM)

* HMMM

* ASimple HMMM Program
* Looping

* Functions

* HMMM Instruction Set

The Harvey Mudd Miniature Machine
(HMMM)

* Hmmm (Harvey Mudd Miniature Machine) is a 16-bit, 23-instruction
simulated assembly language with 28=256 16-bit words of memory.

* |n addition to the program counter and instruction register, there are
16 registers named r0 through r15.

Hmmm assembly code Corresponding instructions in machine language
0 read ri 0000 0001 0000 0001
1 read r2 0000 0010 0000 0001
2 mul ri r1 r2 1000 0001 0001 0010
3 setn r2 2 f:> 0001 0010 0000 0010
4 div i rl T 1001 0001 0001 0010
5 write rl 0000 0001 0000 0010
6 halt 0000 0000 0000 0000

HMMM

A real computer must be able to
— Move information between registers and memory
— Get data from the outside world
— Print results
— Make decisions

The Harvey Mudd Miniature Machine (HMMM) is organized as follows
— Both instructions and data are 16 bit wide

— In addition to the program counter and instruction register, there are 16 registers
named r0 through r15

— There are 256 memory locations

Instead of programming in binary (0’s and 1’s), we’ll use assembly language, a
programming language where each instruction has a symbolic representation

For example, to compute r3 = rl+r2, we will write add r3 rl r2

We will use a program to convert the assembly language into 0’s and 1’s — the
machine language — that the computer can execute

1 http://shickey.github.io/HMMM.js

http://shickey.github.io/HMMM.js

A Simple HMMM Program

trianglel.hmmm: Calculate the approximate area of a triangle.

read
read
mul
setn
div

O WN - O

halt

write

| ASSEMBLY SUCCESSFUL |

0 0000
1 0000
2 : 1000
3 : 0001
4 : 1001
5 0000
6 0000

0001
0010
0001
0010
0001
0001
0000

Simulate! =

4
5
10

ri
r2

Get base b
Get height h

rli1 r1 r2 # b times h into ri

r2 2

rl rl r2 # Divide by 2

ri

0000
0000
0001
0000
0001
0000
0000

0001
0001
0010
0010
0010
0010
0000

01 WN - O

read
read
mul
setn
div
write
halt

ri
r2
ril
r2
ri
ri

ri r2

ri r2

H #

#

Get base b
Get height h
b times h into ril

Divide by 2

Looping

Unconditional jump (5umpn N): set program counter to address N

triangle2.hmmm: Calculate the approximate areas of many triangles.

0 read ri # Get base b

1 read r2 # Get height h
2 mul rl r1 r2 # b times h into ri
3 setn r2 2

4 div rl r1 r2 # Divide by 2
5 write ri

6 jumpn 0

4

5

10

5

5

12

<ctrl-d>

End of input, halting program execution...

36

Looping

Conditional jump (jegzn rxX N):if rX == 0, then jump toline N

triangle3.hmmm: Calculate the approximate areas of many triangles. Stop when a base or height of zero is given.

0 read ril # Get base b

1 jeqzn rl 9 # Jump to halt if base is zero
2 read r2 # Get height h

3 jeqzn r2 9 # Jump to halt if height is =zero
4 mul rl rl1 r2 # b times h into ril

5 setn r2 2

6 div rl rl1 r2 # Divide by 2

7 write rl

8 jumpn 0

9 halt

4

5

10

5

5

12

0

Looping

is_it_a_prime_number.hmmm: Calculate whether a given positive number is prime or not

0 read rl # read the number. Please enter positive integers.
1 setn r2 2 # use this register for arithmetic operations with 2.
2 setn r9 1 # use this register for arithmetic operations with 1.
3 sub rl5 rl r9
4 jeqzn rl5 17 # check if the number is 1
5 div r3 rl r2 # Divide to 2. The biggest divider (denominator) should (may) be this number.
6 nop # there is no reason. Deleted a line, but too lazy to change all the line numbers.
the number is 2 or 3. So it is prime.
sub rl5 r3 r9
8 jeqz rl5 15
The number is not 1, 2 or 3. The main loop starts here-------——-—-—-—-————-
9 mod rl5 rl r3 # mod to check if the number is aliquot.
10 jeqgzn rl5 17 # it is not a prime number. Jump to line 17.
11 sub r3 r3 r9 # subtract one from the divider
12 sub r5 r3 r9 # subtract one, but on a different register to check the divider is 1 or not.
13 jeqz r5 15 # we successfully reduced the divider to 1. This is a prime number. Jump to line 15.
14 jumpn 9 # jump to the start of the main loop.
B ———————————————————————————————— Write 1 for prime numbers.
15 write r9 # r9 is already 1.
16 halt
B ———————————————————————————————— Write 0 for non-prime numbers.
17 setn r8 0
18 write 8
19 halt
Simulate! =»
17

38

Functions

e Callafunction(calln rXx N):copy the next address (aka return address)
into rX and then jump to address N

e Return from a function (jumpr rX): set program counter to the return
address in rx

* By convention, we use register r14 to store the return address

square.hmmm: Calculate the square of a number N.

0 read ril # Get N

1 calln ri4 5 # Calculate N~2

2 write r2 # Write answer

3 halt

4 nop # Waste some space

Square function. N is in r1l. Result (N"2) is in r2. Return address is in ri4.
5 mul r2 rl rl1 # Calculate and store N"2 in r2
6 jumpr ri4d # Done; return to caller
Simulate! =

11

121

39

Functions

combinations.hmmm: Calculate C (N, K) (aka N choose K) defined as C(N, K) = N!/(K!(N — K)!), where N'!

(N factorial) is defined as N! = N X (N — 1) X (N —2) X - -

X 2 x 1, with 0! = 1.

0 ~NO O WNH+- O

read
read
copy
calln
copy

copy
calln

div
sub
calln
div
write
halt
nop
nop

r3
rd

rl r3

ri4d

15

r5 r2
rli r4

ri4

15

r5 r5 r2
rl r3 r4d

rid

15

r5 r5 r2

rb5

Factorial function.

15
16
17
18
19
20

setn
jeqzn
mul
addn
jumpn
jumpr

Simulate! =

5
2
10

r2
ri
r2
ri
16
ri4

1
20
rl r2
-1

H oH H H HHHHHHEHHE

+*

N is in ri1.

H H H H H H

Get N
Get K
Calculate N!

Save N! as C(N, K)
Calculate K!

N!'/K!
Calculate (N - K)!

C(N, K)
Write answer

Waste some space

Initial product

Result is r2.

Return address is in ri14.

Quit if N has reached zero

Update product
Decrement N
Back for more

Done; return to caller

40

Functions

Trace of the factorial function (N=4)

15
16
17
18
19
16
17
18
19
16
17
18
19
16
17
18
19
16
20

instruction

setn r2
jeqzn rl
mul r2
addn ril
jumpn 16
jeqzn rl
mul r2
addn ril
jumpn 16
jeqgzn rl
mul r2
addn rl
jumpn 16
jeqgzn rl
mul r2
addn rl
jumpn 16
jeqgzn rl
jumpr rl4

1

20
rl
-1

20
rl
-1

20
rl
-1

20
rl
-1

20

rl
4

r2

12

24

24

co~JoOuUT kWM RO

BB
N R O W

Trace of the program (N=5, K=2)

instruction

read
read
copy
calln
copy

copy
calln

div
sub
calln
div
write
halt

r3

r4d

rl r3
rld 15
r5 r2

rl r4
rld 15
r5 r5 r2
rl r3 r4d
rld4 15
r5 r5 r2
r5

rl r2

5
120

2
2

3
6

r3

5

r5

120

60

10

rl4

10

41

HMMM Instruction Set

System instructions

halt

read rX

write rX

nop

stop

place user input in register rx
print contents of register rx
do nothing

Setting register data

setn rX N
addn rX N

copy rX rY

Arithmetic

add
sub
neg
mu l
div

mod

rX
rX
rX
rX
rX
rX

rY
rY
rY
rY
rY
rY

r7z
r7z

r7z
r7z
r7z

set register rx equal to the integer N (-128 to 127)
add integer N (-128 to 127) to register rx
set rX=rY

set rX=rY+r7Z

set rX=rY-rZz

set rX=-rY

set rX=rY*rZz

set rx=rY/r7 (integer division; no remainder)

set rXx=rY%r7 (returns the remainder of integer division)

HMMM Instruction Set

Jumps
Jjumpn
Jjumpr
Jjeqzn
Jjnezn
Jgtzn
Jltzn

calln

rX
rX
rX
rX
rX
rX

2 =2 =2 =2 =

set program counter to address N

set program counter to address in rx

if rX==0, then jump to line N

if rxX!=0, then jump toline N

if rx>0, then jump to line N

if rX<0, then jump to line N

copy the next address into rX and then jump to address N

Interacting with memory

loadn rX N

storen rX N

loadr rX rY

load register rX with the contents of address N
store contents of register rx into address N
load register rX with data from the address location held in register ry

storer rX rY store contents of register rx into address held in register rv

