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Last time… Introduction to Algorithms
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• An algorithm is a recipe for solving a problem. Problem Specification
Input: Some stuff!
OUTPUT: Information about the stuff!

Search Problem
• Input:

– a list of objects
– a specific object

• Output:
– True if the object is in list
– False if the object is not in list

Sorting Problem
• Input:

– a collection of orderable objects
• Output:

– a collection where each item is in order



Lecture Overview
• Building a Computer

• The Harvey Mudd Miniature Machine (HMMM)
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Disclaimer: Much of the material and slides for this lecture were borrowed from 
— Gregory Kesden’s CMU 15-110 class
—David Stotts’ UNC-CH COMP 110H class
—Swami Iyer’s Umass Boston CS110 class



Lecture Overview
• Building a Computer

• The Harvey Mudd Miniature Machine
(HMMM)
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Z. Dodds, G. Kuenning & 
R. Libeskind-Hadas
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reference 
book

Disclaimer: Much of the material and slides for this lecture were borrowed from 
— Gregory Kesden’s CMU 15-110 class
—David Stotts’ UNC-CH COMP 110H class
—Swami Iyer’s Umass Boston CS110 class



Lecture Overview
• Building a Computer

• The Harvey Mudd Miniature Machine (HMMM)

5



Building a Computer
• Numbers
• Letters and Strings
• Structured Information
• Memory
• von Neumann Architecture 



Numbers
• At the most fundamental level, a computer manipulates electricity according 

to specific rules 

• To make those rules produce something useful, we need to associate the 
electrical signals with the numbers and symbols that we, as humans, like to 
use 

• To represent integers, computers use combinations of numbers that are 
powers of 2, called the base 2 or binary representation 
– bit = 0 or 1

• False or True
• Off or On
• Low voltage or High voltage

70.0V
0.5V

2.8V
3.3V

0 1 0

Image from: R.E. Bryant, D.R. O’Hallaron, G. Kesden



Numbers
• With four consecutive powers 20, 21, 22, 23, we can make all of 

the integers from 0 to 15 using 0 or 1 of each of the four powers 
• For example, 1310 = 1·23 +1·22 +0·21 +1·20 = 11012; in other 

words, 1101 in base 2 means 11012 = 1·23 +1·22 +0·21 +1·20 = 
1310

• Analogously, 603 in base 10 means 60310 = 6·102 +0·101 +3·100

and 207 in base 8 means 2078 = 2·82 +0·81 +7·80 = 13510

• In general, if we choose some base b ≥ 2, every positive integer 
between 0 and bd − 1 can be uniquely represented using d digits, 
with coefficients having values 0 through b−1 

• A modern 64-bit computer can represent integers up to 264 − 1
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Numbers
• Arithmetic in any base is analogous to arithmetic in base 10 

• Examples of addition in base 10 and base 2 

• To represent a negative integer, a computer typically uses a system 
called two’s complement, which involves flipping the bits of the 
positive number and then adding 1 

• For example, on an 8-bit computer, 3 = 00000011, so 
−3 = 11111101
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Numbers

Arithmetic in any base is analogous to arithmetic in base 10

Examples of addition in base 10 and base 2

1

1 7

+ 2 5

4 2

1 1

1 1 1

+ 1 1 0

1 1 0 1

To represent a negative integer, a computer typically uses a system called two’s

complement, which involves flipping the bits of the positive number and then adding 1

For example, on an 8-bit computer, 3 = 00000011, so �3 = 11111101
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Numbers
• If we are using base 10 and only have eight digits to represent our 

numbers, we might use the first six digits for the fractional part of a 
number and last two for the exponent

• For example, 31415901 would represent 0.314159 × 101 = 3.14159 
• Computers use a similar idea to represent fractional numbers 

10Image from: c-jump.com

01000000110100000000000000000000 = −10×1.1012×2129−127

= 1.625×22

27+20=129 2-1+2-3=0.625 = 6.5



Letters and Strings
• In order to represent letters numerically, 

we need a convention on the encoding 

• The American National Standards 
Institute (ANSI) has established such a 
convention, called ASCII (American 
Standard Code for Information 
Interchange) 

• ASCII defines encodings for the upper-
and lower-case letters, numbers, and 
a selected set of special characters 

• ASCII, being an 8-bit code, can only 
represent 256 different symbols, and 
does not provide for characters used 
in many languages 
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Letters and Strings
• The International Standards Organization’s (ISO) 16-bit 

Unicode system can represent every character in every 
known language, with room for more 

• Unicode being somewhat wasteful of space for English 
documents, ISO also defined several “Unicode Transformation 
Formats” (UTF), the most popular being UTF-8

12

4

The char data type

C char data type.  Typically an 8-bit integer.

・Supports 7-bit ASCII.

・Can represent only 256 characters.

Java char data type.  A 16-bit unsigned integer.

・Supports original 16-bit Unicode.

・Supports 21-bit Unicode 3.0 (awkwardly).

6676.5 Q Data Compression

ASCII encoding. When you HexDump a bit-
stream that contains ASCII-encoded charac-
ters, the table at right is useful for reference.  
Given a 2-digit hex number, use the first hex 
digit as a row index and the second hex digit 
as a column reference to find the character 
that it encodes. For example, 31 encodes the 
digit 1, 4A encodes the letter J, and so forth. 
This table is for 7-bit ASCII, so the first hex 
digit must be 7 or less. Hex numbers starting 
with 0 and 1 (and the numbers 20 and 7F) 
correspond to non-printing control charac-
ters. Many of the control characters are left over from the days when physical devices 
like typewriters were controlled by ASCII input; the table highlights a few that you 
might see in dumps. For example SP is the space character, NUL is the null character, LF 
is line-feed, and CR is carriage-return. 

In summary, working with data compression requires us to reorient our thinking about 
standard input and standard output to include binary encoding of data. BinaryStdIn 
and BinaryStdOut provide the methods that we need. They provide a way for you to 
make a clear distinction in your client programs between writing out information in-
tended for file storage and data transmission (that will be read by programs) and print-
ing information (that is likely to be read by humans). 

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! “ # $ % & ‘ ( ) * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [ \ ] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

Hexadecimal to ASCII conversion table

U+1D50AU+2202U+00E1U+0041

Unicode characters 



Letters and Strings
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• Emojis are just like characters, and they have a standard, too

• Full Emoji List, v5.0
https://unicode.org/emoji/charts/full-emoji-list.html

…

https://unicode.org/emoji/charts/full-emoji-list.html


Letters and Strings
• A string is represented as a 

sequence of numbers, with 
a “length field” at the very 
beginning that specifies the 
length of the string 

• For example, in ASCII the 
sequence 99, 104, 111, 99, 
111, 108, 97, 116, 101 
translates to the string 
“chocolate”, with the 
length field set to 9 
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Structured Information
• We can represent any information as a sequence of numbers 

• Examples 

– A picture can be represented as a sequence of pixels, each 
represented as three numbers giving the amount of red, green, and 
blue at that pixel 

– A sound can be represented as a temporal sequence of “sound 
pressure levels” in the air 

– A movie can be represented as a temporal sequence of individual 
pictures, usually 24 or 30 per second, along with a matching sound 
sequence

15



Recall: Stored Program Concept
• Stored-program concept is the fundamental principle 

of the ENIAC’s successor, the EDVAC (Electronic 
Discrete Variable Automatic Computer) 

• Instructions were stored in memory sequentially 
with their data   

• Instructions were executed sequentially except 
where a conditional instruction would cause a jump 
to an instruction some place other than the next 
instruction

16



Stored Program Concept
• John von Neumann publishes a draft

report that describes the concept and
earns the recognition as the inventor of
the concept
– “von Neumann architecture”
– A First Draft of a Report of the EDVAC 

published in 1945

• Mauchly and Eckert are generally
credited with the idea of the
stored-program

17



Memory Hierarchy
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https://diveintosystems.org/book/C11-MemHierarchy/mem_hierarchy.html



Stored Program Concept
• “Fetch-Decode-Execute” cycle

Central 
Processing 
Unit

Arithmetic 
Logic Unit

Registers

Input Output

19

Memory



Stored Program Concept
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Central 
Processing 
Unit

Arithmetic 
Logic Unit

Registers

Input Output

Memory

Central Processing Unit (CPU)
• The CPU is where all the computation 

takes place
• ALU + Control = Processor 
• The CPU has devices such as adders, 

multipliers, etc. for doing arithmetic. It
has a small amount of (scratch) 
memory called registers 

• “Fetch-Decode-Execute” cycle



Stored Program Concept
• “Fetch-Decode-Execute” cycle

Central 
Processing 
Unit

Arithmetic 
Logic Unit

Registers

Input Output

21

BUS
• A bus is a collection of parallel wires 

that carry address, data, and control 
signals.

• Buses are typically shared by multiple 
devices.

Memory Main
memory

I/O 
bridgeBus interface

ALU

Register file

CPU chip

System bus Memory bus



Stored Program Concept
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Central 
Processing 
Unit

Arithmetic 
Logic Unit

Registers

Input Output

Memory

Memory
• A program, a long list of instructions, is 

stored in the main memory, 
• One instruction at a time, taken 

into register in the CPU for 
execution 

• The CPU has some special and general 
purpose registers.

• Program counter is the most 
important register that keeps track of 
the instructions to be executed.



Stored Program Concept
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Central 
Processing 
Unit

Arithmetic 
Logic Unit

Registers

Input Output

Memory

Memory
• Instructions, like data, can be encoded 

as numbers 

Address   Contents   
200     1000 0001 (ADD to R1)   
201     0110 0110 (data value 102)   
202     1001 0001 (ADD to R1)   
203     0110 0110 (data at address 102)   
204     1111 0111 (JUMP 7 bytes) 



von Neumann Architecture
• Let’s assume an 8-bit computer with only four 

instructions: 

– add, subtract, multiply, and divide 

• Each of the instructions will need a number, 
which is called an operation code (or opcode), to represent it 

• Next, let’s assume that our computer has four registers, numbered 0 
through 3, and 256 8-bit memory cells 

• An instruction will be encoded as: the first two bits represent the 
instruction, the next two bits encode the “destination register”, the next 
four bits encode the registers containing two operands 

• For example, the instruction add 3 0 2 (meaning add the contents of 
register 2 and register 0 and store the result in register 3) will be encoded 
as 00110010

24

von Neumann Architecture

Instructions, like data, can be encoded as numbers

For example, let’s assume an 8-bit computer with only four instructions: add,

subtract, multiply, and divide

Each of the instructions will need a number, called an operation code (or opcode), to

represent it

Opcode Meaning

00 Add

01 Subtract

10 Multiply

11 Divide

Next, let’s assume that our computer has four registers, numbered 0 through 3, and

256 8-bit memory cells

An instruction will be encoded as: the first two bits represent the instruction, the next

two bits encode the “destination register”, the next four bits encode the registers

containing two operands

For example, the instruction add 3 0 2 (meaning add the contents of register 2 with the

contents of register 0 and store the result in register 3) will be encoded as 00110010

20 / 21



RAM
RAM

Source: https://www.youtube.com/watch?v=xs5oq-i_rTc



Algorithm for Program Execution
• PC (program counter) is set to the address where the 

first program instruction is stored in memory.

• Repeat until HALT instruction or fatal error
- Fetch instruction
- Decode instruction
- Execute instruction

End of loop

26



Levels of Program Code
■ High-level language

■ Level of abstraction closer to 
problem domain

■ Provides for productivity and 
portability 

■ Assembly language
■ Textual representation of 

instructions
■ Hardware representation

■ Binary digits (bits)
■ Encoded instructions and data



Assembly Language
• A low-level programming 

language for computers

• More readable, English-
like abbreviations for 
instructions
• Architecture-specific
• Example:

MOV AL, 61h
MOV AX, BX
ADD EAX, 10
XOR EAX, EAX

28



Continuum of Programming 
Languages



Summary: Components of a Computer
• Sequential execution of machine

instructions 
– The sequence of instructions are 

stored in the memory.
¢ One instruction at a time is fetched 

from the memory to the control unit.
– They are read in and treated 

just like data.

• PC (program counter) is responsible from the flow of control.

• PC points at a memory location containing the instruction being 
executed at the current time.

• Early programmers (coders) used to write programs via machine 
instructions.

Memory

Control ALU PC

inst1
inst2
inst3
.
.
instN

30



Lecture Overview
• Building a Computer

• The Harvey Mudd Miniature Machine (HMMM)
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The Harvey Mudd Miniature Machine 
(HMMM)

• HMMM

• A Simple HMMM Program 

• Looping

• Functions

• HMMM Instruction Set 

32



The Harvey Mudd Miniature Machine 
(HMMM)
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HMMM
• A real computer must be able to 

– Move information between registers and memory 
– Get data from the outside world 
– Print results 
– Make decisions 

• The Harvey Mudd Miniature Machine (HMMM) is organized as follows 
– Both instructions and data are 16 bit wide 
– In addition to the program counter and instruction register, there are 16 registers 

named r0 through r15 
– There are 256 memory locations

• Instead of programming in binary (0’s and 1’s), we’ll use assembly language, a 
programming language where each instruction has a symbolic representation 

• For example, to compute r3 = r1+r2, we will write add r3 r1 r2 

• We will use a program to convert the assembly language into 0’s and 1’s – the 
machine language – that the computer can execute

34
1 http://shickey.github.io/HMMM.js

http://shickey.github.io/HMMM.js


A Simple HMMM Program
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A Simple HMMM Program

triangle1.hmmm: Calculate the approximate area of a triangle.

0 read r1 # Get base b
1 read r2 # Get height h
2 mul r1 r1 r2 # b times h into r1
3 setn r2 2
4 div r1 r1 r2 # Divide by 2
5 write r1
6 halt

$ python hmmmAssembler.py -f triangle1.hmmm -o triangle1.b

----------------------
| ASSEMBLY SUCCESSFUL |
----------------------

0 : 0000 0001 0000 0001 0 read r1 # Get base b
1 : 0000 0010 0000 0001 1 read r2 # Get height h
2 : 1000 0001 0001 0010 2 mul r1 r1 r2 # b times h into r1
3 : 0001 0010 0000 0010 3 setn r2 2
4 : 1001 0001 0001 0010 4 div r1 r1 r2 # Divide by 2
5 : 0000 0001 0000 0010 5 write r1
6 : 0000 0000 0000 0000 6 halt

$ python hmmmSimulator.py -f triangle1.b -n
4
5
10

4 / 14

A Simple HMMM Program

triangle1.hmmm: Calculate the approximate area of a triangle.

0 read r1 # Get base b
1 read r2 # Get height h
2 mul r1 r1 r2 # b times h into r1
3 setn r2 2
4 div r1 r1 r2 # Divide by 2
5 write r1
6 halt

$ python hmmmAssembler.py -f triangle1.hmmm -o triangle1.b

----------------------
| ASSEMBLY SUCCESSFUL |
----------------------

0 : 0000 0001 0000 0001 0 read r1 # Get base b
1 : 0000 0010 0000 0001 1 read r2 # Get height h
2 : 1000 0001 0001 0010 2 mul r1 r1 r2 # b times h into r1
3 : 0001 0010 0000 0010 3 setn r2 2
4 : 1001 0001 0001 0010 4 div r1 r1 r2 # Divide by 2
5 : 0000 0001 0000 0010 5 write r1
6 : 0000 0000 0000 0000 6 halt

$ python hmmmSimulator.py -f triangle1.b -n
4
5
10

4 / 14



Looping
• Unconditional jump (jumpn N): set program counter to address N

36

Looping

Unconditional jump (jumpn N): set program counter to address N

triangle2.hmmm: Calculate the approximate areas of many triangles.

0 read r1 # Get base b
1 read r2 # Get height h
2 mul r1 r1 r2 # b times h into r1
3 setn r2 2
4 div r1 r1 r2 # Divide by 2
5 write r1
6 jumpn 0

$ python hmmmSimulator.py -f triangle2.b -n
4
5
10
5
5
12
<ctrl -d>

End of input , halting program execution ...

5 / 14



Looping
• Conditional jump (jeqzn rX N): if rX == 0, then jump to line N

37

Looping

Conditional jump (jeqzn rX N): if rX == 0, then jump to line N

triangle3.hmmm: Calculate the approximate areas of many triangles. Stop when a base or height of zero is given.

0 read r1 # Get base b
1 jeqzn r1 9 # Jump to halt if base is zero
2 read r2 # Get height h
3 jeqzn r2 9 # Jump to halt if height is zero
4 mul r1 r1 r2 # b times h into r1
5 setn r2 2
6 div r1 r1 r2 # Divide by 2
7 write r1
8 jumpn 0
9 halt

$ python hmmmSimulator.py -f triangle3.b -n
4
5
10
5
5
12
0

6 / 14



Looping
0     read r1       # read the number. Please enter positive integers.
1 setn r2 2     # use this register for arithmetic operations with 2.

2 setn r9 1      # use this register for arithmetic operations with 1.
3 sub r15 r1 r9
4 jeqzn r15 17 # check if the number is 1

5 div r3 r1 r2 # Divide to 2. The biggest divider (denominator) should (may) be this number.
6 nop # there is no reason. Deleted a line, but too lazy to change all the line numbers.

# the number is 2 or 3. So it is prime. 
7 sub r15 r3 r9
8 jeqz r15    15

# The number is not 1, 2 or 3. The main loop starts here-------------------
9 mod r15 r1 r3   # mod to check if the number is aliquot.

10 jeqzn r15   17    # it is not a prime number. Jump to line 17.
11 sub r3 r3 r9    # subtract one from the divider 
12 sub r5 r3 r9    # subtract one, but on a different register to check the divider is 1 or not.

13 jeqz r5 15       # we successfully reduced the divider to 1. This is a prime number. Jump to line 15.
14 jumpn 9         # jump to the start of the main loop.

#---------------------------------- Write 1 for prime numbers.
15 write  r9    # r9 is already 1.
16 halt

#---------------------------------- Write 0 for non-prime numbers.
17 setn r8 0 

18 write  r8
19 halt

38
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is_it_a_prime_number.hmmm: Calculate whether a given positive number is prime or not                                           



Functions
• Call a function (calln rX N): copy the next address (aka return address) 

into rX and then jump to address N

• Return from a function (jumpr rX): set program counter to the return 
address in rX

• By convention, we use register r14 to store the return address 

Functions

Call a function (calln rX N): copy the next address (aka return address) into rX and
then jump to address N

Return from a function (jumpr rX): set program counter to the return address in rX

By convention, we use register r14 to store the return address

square.hmmm: Calculate the square of a number N .

0 read r1 # Get N
1 calln r14 5 # Calculate N^2
2 write r2 # Write answer
3 halt
4 nop # Waste some space

# Square function. N is in r1. Result (N^2) is in r2. Return address is in r14.
5 mul r2 r1 r1 # Calculate and store N^2 in r2
6 jumpr r14 # Done; return to caller

$ python hmmmSimulator.py -f square.b -n
11
121

7 / 14
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Functions

40

Functions

combinations.hmmm: Calculate C(N,K) (aka N choose K) defined as C(N,K) = N!/(K!(N � K)!), where N!
(N factorial) is defined as N! = N ⇥ (N � 1) ⇥ (N � 2) ⇥ · · · ⇥ 2 ⇥ 1, with 0! = 1.

0 read r3 # Get N
1 read r4 # Get K
2 copy r1 r3 # Calculate N!
3 calln r14 15 # ...
4 copy r5 r2 # Save N! as C(N, K)
5 copy r1 r4 # Calculate K!
6 calln r14 15 # ...
7 div r5 r5 r2 # N!/K!
8 sub r1 r3 r4 # Calculate (N - K)!
9 calln r14 15 # ...
10 div r5 r5 r2 # C(N, K)
11 write r5 # Write answer
12 halt
13 nop # Waste some space
14 nop

# Factorial function. N is in r1. Result is r2. Return address is in r14.
15 setn r2 1 # Initial product
16 jeqzn r1 20 # Quit if N has reached zero
17 mul r2 r1 r2 # Update product
18 addn r1 -1 # Decrement N
19 jumpn 16 # Back for more
20 jumpr r14 # Done; return to caller

$ python hmmmSimulator.py -f combinations.b -n
5
2
10

8 / 14
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0 read r3 # Get N
1 read r4 # Get K
2 copy r1 r3 # Calculate N!
3 calln r14 15 # ...
4 copy r5 r2 # Save N! as C(N, K)
5 copy r1 r4 # Calculate K!
6 calln r14 15 # ...
7 div r5 r5 r2 # N!/K!
8 sub r1 r3 r4 # Calculate (N - K)!
9 calln r14 15 # ...
10 div r5 r5 r2 # C(N, K)
11 write r5 # Write answer
12 halt
13 nop # Waste some space
14 nop

# Factorial function. N is in r1. Result is r2. Return address is in r14.
15 setn r2 1 # Initial product
16 jeqzn r1 20 # Quit if N has reached zero
17 mul r2 r1 r2 # Update product
18 addn r1 -1 # Decrement N
19 jumpn 16 # Back for more
20 jumpr r14 # Done; return to caller

$ python hmmmSimulator.py -f combinations.b -n
5
2
10
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Functions
Trace of the factorial function (N=4)
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Functions

Trace of the factorial function (N = 4)

r1 r2instruction

4         1
                   4

4         1
4         4
3 4
3         4
3         4
3       12
2 12
2       12
2       12
2       24
1 24
1       24
1       24
1       24
0       24
0       24
0       24
0       24

15 setn r2 1
16 jeqzn r1 20
17 mul   r2 r1 r2
18 addn  r1 -1
19 jumpn 16
16 jeqzn r1 20
17 mul   r2 r1 r2
18 addn  r1 -1
19 jumpn 16
16 jeqzn r1 20
17 mul   r2 r1 r2
18 addn  r1 -1
19 jumpn 16
16 jeqzn r1 20
17 mul   r2 r1 r2
18 addn  r1 -1
19 jumpn 16
16 jeqzn r1 20
20 jumpr r14

Trace of the program (N = 5,K = 2)

9 / 14

Functions

Trace of the factorial function (N = 4)

Trace of the program (N = 5,K = 2)

r1 r2instruction
5
r3 r4 r5 r14

5         2
5                    5        2
5     120         5         2                     4
5     120         5         2       120        4
2     120         5         2       120        4
2         2         5         2       120        7
2         2         5         2         60        7
3         2         5         2         60        7
3         6         5         2         60      10
3         6         5         2         10      10
3         6         5         2         10      10
3         6         5         2         10      10

 0 read  r3
 1 read  r4
 2 copy  r1 r3
 3 calln r14 15
 4 copy  r5 r2
 5 copy  r1 r4
 6 calln r14 15
 7 div   r5 r5 r2
 8 sub   r1 r3 r4
 9 calln r14 15
10 div   r5 r5 r2
11 write r5
12 halt

9 / 14

Trace of the program (N=5, K=2)



HMMM Instruction Set
• System instructions 

halt stop
read rX place user input in register rX
write rX print contents of register rX
nop do nothing 

• Setting register data 
setn rX N set register rX equal to the integer N (-128 to 127) 
addn rX N add integer N (-128 to 127) to register rX
copy rX rY set rX=rY

• Arithmetic 
add rX rY rZ set rX=rY+rZ
sub rX rY rZ set rX=rY-rZ
neg rX rY set rX=-rY
mul rX rY rZ set rX=rY*rZ
div rX rY rZ set rX=rY/rZ (integer division; no remainder) 
mod rX rY rZ set rX=rY%rZ (returns the remainder of integer division) 

42



HMMM Instruction Set
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• Jumps 
jumpn N set program counter to address N
jumpr rX set program counter to address in rX
jeqzn rX N if rX==0, then jump to line N
jnezn rX N if rX!=0, then jump to line N
jgtzn rX N if rX>0, then jump to line N
jltzn rX N if rX<0, then jump to line N
calln rX N copy the next address into rX and then jump to address N

• Interacting with memory 
loadn rX N   load register rX with the contents of address N
storen rX N  store contents of register rX into address N
loadr rX rY load register rX with data from the address location held in register rY
storer rX rY store contents of register rX into address held in register rY


