Last time... Recursion

Recursion

```python
def f(n):
    if n == 0:
        return 0
    else:
        return 1 + f(n - 1)
```

Mutual recursion

```python
def even(n):
    if n == 0:
        return True
    else:
        return odd(n - 1)

def odd(n):
    if n == 0:
        return False
    else:
        return even(n - 1)
```

Recursion tree

```python
def fib(n):
    if n == 0:
        return 1
    elif n == 1:
        return 1
    else:
        return fib(n - 2) + fib(n - 1)
```
Lecture Overview

- Sorting
- List comprehension
- Data visualization

Disclaimer: Much of the material and slides for this lecture were borrowed from
— R. Anderson, M. Ernst and B. Howe in University of Washington CSE 140
— C. van Loan in Cornell University CS 1110 Introduction to Computing
Lecture Overview

• Sorting
• List comprehension
• Data visualization

Disclaimer: Much of the material and slides for this lecture were borrowed from
— R. Anderson, M. Ernst and B. Howe in University of Washington CSE 140
— C. van Loan in Cornell University CS 1110 Introduction to Computing
Sorting

hamlet = "to be or not to be that is the question whether tis nobler in the mind to suffer".split()

print("hamlet:", hamlet)

print("sorted(hamlet):", sorted(hamlet))
print("hamlet:", hamlet)

print("hamlet.sort():", hamlet.sort())
print("hamlet:", hamlet)

• Lists are mutable – they can be changed
 – including by functions
hamlet: ['to', 'be', 'or', 'not', 'to', 'be', 'that', 'is', 'the', 'question', 'whether', 'tis', 'nobler', 'in', 'the', 'mind', 'to', 'suffer']

sorted(hamlet): ['be', 'be', 'in', 'is', 'mind', 'nobler', 'not', 'or', 'question', 'suffer', 'that', 'the', 'the', 'tis', 'to', 'to', 'to', 'whether']

hamlet: ['to', 'be', 'or', 'not', 'to', 'be', 'that', 'is', 'the', 'question', 'whether', 'tis', 'nobler', 'in', 'the', 'mind', 'to', 'suffer']

hamlet.sort(): None

hamlet: ['be', 'be', 'in', 'is', 'mind', 'nobler', 'not', 'or', 'question', 'suffer', 'that', 'the', 'the', 'tis', 'to', 'to', 'to', 'whether']
Customizing the sort order

Goal: sort a list of names *by last name*

```python
names = ['Isaac Newton', 'Albert Einstein', 'Niels Bohr', 'Marie Curie', 'Charles Darwin', 'Louis Pasteur', 'Galileo Galilei', 'Margaret Mead']

print("names:", names)

This does NOT work:

print("sorted(names):", sorted(names))

When sorting, how should we compare these names?

"Niels Bohr"  
"Charles Darwin"
```

sorted(names): ['Albert Einstein', 'Charles Darwin', 'Galileo Galilei', 'Isaac Newton', 'Louis Pasteur', 'Margaret Mead', 'Marie Curie', 'Niels Bohr']
Sort key

A **sort key** is a different value that you use to sort a list, instead of the actual values in the list

```python
def last_name(str):
    return str.split(" ")[1]

print('last_name("Isaac Newton"): ',
last_name("İsaac Newton"))
```

Two ways to use a sort key:

1. Create a new list containing the sort key, and then sort it
2. Pass a key function to the sorted function
1. Use a sort key to create a new list

Create a different list that contains the sort key, sort it, then extract the relevant part:

```python
names = ['Isaac Newton', 'Fred Newton', 'Niels Bohr']
# keyed_names is a list of [lastname, fullname]
keyed_names = []
for name in names:
    keyed_names.append([name.split()[0], name])

Take a look at the list you created, it can now be sorted:
print("keyed_names:", keyed_names)
print("sorted(keyed_names):", sorted(keyed_names))
print("sorted(keyed_names, reverse = True):")
print(sorted(keyed_names, reverse = True))
```

(This works because Python compares two elements that are lists elementwise.)

```python
sorted_keyed_names = sorted(keyed_names, reverse = True)
sorted_names = []
for keyed_name in sorted_keyed_names:
    sorted_names.append(keyed_name[1])
print("sorted_names:", sorted_names)
```

keyed_names: [['Newton', 'Isaac Newton'], ['Newton', 'Fred Newton'], ['Bohr', 'Niels Bohr']]
sorted(keyed_names): [['Bohr', 'Niels Bohr'], ['Newton', 'Fred Newton'], ['Newton', 'Isaac Newton']]
sorted(keyed_names, reverse = True): [['Newton', 'Isaac Newton'], ['Newton', 'Fred Newton'], ['Bohr', 'Niels Bohr']]
2. Use a sort key as the **key** argument

Supply the **key** argument to the **sorted** function or the **sort** function:

```python
def last_name(str):
    return str.split(" ")[1]

names = ["Isaac Newton", "Fred Newton", "Niels Bohr"]
print("sorted(names, key = last_name):")
print(sorted(names, key = last_name))

print("sorted(names, key = last_name, reverse = True):")
print(sorted(names, key = last_name, reverse = True))

print(sorted(names, key = len))

def last_name_len(name):
    return len(last_name(name))

print(sorted(names, key = last_name_len))
```

- `sorted(names, key = last_name): ['Niels Bohr', 'Isaac Newton', 'Fred Newton']`
- `sorted(names, key = last_name, reverse = True): ['Isaac Newton', 'Fred Newton', 'Niels Bohr']`
- `['Niels Bohr', 'Fred Newton', 'Isaac Newton']`
- `['Niels Bohr', 'Isaac Newton', 'Fred Newton']`
itemgetter is a function that returns a function.

```python
import operator

print(operator.itemgetter(2, 7, 9, 10)("dumbstricken"))
operator.itemgetter(2, 5, 7, 9)("homesickness")
operator.itemgetter(2, 7, 9, 10)("pumpernickel")
operator.itemgetter(2, 3, 6, 7)("seminaked")
operator.itemgetter(1, 2, 4, 5)("smirker")
operator.itemgetter(9, 7, 6, 1)("beatnikism")
operator.itemgetter(14, 13, 5, 1)("Gedankenexperiment")
operator.itemgetter(12, 10, 9, 5)("mountebankism")
```

All: ("m","i","k","e")
Using `itemgetter`

```python
from operator import itemgetter

student_score = ('Robert', 8)
itemgetter(0)(student_score) ⇒ “Robert”
itemgetter(1)(student_score) ⇒ 8

student_scores = [('Robert', 8), ('Alice', 9), ('Tina', 7)]

• Sort the list by name:
  ```
sorted(student_scores, key=itemgetter(0))
  ```

• Sort the list by score
  ```
sorted(student_scores, key=itemgetter(1))
  ```
Two Ways to Import `itemgetter`

```python
from operator import itemgetter
student_score = ('Robert', 8)
itemgetter(0)(student_score) ⇒ “Robert”
itemgetter(1)(student_score) ⇒ 8

Or

import operator
student_score = ('Robert', 8)
operator.itemgetter(0)(student_score) ⇒ “Robert”
operator.itemgetter(1)(student_score) ⇒ 8
```
Sorting based on two criteria

Two approaches:

Approach #1: Use an `itemgetter` with two arguments

Approach #2: Sort twice (most important sort last)

```python
student_scores = [('Robert', 8), ('Alice', 9), ('Tina', 10), ('James', 8)]
```

**Goal:** sort based on score;
if there is a tie within score, sort by name

Approach #1:

```python
sorted(student_scores, key=itemgetter(1,0))
```

Approach #2:

```python
sorted_by_name = sorted(student_scores, key=itemgetter(0))
sorted_by_score = sorted(sorted_by_name, key=itemgetter(1))
```
Sort on most important criteria LAST

- Sorted by score (ascending), when there is a tie on score, sort using name

```python
from operator import itemgetter

student_scores = [('Robert', 8), ('Alice', 9), ('Tina', 10), ('James', 8)]

sorted_by_name = sorted(student_scores, key=itemgetter(0))
>>> sorted_by_name
[('Alice', 9), ('James', 8), ('Robert', 8), ('Tina', 10)]

sorted_by_score = sorted(sorted_by_name, key=itemgetter(1))
>>> sorted_by_score
[('James', 8), ('Robert', 8), ('Alice', 9), ('Tina', 10)]
```
More sorting based on two criteria

If you want to sort different criteria in different directions, you must use multiple calls to `sort` or `sorted`:

```
student_scores = [('Robert', 8), ('Alice', 9), ('Tina', 10), ('James', 8)]
```

**Goal:** sort score from highest to lowest; if there is a tie within score, sort by name alphabetically (= lowest to highest)

```
sorted_by_name = sorted(student_scores, key=itemgetter(0))
sorted_by_hi_score = sorted(sorted_by_name, key=itemgetter(1), reverse=True)
```
Sorting: strings vs. numbers

• Sorting the powers of 5:

```python
>>> sorted([125, 5, 3125, 625, 25])
[5, 25, 125, 625, 3125]

>>> sorted(["125", "5", "3125", "625", "25"])
['125', '25', '3125', '5', '625']
```
Sorting

from BBC Documentary: The Secret Rules of Modern Living Algorithms
Different sorting algorithms

3.1 Simple sorts
  3.1.1 Insertion sort
  3.1.2 Selection sort

3.2 Efficient sorts
  3.2.1 Merge sort
  3.2.2 Heapsort
  3.2.3 Quicksort

3.3 Bubble sort and variants
  3.3.1 Bubble sort
  3.3.2 Shell sort
  3.3.3 Comb sort

3.4 Distribution sort
  3.4.1 Counting sort
  3.4.2 Bucket sort
  3.4.3 Radix sort
Bubble sort

• It repeatedly steps through the list to be sorted,
• compares each pair of adjacent items and swaps them if they are in the wrong order.
• The pass through the list is repeated until no swaps are needed, which indicates that the list is sorted.
• The algorithm, which is a comparison sort, is named for the way smaller elements "bubble" to the top of the list.
def bubbleSort(alist):
    for passnum in range(len(alist)-1,0,-1):
        for i in range(passnum):
            if alist[i]>alist[i+1]:
                temp = alist[i]
                alist[i] = alist[i+1]
                alist[i+1] = temp

alist = [54,26,93,17,77,31,44,55,20]
bubbleSort(alist)
print(alist)
Insertion sort

- Idea:

- maintain a sorted sublist in the lower positions of the list.
- Each new item is then “inserted” back into the previous sublist such that the sorted sublist is one item larger.

Done!
def insertionSort(alist):
    for index in range(1,len(alist)):
        currentvalue = alist[index]
        position = index

        while position>0 and alist[position-1]>currentvalue:
            alist[position]=alist[position-1]
            position = position-1

        alist[position]=currentvalue

alist = [54,26,93,17,77,31,44,55,20]
insertionSort(alist)
print(alist)
Insertion sort

https://www.youtube.com/watch?v=ROalU379l3U
Mergesort

- Merge sort is a prototypical divide-and-conquer algorithm.
- It was invented in 1945, by John von Neumann.
- Like many divide-and-conquer algorithms it is most easily described recursively.
  1. If the list is of length 0 or 1, it is already sorted.
  2. If the list has more than one element, split the list into two lists, and use mergesort to sort each of them.
  3. Merge the results.
Mergesort

def merge(left, right):
    result = []
    (i, j) = (0, 0)
    while i<len(left) and j<len(right):
        if left[i]<right[j]:
            result.append(left[i])
            i = i + 1
        else:
            result.append(right[j])
            j = j + 1
    while i<len(left):
        result.append(left[i])
        i = i + 1
    while j<len(right):
        result.append(right[j])
        j = j + 1
    return result
Mergesort

def mergeSort(L):
    if len(L)<2:
        return L[:]
    else:
        middle = len(L)//2
        left = mergeSort(L[:middle])
        right = mergeSort(L[middle:]
        return merge(left, right)

a = mergeSort([2,1,3,4,5,-1,8,6,7])
# Sorting Algorithm Animations

**Problem Size:** 20, 30, 40, 50  
**Magnification:** 1x, 2x, 3x  
**Algorithm:** Insertion, Selection, Bubble, Shell, Merge, Heap, Quick, Quick3  
**Initial Condition:** Random, Nearly Sorted, Reversed, Few Unique

<table>
<thead>
<tr>
<th></th>
<th>Insertion</th>
<th>Selection</th>
<th>Bubble</th>
<th>Shell</th>
<th>Merge</th>
<th>Heap</th>
<th>Quick</th>
<th>Quick3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nearly Sorted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reversed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Few Unique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lecture Overview

• Sorting
• List comprehension
• Data visualization

Disclaimer: Much of the material and slides for this lecture were borrowed from
— R. Anderson, M. Ernst and B. Howe in University of Washington CSE 140
— C. van Loan in Cornell University CS 1110 Introduction to Computing
Three Ways to Define a List

• Explicitly write out the whole thing:
  \[
  \text{squares} = [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
  \]

• Write a loop to create it:
  \[
  \text{squares} = []
  \text{for } i \text{ in range}(11):
    \text{\hspace{1em} squares.append}(i*i)
  \]

• Write a **list comprehension**:
  \[
  \text{squares} = [i*i \text{ for } i \text{ in range}(11)]
  \]

• A list comprehension is a concise description of a list
• A list comprehension is shorthand for a loop
Two ways to convert Centigrade to Fahrenheit

ctemps = [17.1, 22.3, 18.4, 19.1]

With a loop:

def celsius_to_farenheit(c):
    f = (9/5) * c + 32
    return f

ftemps = []
for c in ctemps:
    ftemps.append(celsius_to_farenheit(c))

With a list comprehension:

ftemps = [celsius_to_farenheit(c) for c in ctemps]

The comprehension is usually shorter, more readable, and more efficient
Syntax of a comprehension

\[
[(x, y) \text{ for } x \text{ in seq1 for } y \text{ in seq2 if } \text{sim}(x, y) > \text{threshold}] 
\]

- **expression**: something that can be iterated
- **for clause (required)**: assigns value to the variable \(x\)
- **zero or more additional for clauses**: for \(x\) in \(seq1\) for \(y\) in \(seq2\)
- **zero or more if clauses**: if \(\text{sim}(x, y) > \text{threshold}\)
Semantics of a comprehension

\[
[(x,y) \text{ for } x \text{ in seq1 for } y \text{ in seq2 for sim(x,y) > threshold}] 
\]

result = []
for x in seq1:
    for y in seq2:
        if sim(x,y) > threshold:
            result.append( (x,y) )

... use result ...
Types of comprehensions

List

\[ [ i*2 \text{ for } i \text{ in } \text{range}(3) ] \]

Set

\{ i*2 \text{ for } i \text{ in } \text{range}(3) \}

Dictionary

\{ key: value \text{ for } item \text{ in } \text{sequence} ... \}
\{ i: i*2 \text{ for } i \text{ in } \text{range}(3) \}
Cubes of the first 10 natural numbers

Goal:
  Produce: \([0, 1, 8, 27, 64, 125, 216, 343, 512, 729]\)

With a loop:

cubes = []
for x in range(10):
    cubes.append(x**3)

With a list comprehension:

cubes = [x**3 for x in range(10)]
Powers of 2, $2^0$ through $2^{10}$

**Goal:** [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

[\[2**i \text{ for } i \text{ in range}(11)\]]
Even elements of a list

**Goal:** Given an input list `nums`, produce a list of the even numbers in `nums`

```python
nums = [3, 1, 4, 1, 5, 9, 2, 6, 5]
⇒ [4, 2, 6]

[num for num in nums if num % 2 == 0]
```
**Goal:** A list of all possible dice rolls.

**With a loop:**
```python
rolls = []
for r1 in range(1,7):
 for r2 in range(1,7):
 rolls.append((r1,r2))
```

**With a list comprehension:**
```python
rolls = [(r1,r2) for r1 in range(1,7) for r2 in range(1,7)]
```
All above-average 2-die rolls

**Goal:** Result list should be a list of 2-tuples:

```
[(2, 6), (3, 5), (3, 6), (4, 4), (4, 5), (4, 6), (5, 3), (5, 4), (5, 5), (5, 6),
 (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)]
```

```
[(r1, r2) for r1 in [1, 2, 3, 4, 5, 6]
 for r2 in [1, 2, 3, 4, 5, 6]
 if r1 + r2 > 7]
```

**OR**

```
[(r1, r2) for r1 in range(1, 7)
 for r2 in range(8-r1, 7)]
```
Making a Matrix

**Goal:** A matrix were each element is the sum of it's row and column.

**With a loop:**

```python
matrix = []
for i in range(5):
 row = []
 for j in range(5):
 row.append(i+j)
 matrix.append(row)
```

**With a list comprehension:**

```python
matrix = [[i+j for j in range(5)] for i in range(5)]
```
Function $4x^2 - 4$

With a loop:

```python
num_list = []
for i in range(-10,11):
 num_list.append(4*i**2 - 4)
```

With a list comprehension:

```python
num_list = [4*i**2 - 4 for i in range(-10,11)]
```
Normalize a list

With a loop:

```python
num_list = [6,4,2,8,9,10,3,2,1,3]
total = float(sum(num_list))
for i in range(len(num_list)):
 num_list[i] = num_list[i]/float(total)
```

With a list comprehension:

```python
num_list = [i/total for i in num_list]
```
Dictionary mapping integers to multiples under 100

With a loop:

```python
for n in range(1,11):
 multiples_list = []
 for i in range(1,101):
 if i%n == 0:
 multiples_list.append(i)
 multiples[n] = multiples_list
```

With a dictionary comprehension:

```python
multiples = {n:[i for i in range(1,101) if i%n == 0] for n in range(1,11) }
```
A word of caution

List comprehensions are great, but they can get confusing. Error on the side of readability.

```python
nums = [n for n in range(100) if sum([int(j) for j in str(n)]) % 7 == 0]
```

```python
nums = []
for n in range(100):
 digit_sum = sum([int(j) for j in str(n)])
 if digit_sum % 7 == 0:
 nums.append(n)
```
A word of caution

List comprehensions are great, but they can get confusing. Error on the side of readability.

```python
ums = [n for n in range(100) if sum([int(j) for j in str(n)]) % 7 == 0]
def sum_digits(n):
 digit_list = [int(i) for i in str(n)]
 return sum(digit_list)
nums = [n for n in range(100) if sum_digits(n) % 7 == 0]
```
Ternary Assignment

A common pattern in python

```python
if x > threshold:
 flag = True
else:
 flag = False
```

Or

```python
flag = False
if x > threshold:
 flag = True
```
Ternary Assignment

A common pattern in python

```python
if x > threshold:
 flag = True
else:
 flag = False
```

```python
flag = True if x > threshold else False
```
Ternary Assignment

flag = True if x > threshold else False

- Only works for single expressions as results.
- Only works for if and else (no elif)
Ternary Assignment

Goal: A list of 'odd' or 'even' if that index is odd or even.

```python
the_list = []
for i in range(16):
 if i%2 == 0:
 the_list.append('even')
 else:
 the_list.append('odd')

or

the_list = []
for i in range(16):
 the_list.append('even' if i%2 == 0 else 'odd')
```
Goal: A list of 'odd' or 'even' if that index is odd or even.

```python
the_list = []
for i in range(16):
 if i % 2 == 0:
 the_list.append('even')
 else:
 the_list.append('odd')
```

or

```python
the_list = ['even' if i % 2 == 0 else 'odd' for i in range(16)]
```
Lecture Overview

• Sorting
• List comprehension
• Data visualization

Disclaimer: Much of the material and slides for this lecture were borrowed from
— R. Anderson, M. Ernst and B. Howe in University of Washington CSE 140
— C. van Loan in Cornell University CS 1110 Introduction to Computing
A Motivating Problem

• For various cities around the world, we would like to examine the “Sun Up” time throughout the year.

• How does it vary from day to day?

• What are the monthly averages?

Sun Up Time = Sunset Time – Sunrise Time
How Does Sun-Up Time Vary Day-to-Day?
How Does Sun-Up Time Vary Month-to-Month?

![Bar chart showing average hours of sunlight in Ithaca throughout the year. The chart peaks in June and July, and is lowest in December and January.]
The Task Before Us...

1. Find a website where the data can be found.
2. Get that data into a file on our computer.
3. Understand how the data is laid out in the file.
4. Write python code that gets that data (or some aspect of it) into your Python environment.
Where Do We Get the Data?

• Lots of choices. Google “Sunset Sunrise times”

• We will use the U.S. Naval Observatory data service:

• Visit:

  http://www.usno.navy.mil/
From the Website...

Astronomical Applications

Data Services

Sun and Moon rise and set times, Moon phases, eclipses, seasons, positions of solar system objects, and other data

Complete Sun and Moon Data for One Day
Sun or Moon Rise/Set Table for One Year
Phases of the Moon
more...
We Downloaded Rise/Set Data For a Number of Cities

Anaheim      Anchorage      Arlington      Athens      Atlanta
Baltimore    Bangkok        Beijing        Berlin      Bogota
Boston      BuenosAires     Cairo          Chicago      Cincinnati
Cleveland   Denver          Detroit        Honolulu      College Station
Ithaca      Johannesburg    KansasCity     Lagos            London
LosAngeles  MexicoCity      Miami          Milwaukee     Minneapolis
Moscow      NewDelhi        NewYork       Nashville      Minneapolis
Philadelphia Phoenix       Pittsburgh    RiodeJaneiro  New Orleans
SanFrancisco Seattle       Seoul          Sydney        Rome
Teheran      Tokyo
One .dat File Per City

We put all these files in a directory called RiseSetData.

.dat and .txt files are common ways to house simple data. Don’t worry about the difference.

RiseSetData

Anaheim.dat
Anchorage.dat
Arlington.dat

Toronto.dat
Washington.dat
Wellington.dat
.txt and .dat Files have Lines

MyFile.dat

abcd
123 abc d fdd
xyz
3.14159   2.12345

There is an easy way to read the data in such a file line-by-line
Read and Print the Data in
Ithaca.dat

FileIO.py

FileName = 'RiseSetData/Ithaca.dat'
f = file(FileName, 'r')
for s in f:
    print s
f.close()

RiseSetData and FileIO.py must be in the same folder.
The provider of the file typically tells you how the data is structured.
From the Naval Observatory Website

• The first line names the city and the second line encodes its latitude and longitude, e.g.,

    Ithaca
    W07629N4226

and ...
From the Naval Observatory Website

- The rise and set times are then specified day-by-day with the data for each month housed in a pair of columns.

- In particular, columns 2k and 2k+1 have the rise and set times for month k (Jan=1, Feb = 2, Mar = 3, etc.)

- Column 1 specifies day-of-the-month, 1 through 31. Blanks are used for nonexistent dates (e.g., April 31).
The Data for a Particular City is Housed in a 33-line .dat file

Ithaca
W07629N4226


Line 1 has the name of the city
The Data for a Particular City is Housed in a 33-line .dat file

Ithaca

W07629N4226

Line 2 encodes its longitude and latitude
Helper Function: **LongLat**

- A latlong string has length 11, e.g. **W08140N4129**

```python
def LongLat(s):
 """ Returns a tuple (Long,Lat) of floats that are the equivalent (in degrees) of the longitude and latitude encoded by s.

PredC: s an 11-character string of the form 'cdddmmCDDMM' where cdddmm specifies longitude in degrees and minutes with c = 'W' or 'E' and CDDMM species latitude in degrees and minutes with C = 'N' or 'S'
"""
 Long = float(s[1:4])+float(s[4:6])/60
 if s[0]=='E':
 Long = -Long
 Lat = float(s[7:9])+float(s[9:11])/60
 if s[6]=='S':
 Lat = -Lat
 return (Lat,Long)
```
The Data for a Particular City is Housed in a 33-line .dat file

Ithaca
W07629N4226


The remaining lines house the rise-set data.
Each R and S is a length-4 string: ‘0736’
Helper Function: `ConvertTime`

```python
def ConvertTime(s):
 """ Returns a float that is the equivalent (in hours) of the time encoded by s.

 '2145' means 9:45 pm.

 PredC: s a 4-character string of the form hhmm that specifies time.
 """
 x = float(s[:2])+float(s[2:])/60
 return x
```

- In comes a length-4 string and back comes a float that encodes the time in hours
- ‘0736’ ----> 7 + 36/60 hours ----> 7.6
The Data for a Particular City is Housed in a 33-line .dat file

Ithaca
W07629N4226

Day - Number followed by 12 rise-set pairs, one pair for each month
The Data for a Particular City is Housed in a 33-line .dat file

| 1   | R | S | R | S | R | S | R | S | R | S | R | S | R | S | R | S | R | S | R | S | R | S | R | S | R | S | R | S | R | S | R | S | R | S | R | S | R | S |
The Data for a Particular City is Housed in a 33-line .dat file

Ithaca
W07629N4226

1   R S R S R S R S R S R S R S R S R S R S R S R S R S R S R S
2   R S R S R S R S R S R S R S R S R S R S R S R S R S R S R S
3   R S R S R S R S R S R S R S R S R S R S R S R S R S R S R S
29  R S R S R S R S R S R S R S R S R S R S R S R S R S R S R S
30  R S R S R S R S R S R S R S R S R S R S R S R S R S R S R S
31  R S R S R S R S R S R S R S R S R S R S R S R S R S R S R S

Day -Number followed by 7 rise-set pairs, one pair for each 31-day month
Recall the Motivating Problem

• For various cities around the world, we would like to examine the “Sun Up” time throughout the year.

• How does it vary from day to day?

• What are the monthly averages?
def SunUp(CityName):
    FileName = 'RiseSetData/' + CityName + '.dat'
    f = file(FileName, 'r');
    lineNum = 0
    for s in f:
        parts = s.split()
        lineNum+=1
        if lineNum == 1:
            City = parts[0]
        elif lineNum == 2:
            Lat, Long = LatLon(parts[0])
        else:
            f.close()
    return (City, Lat, Long, SetTime - RiseTime)

Recall how split works...

s = '1 0535 0816 0542 0713'
x = s.split()
print x
['1','0535','0816','0542','0713']
Building `RiseTime` and `SetTime` arrays

... 

# Remaining lines have rise/set pairs

day = int(parts[0])

# Get all the rise and set times

RiseTimeList = ConvertTime(parts[1:len(parts):2])
SetTimeList = ConvertTime(parts[2:len(parts):2])

p = len(RiseTimeList)
for k in range(p):
    if day<=28:
        # All months have at least 28 days
        starts = [0,31,59,90,120,151,181,212,243,273,304,334]
        dayIndex = day + starts[k] - 1
    elif day==29 or day==30:
        # All months except February have a day 29 and a day 30
        starts = [0, 59,90,120,151,181,212,243,273,304,334]
        dayIndex = day + starts[k] - 1
    else:
        # Only January, March, May, July, August, October, and December have
        # a day 31.
        starts = [0,59,120,181,212,273,334]
        dayIndex = day + starts[k] - 1

    RiseTime[dayIndex] = RiseTimeList[k]
    SetTime[dayIndex] = SetTimeList[k]
A Simple Plot

```
from pylab import *

Plot a 1-dim numpy array
City, Lat, Long, D = SunUp('Ithaca')
plot(D)
show()
```

This is how you display the values in a numpy array like D.
How about a title and a labeling of the y-axis?
A Simple Plot

# Plot a 1-dim numpy array
City, Lat, Long, D = SunUp('Ithaca')
plot(D)

# The title
titlestr = '%s Lat = %6.2f Long = %6.2f' % (City,Lat,Long)
title(titlestr,fontsize=16)
# Label the y-axis
ylabel('Hours of Sunlight',fontsize=16)

show()
Modify the x range and the y range
A Simple Plot

```python
Plot a 1-dim numpy array
City, Lat, Long, D = SunUp('Ithaca')
plot(D)

The title
titlestr = '%s Lat = %6.2f Long = %6.2f' % (City,Lat,Long)
title(titlestr, fontsize=16)

Label the y-axis
ylabel('Hours of Sunlight', fontsize=16)

set the range of x and the range of y
xlim(0, 364)
ylim(5, 20)

show()
```
Label the x-axis with month names
# Plot a 1-dim numpy array
City, Lat, Long, D = SunUp('Ithaca')
plot(D)

# The title
titlestr = '%s Lat = %6.2f Long = %6.2f' % (City,Lat,Long)
title(titlestr,fontsize=16)

# Label the y-axis
ylabel('Hours of Sunlight',fontsize=16)

# set the range of x and the range of y
xlim(0,364)
ylim(5,20)

# Position ticks along the x-axis and label them
c = ['JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'JUL', 'AUG', 'SEP', 'OCT', 'NOV', 'DEC']
t = [15,45,75,105,135,165,195,225,255,285,315,345]
xticks(t,c)

show()
Add a Grid
# A Simple Plot

# Plot a 1-dim numpy array
City, Lat, Long, D = SunUp('Ithaca')
plot(D)

# The title
titlestr = '%s Lat = %6.2f Long = %6.2f' % (City, Lat, Long)
title(titlestr, fontsize=16)
# Label the y-axis
ylabel('Hours of Sunlight', fontsize=16)

# set the range of x and the range of y
xlim(0, 364)
ylim(5, 20)

# Position ticks along the x-axis and label them
c = ['JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'JUL', 'AUG', 'SEP', 'OCT', 'NOV', 'DEC']
t = [15, 45, 75, 105, 135, 165, 195, 225, 255, 285, 315, 345]
xticks(t, c)

# Draw a grid
for k in range(6, 20):
    # Draw horizontal line from (0,k) to (65,k)
    plot(array([0, 365]), array([k, k]), color='red', linestyle=':')
for k in [0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334]:
    # Draw vertical line from (k,5) to (k,20)
    plot(array([k, k]), array([5, 20]), color='red', linestyle=':')

show()
def MonthAverages(CityName):
    x = zeros((12,1))
    City, Lat, Long, D = SunUp(CityName)
    start = [0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334]
    finish = [30, 58, 89, 119, 150, 180, 211, 242, 272, 303, 333, 364]
    for k in range(12):
        z = D[start[k]:finish[k]]
        x[k] = sum(z)/len(z)
    return x
A Bar Plot

\[ M = \text{MonthAverages('Ithaca')} \]

\[
\text{bar(range(12), } M, \text{facecolor='magenta'})
\]
\[
\text{xlim(-.2,12)}
\]
\[
\text{ylabel('Average Hours of Sunlight')}
\]
\[
\text{title(A.City,fontsize=16)}
\]
\[
\text{show()}
\]