
Lecture #07 –Tuples, Sets, Dictionaries

Tunca Doğan, Fuat Akal & Aydın Kaya // Fall 2023

BBM 101
Introduction to
Programming I

Wikimedia Commons

Last time… Arrays, Lists

2

Array
s

Lists

>>> list1 = [1, 2, 3]

>>> list1.append(4)

>>> list1.insert(2, 5)

>>> list2 = [10, 20]

>>> list1.extend(list2)

>>> list1.append(list2)

Lecture Overview

• Collections
– Lists

– Tuples

– Sets

– Dictionaries

3

Disclaimer: Much of the material and slides for this lecture were borrowed from

—Ruth Anderson, Michael Ernst and Bill Howe’s CSE 140 class

—Keith Levin’s University of Michigan STATS 507 class

Recall: Data Structures

• A data structure is way of organizing data

– Each data structure makes certain operations
convenient or efficient

– Each data structure makes certain operations
inconvenient or inefficient

Recall: Collections

• List: ordered

• Tuple: unmodifiable list

• Set: unordered, no duplicates

• Dictionary: maps from values to values

Example: word → definition

Lecture Overview

• Arrays

• Collections
– Lists

– Tuples

– Sets

– Dictionaries

6

Disclaimer: Much of the material and slides for this lecture were borrowed from

—Ruth Anderson, Michael Ernst and Bill Howe’s CSE 140 class

Tuples
• Like strings, tuples are ordered sequences of elements.

• The individual elements can be of any type, and need not be
of the same type as each other.

• Literals of type tuple are written by enclosing a comma-
separated list of elements within parentheses.

• Tuples differ from lists in one hugely important way:
– Lists are mutable. In contrast, tuples are immutable.

• t1 = ()
t2 = (1, 'two', 3)
print(t1)
print(t2)

>> ()
>> (1, 'two', 3)

7

Tuples are Sequences
>> t = ('a', 'b', 'c', 'd', 'e')

>> t[0]

'a'

>> t[1:4]

('b', 'c', 'd')

>> t[-1]

'e'

>> len(t)

5

8

And of course, sequences have a length.

Reminder: sequences support all the operations listed here:
https://docs.python.org/3.3/library/stdtypes.html#typesseq

As sequences, tuples support
indexing, slices, etc.

https://docs.python.org/3.3/library/stdtypes.html#typesseq

Tuples are Sequences

• Like strings, tuples can be concatenated, indexed, and sliced.

• t1 = (1, 'two', 3)

t2 = (t1, 3.25)

print(t2)

print((t1 + t2))

print((t1 + t2)[3])

print((t1 + t2)[2:5])

>> ((1, 'two', 3), 3.25)

>> (1, 'two', 3, (1, 'two', 3), 3.25)

>> (1, 'two', 3)
>> (3, (1, 'two', 3), 3.25)

9

Tuples are Sequences

• Even if we can’t modify the elements of a tuple, we can make
a variable reference a new tuple holding different information.

julia = ("Julia", "Roberts", 1967, "Duplicity", 2009, "Actress", "Atlanta, Georgia")

print(julia[2])

print(julia[2:6])

print(len(julia))

for field in julia:

print(field)

julia = julia[:3] + ("Eat Pray Love", 2010) + julia[5:]

print(julia)

10

1967

(1967, 'Duplicity', 2009, 'Actress')

7

('Julia', 'Roberts', 1967, 'Eat Pray Love', 2010, 'Actress',

'Atlanta, Georgia')

Tuples and Mutability

• Unlike lists, tuples are immutable.

• As with strings, if we try to use item assignment to modify
one of the elements of the tuple, we get an error.

julia = ("Julia", "Roberts", 1967, "Duplicity", 2009, "Actress", "Atlanta,
Georgia")

julia[0] = ‘X’ # not allowed

TypeError: 'tuple' object does not support item assignment

11

Tuple Comparison
>> (1,2,3) < (2,2,3)

True

>>(2,2,20) <= (2,2,2)

False

>> (1,2,3) < (1,2,3,4)

True

>> ('cat', 'dog', 'goat') > ('dog', 'cat', 'goat')

False

>> (1, 'cat', (1,2,3)) > (0, 'bird', (1,2,0))

True

12

Tuples support comparison, which works
analogously to string ordering.

0-th elements are compared. If they are
equal, go to the 1-th element, etc.

Just like strings, the “prefix” tuple is
ordered first.

Tuple comparison is element-wise,
so we only need that each element-wise
comparison is allowed by Python.

Tuple Assignment

• Python has a very powerful tuple assignment feature that
allows a tuple of variables on the left of an assignment to be
assigned values from a tuple on the right of the assignment.

>> julia = ("Julia", "Roberts", 1967, "Duplicity", 2009, "Actress", "Atlanta,

Georgia")

>> (name, surname, birth_year, movie, movie_year, profession, birth_place) =

julia

• Naturally, the number of variables on the left and the number
of values on the right have to be the same.

>> (a, b, c, d) = (1, 2, 3)

ValueError: need more than 3 values to unpack

13

Tuple Assignment
>> a = 10

>> b = 5

>> print(a, b)

10 5

>> tmp = a

>> a = b

>> b = tmp

>> print(a, b)

5 10

>> a = 10

>> b = 5

>> (a, b) = (b, a)

>> print(a, b)

5 10

14

Tuples in Python allow us to make many variable
assignments at once. Useful tricks like this are
sometimes called syntactic sugar.
https://en.wikipedia.org/wiki/Syntactic_sugar

Common pattern: swap the values of two
variables.

This line achieves the same end, but in a
single assignment statement instead of
three, and without the extra variable tmp.

https://en.wikipedia.org/wiki/Syntactic_sugar

Tuple Assignment
>> (x, y, z) = (2*'cat', 0.57721, [1, 2, 3])

>> (x, y, z)

('catcat', 0.57721, [1, 2, 3])

>> (x, y, z) = ('a', 'b', 'c', 'd')

ValueError: too many values to unpack (expected 3)

>> (x, y, z) = ('a’, 'b')

ValueError: not enough values to unpack (expected 3, got 2)

15

If the number of variables doesn’t match
the number of expressions, that’s an
error.

Tuple assignment requires one variable on the left
for each expression on the right.

Tuple Assignment
>> email = ‘bbm101@cs.hacettepe.edu.tr’

>> email.split(‘@’)

[‘bbm101’, ‘cs.hacettepe.edu.tr’]

>> (user, domain) = email.split(‘@’)

>> user

‘bbm101’

>> domain

‘cs.hacettepe.edu.tr’

>> (x, y, z) = (‘cat’)

>> print(x, y, z)

c a t

16

The string.split() method returns a list
of strings, obtained by splitting the calling
string on the characters in its argument.

Tuple assignment works so long as the right-
hand side is any sequence, provided the number
of variables matches the number of elements
on the right. Here, the right-hand side is a list,
['bbm101','cs.hacettepe.edu,tr'] .

A string is a sequence, so tuple assignment is
allowed. Sequence elements are characters,
and indeed, x, y and z are assigned to the
three characters in the string.

Tuples as Return Values
>> import random

>> def five_numbers(t):

... t.sort()

... n = len(t)

... return (t[0], t[n//4], t[n//2], t[(3*n)//4], t[-1])

>> five_numbers([1,2,3,4,5,6,7])

(1, 2, 4, 6, 7)

>> randnumlist = [random.randint(1,100) for x in range(60)]

>> (mini, lowq, med, upq, maxi) = five_numbers(randnumlist)

>> (mini, lowq, med, upq, maxi)

(3, 27, 54, 73, 98)

17

Test your understanding: what
does this list comprehension do?

This function takes a list of numbers and
returns a tuple summarizing the list.
https://en.wikipedia.org/wiki/Five-
number_summary

https://en.wikipedia.org/wiki/Five-number_summary

Tuples as Return Values

• More generally, sometimes you want more than one
return value

>> t = divmod(13, 4)

>> t

(3, 1)

>> (quotient, remainder) = divmod(13, 4)

>> quotient

3

>> remainder

1

18

divmod is a Python built-in function that takes a pair
of numbers and outputs the quotient and
remainder, as a tuple. Additional examples can be
found here:
https://docs.python.org/3/library/functions.html

https://docs.python.org/3/library/functions.html

Tuples as Return Values
• A for statement can be used to iterate over the elements of a tuple.

• def findDivisors (n1, n2):

"""Assumes n1 and n2 are positive ints

Returns a tuple containing all common divisors

of n1 & n2"""

divisors = () #the empty tuple

for i in range(1, min (n1, n2) + 1):

if n1%i == 0 and n2%i == 0:

divisors = divisors + (i,)

return divisors

divisors = findDivisors(20, 100)

print(divisors)

total = 0

for d in divisors:

total += d

print(total)

19

>> (1, 2, 4, 5, 10, 20)

>> 42

To create a tuple with a
single element, you have
to include the final comma

Variable-length Arguments
>> def my_min(*args):

... return min(args)

>> my_min(1,2,3)

1

>> my_min(4,5,6,10)

4

>> def print_all(*args):

... print(args)

>> print_all('cat', 'dog', 'bird')

('cat', 'dog', 'bird')

>> print_all()

()

20

A parameter name prefaced with
* gathers all arguments supplied to
the function into a tuple.

Note: this is also one of several ways that one can
implement optional arguments.

Gather and Scatter

• The opposite of the gather operation is scatter

>> t = (13, 4)

>> divmod(t)

TypeError: divmod expected 2 arguments, got 1

>> divmod(*t)

(3, 1)

>> *t

SyntaxError: can’t use starred expression here

21

divmod takes two arguments, so this is an error.

Instead, we have to “untuple” the tuple, using the
scatter operation. This makes the elements of the
tuple into the arguments of the function.

Note: gather/scatter only works in certain contexts
(e.g., for function arguments).

Combining lists: zip()

• Python includes a number of useful functions for combining
lists and tuples

>> t1 = ['apple', 'orange', 'banana', 'kiwi']

>> t2 = [1, 2, 3, 4]

>> zip(t1, t2)

<zip at 0x10c95d5c8>

>> for tup in zip(t1,t2):

... print(tup)

('apple', 1)

('orange', 2)

('banana', 3)

('kiwi', 4)

22

Iterators are, in essence, objects that support for-loops. All
sequences are iterators. Iterators support, crucially, a method
__next__(), which returns the “next element”.
https://docs.python.org/3/library/stdtypes.html#iterator-types

zip() returns a zip object, which is an iterator
containing as its elements tuples formed from its
arguments.
https://docs.python.org/3/library/functions.html#zip

https://docs.python.org/3/library/stdtypes.html#iterator-types
https://docs.python.org/3/library/functions.html#zip

Combining lists: zip()

>> for tup in zip(['a','b','c'],[1,2,3,4]):

... print(tup)

('a', 1)

('b', 2)

('c', 3)

>> for tup in zip(['a','b','c','d'],[1,2,3]):

... print(tup)

('a', 1)

('b', 2)

('c', 3)

>> for tup in zip([1,2,3],['a','b','c'],'xyz'):

... print(tup)

(1, 'a', 'x')

(2, 'b', 'y')

(3, 'c', 'z')

23

zip() takes any number of arguments, so long as
they are all iterable. Sequences are iterable.

Given arguments of different lengths, zip
defaults to the shortest one.

Iterables are, essentially, objects that can become
iterators. We’ll see the distinction later in the course.
https://docs.python.org/3/library/stdtypes.html#typeiter

zip() returns a zip object, which
is an iterator containing as its
elements tuples formed from
its arguments.

https://docs.python.org/3/library/stdtypes.html#typeiter

Combining lists: zip()

>> def count_matches(s, t):

... cnt = 0

... for (a,b) in zip(s,t):

... if a==b:

... cnt += 1

... return(cnt)

>> count_matches([1,1,2,3,5],[1,2,3,4,5])

2

>> count_matches([1,2,3,4,5],[1,2,3])

3

24

zip() is especially useful for iterating
over several lists in lockstep.

Related function: enumerate()

>> for t in enumerate(‘goat’):

... print(t)

(0, ‘g’)

(1, ‘o’)

(2, ‘a’)

(3, ‘t’)

>> s = ‘goat’

>> for i in range(len(s)):

... print((i,s[i]))

(0, ‘g’)

(1, ‘o’)

(2, ‘a’)

(3, ‘t’)

25

enumerate() returns an enumerate object, which is an iterator
of (index,element) pairs. It is a more graceful way of
performing the pattern below.
https://docs.python.org/3/library/functions.html#enumerate

https://docs.python.org/3/library/functions.html#enumerate

Data Structures: Lists vs Tuples

• Use a list when:
– Length is not known ahead of time and/or may change during

execution

– Frequent updates are likely

• Use a tuple when:
– The set is unlikely to change during execution

– Need to key on the set (i.e., require immutability)

– Want to perform multiple assignment or for use in variable-length arg
list

• Most code you see will use lists, because mutability is quite
useful

26

Lecture Overview

• Collections
– Lists

– Tuples

– Sets

– Dictionaries

27

Sets
• Mathematical set: a collection of values, without duplicates

or order

• Order does not matter
{ 1, 2, 3 } == { 3, 2, 1 }

• No duplicates
{ 3, 1, 4, 1, 5 } == { 5, 4, 3, 1 }

• For every data structure, ask:
– How to create
– How to query (look up) and perform other operations

• (Can result in a new set, or in some other datatype)

– How to modify
Answer: http://docs.python.org/3/library/stdtypes.html#set

3

2

1

1

4

3

5

28

http://docs.python.org/3/library/stdtypes.html#set

Creating a Set

• Construct from a list:

odd = set([1, 3, 5])

prime = set([2, 3, 5])

empty = set([])

29

Set Operations
odd = set([1, 3, 5])
prime = set([2, 3, 5])

• membership ∈ Python: in 4 in prime ⇒ False
• union ∪ Python: | odd | prime ⇒ { 1, 2, 3, 5

}
• intersection ∩ Python: & odd & prime ⇒ { 3, 5 }
• difference \ or - Python: - odd – prime ⇒ { 1 }

Think in terms of set operations,
not in terms of iteration and element operations

– Shorter, clearer, less error-prone, faster

Although we can do iteration over sets:
iterates over items in arbitrary order

for item in myset:

…

But we cannot index into a set to access a specific element.

30

Modifying a Set

• Add one element to a set:

myset.add(newelt)

myset = myset | set([newelt])

• Remove one element from a set:

myset.remove(elt) # elt must be in myset or raises err

myset.discard(elt)# never errs

What would this do?
myset = myset – set([newelt])

• Choose and remove some element from a set:

myset.pop()

31

Practice with Sets
z = set([5,6,7,8])

y = set([1,2,3,"foo",1,5])

k = z & y

j = z | y

m = y – z

z.add(9)

32

z: {8, 9, 5, 6, 7}

y: {1, 2, 3, 5, 'foo'}

k: {5}

j: {1, 2, 3, 5, 6, 7, 8, 'foo'}

m: {1, 2, 3, 'foo'}

List vs. Set Operations (1)
Find the common elements in both list1 and list2:

out1 = []
for i in list2:

if i in list1:
out1.append(i)

or

out1 = [i for i in list2 if i in list1]

Find the common elements in both set1 and set2:

set1 & set2

Much shorter, clearer, easier to write!

33

List vs. Set Operations (2)
Find the elements in either list1 or list2 (or both)
(without duplicates):

out2 = list(list1) # make a copy
for i in list2:

if i not in list1: # don’t append elements
out2.append(i) # already in out2

or
out2 = list1+list2
for i in out1: # out1 (from previous example), out2.remove(i)

common elements in both lists
Remove common

elements

Find the elements in either set1 or set2 (or both):

set1 | set2
34

List vs. Set Operations (3)

Find the elements in either list but not in both:
out3 = []

for i in list1+list2:

if i not in list1 or i not in list2:

out3.append(i)

Find the elements in either set but not in both:
set1 ^ set2 # symmetric difference

35

• Set elements must be immutable values
– int, float, bool, string, tuple

– not: list, set, dictionary

• Goal: only set operations change the set
– after “myset.add(x)”, x in myset⇒ True

– y in myset always evaluates to the same value

Both conditions should hold until myset itself is changed

36

Set Elements

• Mutable elements can violate these goals

list1 = ["a", "b"]

list2 = list1

list3 = ["a", "b"]

myset = { list1 } ⇐ Hypothetical; actually illegal in Python

TypeError: unhashable type: 'list'

list1 in myset ⇒ True

list3 in myset ⇒ True

list2.append("c") ⇐modifying myset “indirectly” would

lead to different results

list1 in myset ⇒ ???

list3 in myset ⇒ ???
37

Set Elements

Lecture Overview

• Collections
– Lists

– Tuples

– Sets

– Dictionaries

38

Dictionaries
• Python dictionary generalizes lists

– list(): indexed by integers

– dict(): indexed by (almost) any data
type

• Dictionary contains:
– a set of indices, called keys,

– a set of values (called values)

• Each key associated with one (and
only one) value key-value pairs,
sometimes called items

• Like a function f: keys -> values

39

dictionary

key
s

values

’cat’

’dog’

’goat’

12

3.1415

2.718

35

’one’

[1,2,3

Dictionaries
• Dictionary maps keys to

values.

• E.g., ‘cat’ mapped to the float
2.718

• In practice, keys are often all of
the same type, because they
all represent a similar kind of
object

Example: might use a
dictionary to map HU-CENG
unique names to people

40

dictionary

key
s

values

’cat’

’dog’

’goat’

12

3.1415

2.718

35

’one’

[1,2,3

Accessing a Dictionary

>> example_dict[‘goat’]

35

>> example_dict[‘cat’]

2.718

>> example_dict[‘dog’]

2.718

>> example_dict[3.1415]

[1,2,3]

>> example_dict[12]

‘one’

41

dictionary

key
s

values

’cat’

’dog’

’goat’

12

3.1415

2.718

35

’one’

[1,2,3

• Access the value associated to
key x by dictionary[x]

Accessing a Dictionary
>>> huceng2name = dict()

>>> huceng2name[‘aeinstein’] = ‘Albert Einstein’

>>> huceng2name[‘kyfan’] = ‘Ky Fan’

>>> huceng2name[‘enoether’] = ‘Emmy Noether’

>>> huceng2name[‘cshannon’] = ‘Claude Shannon’

>>> huceng2name[‘cshannon’]

’Claude Shannon’

>>> huceng2name[‘enoether’]

‘Emmy Noether’

>>> huceng2name[‘enoether’] = ‘Amalie Emmy Noether’

>>> huceng2name[‘enoether’]

‘Amalie Emmy Noether’

42

Example:
Hacettepe University
IT wants to store the
correspondence btw
the usernames
(HU-CENG IDs) of
students to their
actual names.

A dictionary is a very
natural data
structure for this.

Creating and populating a dictionary

43

>>> huceng2name = dict()

>>> huceng2name[‘aeinstein’] = ‘Albert Einstein’

>>> huceng2name[‘kyfan’] = ‘Ky Fan’

>>> huceng2name[‘enoether’] = ‘Emmy Noether’

>>> huceng2name[‘cshannon’] = ‘Claude Shannon’

>>> huceng2name[‘cshannon’]

’Claude Shannon’

>>> huceng2name[‘enoether’]

‘Emmy Noether’

>>> huceng2name[‘enoether’] = ‘Amalie Emmy Noether’

>>> huceng2name[‘enoether’]

‘Amalie Emmy Noether’

Create an empty
dictionary (i.e., a
dictionary with no
key-value pairs
stored in it. This
should look familiar,
since it is very similar
to list creation.

Creating and populating a dictionary

44

>>> huceng2name = dict()

>>> huceng2name[‘aeinstein’] = ‘Albert Einstein’

>>> huceng2name[‘kyfan’] = ‘Ky Fan’

>>> huceng2name[‘enoether’] = ‘Emmy Noether’

>>> huceng2name[‘cshannon’] = ‘Claude Shannon’

>>> huceng2name[‘cshannon’]

’Claude Shannon’

>>> huceng2name[‘enoether’]

‘Emmy Noether’

>>> huceng2name[‘enoether’] = ‘Amalie Emmy Noether’

>>> huceng2name[‘enoether’]

‘Amalie Emmy Noether’

Populate the
dictionary. We are
adding four key-
value pairs,
corresponding to
four users in the
system.

Creating and populating a dictionary

45

>>> huceng2name = dict()

>>> huceng2name[‘aeinstein’] = ‘Albert Einstein’

>>> huceng2name[‘kyfan’] = ‘Ky Fan’

>>> huceng2name[‘enoether’] = ‘Emmy Noether’

>>> huceng2name[‘cshannon’] = ‘Claude Shannon’

>>> huceng2name[‘cshannon’]

’Claude Shannon’

>>> huceng2name[‘enoether’]

‘Emmy Noether’

>>> huceng2name[‘enoether’] = ‘Amalie Emmy Noether’

>>> huceng2name[‘enoether’]

‘Amalie Emmy Noether’

Retrieve the value
associated with a
key. This is called
lookup.

Creating and populating a dictionary

46

>>> huceng2name = dict()

>>> huceng2name[‘aeinstein’] = ‘Albert Einstein’

>>> huceng2name[‘kyfan’] = ‘Ky Fan’

>>> huceng2name[‘enoether’] = ‘Emmy Noether’

>>> huceng2name[‘cshannon’] = ‘Claude Shannon’

>>> huceng2name[‘cshannon’]

’Claude Shannon’

>>> huceng2name[‘enoether’]

‘Emmy Noether’

>>> huceng2name[‘enoether’] = ‘Amalie Emmy Noether’

>>> huceng2name[‘enoether’]

‘Amalie Emmy Noether’

Emmy Noether’s
actual legal name
was Amalie Emmy
Noether, so we have
to update her record.
Note that updating is
syntactically the
same as initial
population of the
dictionary.

Displaying Items

47

>>> example_dic

{3.1415: [1, 2, 3], 12: ‘one’, ‘cat’: 2.718, ‘dog’: 2.718, ‘goat’: 35}

>>> huceng2name

{‘aeinstein’: ‘Albert Einstein’,

‘cshannon’: ‘Claude Shannon’,

‘enoether’: ‘Amalie Emmy Noether’,

‘kyfan’: ‘Ky Fan’}

>>> huceng2name = {‘aeinstein’: ‘Albert Einstein’,

‘cshannon’: ‘Claude Shannon’,

‘enoether’: ‘Amalie Emmy Noether’,

‘kyfan’: ‘Ky Fan’}

>>> huceng2name[‘kyfan’]

‘Ky Fan’

Printing a dictionary lists its items
(key-value pairs), in this rather odd
format...

… we can also use that format
to create a new dictionary.

Note: The order in which items are printed isn’t always
the same, and isn’t predictable. This is due to how
dictionaries are stored in memory. More on this soon.

Dictionaries have a length

48

>>> huceng2name

{‘aeinstein’: ‘Albert Einstein’,

‘cshannon’: ‘Claude Shannon’,

‘enoether’: ‘Amalie Emmy Noether’,

‘kyfan’: ‘Ky Fan’}

>>> len(huceng2name)

4

>>> d = dict()

>>> len(d)

0

Length of a dictionary is just the
number of items.

Empty dictionary has length 0.

Checking set membership

49

• Suppose a new student, Andrey Kolmogorov is enrolling at HU-CENG. We need
to give him a unique name, but we want to make sure we aren’t assigning a
name that’s already taken.

>>> huceng2name

{‘aeinstein’: ‘Albert Einstein’,

‘cshannon’: ‘Claude Shannon’,

‘enoether’: ‘Amalie Emmy Noether’,

‘kyfan’: ‘Ky Fan’}

>>> ‘akolmogorov’ in huceng2name

False

>>> ‘enoether’ in huceng2name

True

Dictionaries support checking whether
or not an element is present as a key,
similar to how lists support checking
whether or not an element is present
in the list.

Checking set membership: Fast and Slow
from random import randint

listlen = 1000000

list_of_numbers = listlen*[0]

dict_of_numbers = dict()

for i in range(listlen):

n = randint(1000000, 9999999)

list_of_numbers[i] = n

dict_of_numbers[n] = 1

>>> 8675309 in list_of_numbers

False

>>> 1240893 in list_of_numbers

True

>>> 8675309 in dict_of_numbers

False

>>> 1240893 in dict_of_numbers

True

50

Example: I have a large collection of
phone numbers, and I need to check
whether or not a given number appears
in the collection. Both dictionaries and
lists support membership checks of this
sort, but it turns out that dictionaries are
much better suited to the job.

Lists and dictionaries provide our first
example of how certain data structures
are better for certain tasks than others.

Checking set membership: Fast and Slow

51

from random import randint

listlen = 1000000

list_of_numbers = listlen*[0]

dict_of_numbers = dict()

for i in range(listlen):

n = randint(1000000, 9999999)

list_of_numbers[i] = n

dict_of_numbers[n] = 1

>>> 8675309 in list_of_numbers

False

>>> 1240893 in list_of_numbers

True

>>> 8675309 in dict_of_numbers

False

>>> 1240893 in dict_of_numbers

True

This block of code generates 1000000
random “phone numbers”, and creates
(1) a list of all the numbers and (2) a
dictionary whose keys are all the
numbers.

Checking set membership: Fast and Slow

52

from random import randint

listlen = 1000000

list_of_numbers = listlen*[0]

dict_of_numbers = dict()

for i in range(listlen):

n = randint(1000000, 9999999)

list_of_numbers[i] = n

dict_of_numbers[n] = 1

>>> 8675309 in list_of_numbers

False

>>> 1240893 in list_of_numbers

True

>>> 8675309 in dict_of_numbers

False

>>> 1240893 in dict_of_numbers

True

The random module supports a bunch
of random number generation
operations.
https://docs.python.org/3/library/rand
om.html

https://docs.python.org/3/library/random.html

Checking set membership: Fast and Slow

53

from random import randint

listlen = 1000000

list_of_numbers = listlen*[0]

dict_of_numbers = dict()

for i in range(listlen):

n = randint(1000000, 9999999)

list_of_numbers[i] = n

dict_of_numbers[n] = 1

>>> 8675309 in list_of_numbers

False

>>> 1240893 in list_of_numbers

True

>>> 8675309 in dict_of_numbers

False

>>> 1240893 in dict_of_numbers

True

Initialize a list (of all zeros) and an
empty dictionary.

Checking set membership: Fast and Slow

54

from random import randint

listlen = 1000000

list_of_numbers = listlen*[0]

dict_of_numbers = dict()

for i in range(listlen):

n = randint(1000000, 9999999)

list_of_numbers[i] = n

dict_of_numbers[n] = 1

>>> 8675309 in list_of_numbers

False

>>> 1240893 in list_of_numbers

True

>>> 8675309 in dict_of_numbers

False

>>> 1240893 in dict_of_numbers

True

Generate listlen random numbers,
writing them to both the list and the
dictionary.

Checking set membership: Fast and Slow

55

from random import randint

listlen = 1000000

list_of_numbers = listlen*[0]

dict_of_numbers = dict()

for i in range(listlen):

n = randint(1000000, 9999999)

list_of_numbers[i] = n

dict_of_numbers[n] = 1

>>> 8675309 in list_of_numbers

False

>>> 1240893 in list_of_numbers

True

>>> 8675309 in dict_of_numbers

False

>>> 1240893 in dict_of_numbers

True

This is slow

This is fast

Checking set membership: Fast and Slow

56

• Let’s get a more quantitative look at the difference in speed
between lists and dicts.

>>> import time

>>> start_time = time.time()

>>> 8675309 in list_of_numbers

>>> time.time() – start_time

0.10922789573669434

>>> start_time = time.time()

>>> 8675309 in dict_of_numbers

>>> time.time() – start_time

0.0002219676971435547

The time module supports accessing the
system clock, timing functions, and related
operations.
https://docs.python.org/3/library/time.html
Timing parts of your program to find where
performance can be improved is called
profiling your code. Python provides some
built-in tools for more profiling, which we’ll
discuss later in the course, if time allows.
https://docs.python.org/3/library/profile.html

https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/profile.html

Checking set membership: Fast and Slow

57

• Let’s get a more quantitative look at the difference in speed
between lists and dicts.

>>> import time

>>> start_time = time.time()

>>> 8675309 in list_of_numbers

>>> time.time() – start_time

0.10922789573669434

>>> start_time = time.time()

>>> 8675309 in dict_of_numbers

>>> time.time() – start_time

0.0002219676971435547

To see how long an operation takes, look at
what time it is, perform the operation, and
then look at what time it is again. The time
difference is how long it took to perform the
operation.

Warning: this can be influenced by other processes
running on your computer. See documentation for
ways to mitigate that inaccuracy.

Checking set membership: Fast and Slow

58

• Let’s get a more quantitative look at the difference in speed
between lists and dicts.

>>> import time

>>> start_time = time.time()

>>> 8675309 in list_of_numbers

>>> time.time() – start_time

0.10922789573669434

>>> start_time = time.time()

>>> 8675309 in dict_of_numbers

>>> time.time() – start_time

0.0002219676971435547

Checking membership in the dictionary is
orders of magnitude faster! Why should
that be?

Checking set membership: Fast and Slow

59

• Let’s get a more quantitative look at the difference in speed
between lists and dicts.

>>> import time

>>> start_time = time.time()

>>> 8675309 in list_of_numbers

>>> time.time() – start_time

0.10922789573669434

>>> start_time = time.time()

>>> 8675309 in dict_of_numbers

>>> time.time() – start_time

0.0002219676971435547

Python compares x against each element in
the list until it finds a match or hits the end
of the list. So this takes time linear in the
length of the list.

The time difference is due to how the in
operation is implemented for lists and
dictionaries.

Python uses a hash table. For now, it
suffices to know that this lets us check if x is
in the dictionary in (almost) the same
amount of time, regardless of how many
items are in the dictionary.

Common pattern: dictionary as counter

• Example: counting word frequencies

• Naïve idea: keep one variable to keep track of each
word We’re gonna need a lot of variables!

• Better idea: use a dictionary, keep track of only the
words we see

60

Traversing a dictionary
• Suppose we have a dictionary representing word counts...
• ...and now we want to display the counts for each word.

>>> for w in wdcnt:
print(w, wdcnt[w])

half 3
a 3
league 3
onward 1
all 1
in 1
the 2
valley 1
of 1
death 1
rode 1
six 1
hundred 1

61

Traversing a dictionary yields the keys, in no
particular order. Typically, you’ll get them in
the order they were added, but this is not
guaranteed, so don’t rely on it.

Common pattern: Reverse Lookup and Inversion

62

>>> huceng2name

{‘aeinstein’: ‘Albert Einstein’,

‘cshannon’: ‘Claude Shannon’,

‘enoether’: ‘Amalie Emmy Noether’,

‘kyfan’: ‘Ky Fan’}

>>> name2huceng = dict()

for uname in huceng2name:

truename = huceng2name[uname]

name2huceng[truename] = uname

>>> name2huceng

{‘Albert Einstein’: ‘aeinstein’,

‘Amalie Emmy Noether’: ‘enoether’,

‘Claude Shannon’: ‘cshannon’,

‘Ky Fan’: ‘kyfan’}

• Returning to our example, what if I want to map a (real) name to a uniqname?
E.g., I want to look up Emmy Noether’s username from her real name

The keys of huceng2name are the values of
name2huceng and vice versa. We say that
name2huceng is the reverse lookup table (or
the inverse) for huceng2name.

Common pattern: Reverse Lookup and Inversion

63

>>> huceng2name

{‘aeinstein’: ‘Albert Einstein’,

‘cshannon’: ‘Claude Shannon’,

‘enoether’: ‘Amalie Emmy Noether’,

‘kyfan’: ‘Ky Fan’}

>>> name2huceng = dict()

for uname in huceng2name:

truename = huceng2name[uname]

name2huceng[truename] = uname

>>> name2huceng

{‘Albert Einstein’: ‘aeinstein’,

‘Amalie Emmy Noether’: ‘enoether’,

‘Claude Shannon’: ‘cshannon’,

‘Ky Fan’: ‘kyfan’}

• Returning to our example, what if I want to map a (real) name to a uniqname?
E.g., I want to look up Emmy Noether’s username from her real name

The keys of huceng2name are the values of
name2huceng and vice versa. We say that
name2huceng is the reverse lookup table (or
the inverse) for huceng2name.

What if there are duplicate values? In the
word count example, more than one word
appears 2 times in the text... How do we
deal with that?

Keys must be hashable!
>>> d = dict()

>>> animals = [‘cat’, ‘dog’, ‘bird’, ‘goat’]

>>> d[animals] = 1.61803

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'list'

64

From the documentation: “All of Python’s immutable
built-in objects are hashable; mutable containers (such
as lists or dictionaries) are not.”
https://docs.python.org/3/glossary.html#term-hashable

https://docs.python.org/3/glossary.html#term-hashable

Dictionaries can have dictionaries as values!

• Suppose we want to map pairs (x,y) to numbers.

>>> times_table = dict()

>>> for x in range(1,13):

if x not in times_table:

times_table[x] = dict()

for y in range(1,13):

times_table[x][y] = x*y

>>> times_table[7][9]

63

65

Note: We’re putting this if-statement here to
illustrate that in practice, we often don’t
know the order in which we’re going to
observe the objects we want to add to the
dictionary.

Each value of x maps to another
dictionary.

