BBM 102 - Introduction to
Programming Il

Spring 2017
"’()
Inheritance -
e

Java

Instructors: Ayca Tarhan, Fuat Akal, Géneng Ercan, Vahid Garousi
TAs: Selma Dilek, Selim Yilmaz, Selman Bozkir

Today

m Inheritance
m Notion of subclasses and superclasses
m protected members

m UML Class Diagrams for inheritance

Inheritance

m A form of software reuse in which a new class is
created by absorbing an existing class’s members and
embellishing them with new or modified capabilities.

m Can save time during program development by basing

new classes on existing proven and debugged high-
quality software.

m Increases the likelihood that a system will be
implemented and maintained effectively.

Inheritance

m When creating a class, rather than declaring completely
new members, you can designate that the new class
should inherit the members of an existing class.
= Existing class is the superclass
= New class is the subclass

m The subclass exhibits the behaviors of its superclass and
can add behaviors that are specific to the subclass.

® This is why inheritance is sometimes referred to as
specialization.

m A subclass is more specific than its superclass and
represents a more specialized group of objects.

Inheritance

m The direct superclass is the superclass from which the
subclass explicitly inherits.

m An indirect superclass is any class above the direct
superclass in the class hierarchy.

m The Java class hierarchy begins with class Object (in
package java.lang)
® Fvery class in Java directly or indirectly extends (or “inherits

from”) Object.

m Java supports only single inheritance, in which each class

is derived from exactly one direct superclass.

© Copyright 1992-2012 by Pearson Education, Inc.All Rights
Reserved.

Advantages of inheritance

m When a class inherits from another class, there are
three benefits:

(1) You can reuse the methods and data of the
existing class

(2) You can extend the existing class by adding new
data and new methods

(3) You can modify the existing class by overloading
its methods with your own implementations

Relationships between classes

m We distinguish between the is-a relationship and the
has-a relationship

m /s-a represents inheritance

® |In an is-a relationship, an object of a subclass can also be
treated as an object of its superclass

m Has-a represents composition

® |n a has-a relationship, an object contains as members
references to other objects

© Copyright 1992-2012 by Pearson Education, Inc.All Rights
Reserved.

Superclasses and Subclasses

Student GraduateStudent, UndergraduateStudent
Shape Circle, Triangle, Rectangle, Sphere, Cube
Loan CarLoan, HomeImprovementLoan, MortgagelLoan
Employee Faculty, Staff
BankAccount CheckingAccount, SavingsAccount

Fig. 9.1 | Inheritance examples.

m Superclasses tend to be “more general” and subclasses “more
specific.”

© Copyright 1992-2012 by Pearson Education, Inc.All Rights
Reserved.

CommunityMember

TN

Employee Student Alumnus

7

Faculty Staff

/X

Administrator Teacher

Fig. 9.2 | Inheritance hierarchy for university CommunityMembers.

* A sample university community class hierarchy

e Also called an inheritance hierarchy.
* Each arrow inthe hierarchy represents an is-a relationship.
* Followthe arrows upward in the class hierarchy

e “an Employee is a CommunityMember”

e “aTeacher is a Faculty member.”

© Copyright 1992-2012 by Pearson Education, Inc.All Rights
Reserved.

Superclasses and Subclasses (Cont.)

m Below is Shape inheritance hierarchy.
m Follow the arrows from the bottom of the diagram to the
topmost superclass to identify several is-a relationships.

= A Triangle is a TwoDimensionalShape and is a Shape
= A Sphere is a ThreeDimensionalShape and is a Shape.

Shape

AN

TwoDimensionalShape ThreeDimensionalShape
Circle Square Triangle Sphere Cube Tetrahedron

Fig. 9.3 | Inheritance hierarchy for Shapes.

© Copyright 1992-2012 by Pearson Education, Inc. All Rights
Reserved.

Superclasses and Subclasses (Cont.)

m Not every class relationship is an inheritance
relationship.

m Has-a relationship

= Create classes by composition of existing classes.

= Example: Given the classes Employee, BirthDate
and TelephoneNumber, it’s improper to say that an
Employee is aBirthDate orthat an Employee isa
TelephoneNumber.

= However, an Employee has aBirthDate, and an
Employee has a TelephoneNumber.

© Copyright 1992-2012 by Pearson Education, Inc. All Rights
Reserved.

protected Members

m A class’s public members are accessible wherever
the program has a reference to an object of that class
or one of its subclasses.

m A class’s private members are accessible only
within the class itself.

mprotected access is an intermediate level of access
between public and private.
= A superclass’s protected members can be accessed by

members of that superclass, by members of its subclasses and
by members of other classes in the same package

= protected members also have package access.

© Copyright 1992-2012 by Pearson Education, Inc. All Rights
Reserved.

protected Members (Cont.)

m A superclass’s private members are hidden in its subclasses

= They can be accessed only through the public or protected methods
inherited from the superclass

m Subclass methods can refer to public and protected members
inherited from the superclass simply by using the member
names.

m When a subclass method overrides an inherited superclass
method, the superclass method can be accessed from the
subclass by preceding the superclass method name with
keyword super and a dot (.) separator.

© Copyright 1992-2012 by Pearson Education, Inc. All Rights

Case Study: Commission Employees

m Inheritance hierarchy containing types of employees
in a company’s payroll application

m Commission employees are paid a percentage of
their sales

m Base-salaried commission employees receive a base
salary plus a percentage of their sales.

© Copyright 1992-2012 by Pearson Education, Inc. All Rights

Reserved. 13 Reserved. 14

Creating and Using a CommissionEmployee Class

1 // Fig. 9.4: CommissionEmployee.java

2 // CommissionEmployee class represents an employee paid a

3 // percentage of gross sales. L.

4 public class CommissionEmployee extends Object ~Class CommissionEmployee extends class ::) set First

5 { B H se irst name]]

6 private String firstName; ObJeCt (from paCkageJava'Iang)' :: ?ubhc void setFirstName(String first)

7 private String lastName; . . .

8 private String socialSecurityNumber; 27 firstName = first; // should validate

9 private double grossSales; // gross weekly sales 28 } // end method setFirstName

10 private double commissionRate; // commission percentage ;: / . Firet

1 rg urn .‘H"S nan.ﬂe

12 // five-argument constructor 31 public String getFirstName()

13 public CommissionEmployee(String first, String last, String ssn, :: { . Firsen

14 double sales, double rate return tirstName;

15 {) 34 } // end method getFirstName

16 // implicit call to Object constructor occurs here ;: /) set last

17 firstName = first; se ast name

18 TastName = last; :; public void setLastName(String last)

19 socialSecurityNumber = ssn; »

20 setGrossSales(sales); // validate and store gross sales 39 TastName = last; // should validate

21 setCommissionRate(rate); // validate and store commission rate 40 } // end method setlLastName

22 } // end five-argument CommissionEmployee constructor 41

Fig. 9.4 | CommissionEmpToyee class represents an employee paid a percentage of
gross sales. (Part | of 6.)

= CommissionEmployee inherits Object’s methods.

= |f you don’t explicitly specify which class a new class extends, the
class extends Object implicitly.

Fig. 9.4 | CommissionEmpTloyee class represents an employee paid a percentage of
gross sales. (Part 2 of 6.)

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

// return last name
public String getLastName()
{
return TastName;
} // end method getLastName

// set social security number
public void setSocialSecurityNumber(String ssn)

socialSecurityNumber = ssn; // should validate
} // end method setSocialSecurityNumber

// return social security number
public String getSocialSecurityNumber()

return socialSecurityNumber;
} // end method getSocialSecurityNumber

Fig. 9.4 | CommissionEmployee class represents an employee paid a percentage of
gross sales. (Part 3 of 6.)

60 // set gross sales amount

61 public void setGrossSales(double sales)
62 {

63 if (sales >= 0.0)

64 grossSales = sales;

65 else

66 throw new ITlegalArgumentException(
67 "Gross sales must be >= 0.0");
68 } // end method setGrossSales

69

70 // return gross sales amount

71 public double getGrossSales()

72 {

73 return grossSales;

74 } // end method getGrossSales

75

Fig. 9.4 | CommissionEmployee class represents an employee paid a percentage of
gross sales. (Part 4 of 6.)

17 18
76 // set commission rate 98 // return String representation of CommissionEmployee object
7 public void setCommissionRate(double rate) 929 @verride // indicates that this method overrides a superclass method
78 { 100 public String toString(Q)
79 if (rate > 0.0 & rate < 1.0) 101 {
80 commissionRate = rate; 102 return String.format("%s: %s %s\n%s: %s\n%s: %.2f\n%s: %.2f",
81 else 103 "commission employee™, firstName, lastName,
82 throw new I1legalArgumentException(104 "social security number", socialSecurityNumber,
83 "Commission rate must be > 0.0 and < 1.0"); 105 "gross sales", grossSales,
84 } // end method setCommissionRate 106 "commission rate”, commissionRate);
85 107 } // end method toString
86 // return commission rate 108 1} // end class CommissionEmployee
87 public double getCommissionRate()
88 L Fig. 9.4 | CommissionEmpTloyee class represents an employee paid a percentage of
89 return commissionRate; r0ss sales. (Part 6 of 6.)
920 } // end method getCommissionRate &l . :
91
92 // calculate earnings
93 public double earnings()
94 {
95 return commissionRate * grossSales;
96 } // end method earnings
97
Fig. 9.4 | CommissionEmpToyee class represents an employee paid a percentage of
gross sales. (Part 5 of 6.)
19 20

Creating and Using a CommissionEmployee Class
(Cont.)

m Constructors are not inherited.

m The first task of a subclass constructor is to call its
direct superclass’s constructor explicitly or implicitly
® Ensures that the instance variables inherited from the

superclass are initialized properly.

m If the code does not include an explicit call to the
superclass constructor, Java implicitly calls the
superclass’s default or no-argument constructor.

m A class’s default constructor calls the superclass’s
default or no-argument constructor.

2

Creating and Using a CommissionEmployee Class
(Cont.)

m toString is one of the methods that every class inherits
directly or indirectly from class Object.
® Returns a String representing an object.

= Called implicitly whenever an object must be converted to a
String representation.

m Class Object’s toString method returns a String that
includes the name of the object’s class.

® This is primarily a placeholder that can be overridden by a
subclass to specify an appropriate String representation.

Creating and Using a CommissionEmployee Class
(Cont.)

m To override a superclass method, a subclass must
declare a method with the same signature as the
superclass method

m @Override annotation

= |ndicates that a method should override a superclass
method with the same signature.

= |f it does not, a compilation error occurs.

23

Fv- Common Programming Error 9.1

-.ﬁ Using an incorrect method signature when attempting to
override a superclass method causes an unintentional
method overload that can lead to subtle logic errors.

Error-Prevention Tip 9.1

% Declare overridden methods with the @verride an-
notation to ensure at compilation time that you defined
their signatures correctly. It’s always better to find errors
at compile time rather than at runtime.

1 // Fig. 9.5: CommissionEmployeeTest.java

2 // CommissionEmployee class test program.

3

4 public class CommissionEmployeeTest

5

6 public static void main(String[] args)

7 {

8 // instantiate CommissionEmployee object

9 CommissionEmployee employee = new CommissionEmployee(
10 "Sue", "Jones", "222-22-2222", 10000, .06);

11

12 // get commission employee data

13 System.out.printin(

14 "Employee information obtained by get methods: \n");
15 System.out.printf("%s %s\n", "First name is",

16 employee.getFirstName());

17 System.out.printf("%s %s\n", "Last name is",

18 employee.getLastName());

19 System.out.printf("%s %s\n", "Social security number is",
20 employee.getSocialSecurityNumber());

21 System.out.printf("%s %.2f\n", "Gross sales is",

22 employee.getGrossSales());

23 System.out.printf("%s %.2f\n", "Commission rate is",
24 employee.getCommissionRate());

Fig. 9.5 | CommissionEmployee class test program. (Part | of 2.)

26 employee.setGrossSales(500); // set gross sales

27 employee.setCommissionRate(.1); // set commission rate

28

29 System.out.printf("\n%s:\n\n%s\n", molici - i
30 "Updated employee information obtained by toString"”, employee);
31 Y // end main occurs here

32 } // end class CommissionEmployeeTest

Employee information obtained by get methods:

First name is Sue

Last name is Jones

Social security number is 222-22-2222
Gross sales is 10000.00

Commission rate is 0.06

Updated employee information obtained by toString:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 500.00

commission rate: 0.10

Fig. 9.5 | CommissionEmployee class test program. (Part 2 of 2.)

25 26
Case Study Part 2: Creating and Using a
BasePlus-CommissionEmployee Class
1 // Fig. 9.6: BasePlusCommissionEmployee.java
2 // BasePlusCommissionEmployee class represents an_emnlovee who receives
. . 3 // a base salary in addition to commission. Class BasePIusCommissionEmponee does
. . 3
m Class BasePTusCommissi onEmp'I oyee contains a first 5 public class BasePlusCommissionEmployee «—— NOt specify “extends Object”, Implicitly
name, last name, social security number, gross sales 7 1 private String firsthane; extends Object.
H H 8 ivate Stri JastN H
amount, commission rate and base salary. 5 brivate String secialSecurityNumber;
= All but the base salary are in common with class Il hrivate double commscionkace:) comiseon percentage BasePlusCommissionEmployee’s
commission Emp]oyee. 12 private double baseSalary; // base salary per week constructor invokes class Object’s
13 . default constructor implicitly.
14 // six-argument constructor
15 public BasePlusCommissionEmployee(String first, String last,
. . , . 16 String ssn, double sales, double rate, double salary)
m Class BasePlusCommissionEmployee’s public T _
. . . 18 // implicit call to Object constructor occurs here
services include a constructor, and methods earnings, 15 firsthane = first;
- . . astName = last;
toString and get and set for each instance variable 21 socialSecurityNumber = ssn;
. . 22 setGrossSales(sales); // validate and store gross sales
= Most of these are in common with class CommissionEmployee.
Fig. 9.6 | BasePlusCommissionEmpTloyee class represents an employee who
receives a base salary in addition to a commission. (Part | of 7.)
27 28

23 setCommissionRate(rate); // validate and store commission rate

24 setBaseSalary(salary); // validate and store base salary
25 } // end six-argument BasePlusCommissionEmployee constructor
26

27 // set first name

28 public void setFirstName(String first)
29 {

30 firstName = first; // should validate
31 } // end method setFirstName

32

33 // return first name

34 public String getFirstName()

35 {

36 return firstName;

37 } // end method getFirstName

38

39 // set Tast name

40 public void setLastName(String last)
41 {

42 TastName = Tast; // should validate
43 } // end method setlLastName

44

Fig. 9.6 | BasePlusCommissionEmployee class represents an employee who
receives a base salary in addition to a commission. (Part 2 of 7.)

45 // return last name

46 public String getLastName()

47 {

48 return TastName;

49 } // end method getLastName

50

51 // set social security number

52 public void setSocialSecurityNumber(String ssn)
53

54 socialSecurityNumber = ssn; // should validate
55 } // end method setSocialSecurityNumber

56

57 // return social security number

58 public String getSocialSecurityNumber()

59 {

60 return socialSecurityNumber;

61 } // end method getSocialSecurityNumber

62

Fig. 9.6 | BasePlusCommissionEmployee class represents an employee who
receives a base salary in addition to a commission. (Part 3 of 7.)

29 30

63 // set gross sales amount 79 // set commission rate

64 public void setGrossSales(double sales) 80 public void setCommissionRate(double rate)

65 { 81 {

66 if (sales >= 0.0) 82 if (rate > 0.0 & rate < 1.0)

67 grossSales = sales; 83 commissionRate = rate;

68 else 84 else

69 throw new I1legalArgumentException(85 throw new ITlegalArgumentException(

70 "Gross sales must be >= 0.0"); 86 "Commission rate must be > 0.0 and < 1.0");

71 } // end method setGrossSales 87 } // end method setCommissionRate

72 88

73 // return gross sales amount 89 // return commission rate

74 public double getGrossSales() 20 public double getCommissionRate()

75 91

76 return grossSales; 92 return commissionRate;

77 } // end method getGrossSales 93 } // end method getCommissionRate

78 94
Fig. 9.6 | BasePlusCommissionEmployee class represents an employee who Fig. 9.6 | BasePlusCommissionEmployee class represents an employee who
receives a base salary in addition to a commission. (Part 4 of 7.) receives a base salary in addition to a commission. (Part 5 of 7.)

3 32

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
1o
1
112
13
114
115
116

// set base salary
public void setBaseSalary(double salary)

if (salary >= 0.0)
baseSalary = salary;
else
throw new I1legalArgumentException(
"Base salary must be >= 0.0");
} // end method setBaseSalary

// return base salary
public double getBaseSalary()
{

return baseSalary;
} // end method getBaseSalary

// calculate earnings
public double earnings()
{
return baseSalary + (commissionRate * grossSales);
} // end method earnings

Fig. 9.6 | BasePlusCommissionEmployee class represents an employee who
receives a base salary in addition to a commission. (Part 6 of 7.)

17 // return String representation of BasePlusCommissionEmpTloyee

118 @verride // indicates that this method overrides a superclass method
119 public String toString()

120 {

121 return String.format(

122 "%s: %s %s\n%s: %s\n%s: %.2f\n%s: %.2f\n%s: %.2f",

123 "base-salaried commission employee™, firstName, TastName,

124 "social security number", socialSecurityNumber,

125 "gross sales", grossSales, "commission rate", commissionRate,
126 "base salary"”, baseSalary);

127 } // end method toString

128 } // end class BasePlusCommissionEmployee

Fig. 9.6 | BasePlusCommissionEmployee class represents an employee who
receives a base salary in addition to a commission. (Part 7 of 7.)

33 34
1 // Fig. 9.7: BasePlusCommissionEmployeeTest.java 24 System.out.printf("%s %.2f\n", "Commission rate is",
2 // BasePlusCommissionEmployee test program. 25 employee.getCommissionRate());
3 26 System.out.printf("%s %.2f\n", "Base salary is",
4 public class BasePTusCommissionEmployeeTest 27 employee.getBaseSalary());
5 28
6 public static void main(String[] args) 29 employee.setBaseSalary(1000); // set base salary
7 { 30
8 // instantiate BasePlusCommissionEmployee object 31 System.out.printf("\n%s:\n\n%s\n",
9 BasePTusCommissionEmployee employee = 32 "Updated employee information obtained by toString",
10 new BasePlusCommissionEmployee(33 employee.toString());
11 "Bob", "Lewis", "333-33-3333", 5000, .04, 300); 34 } // end main
12 35 } // end class BasePlusCommissionEmployeeTest
13 // get base-salaried commission employee data
14 System.out.printin(Fig. 9.7 | BasePlusCommissionEmployee test program. (Part 2 of 3.)
15 "Employee information obtained by get methods: \n");
16 System.out.printf("%s %s\n", "First name is",
17 employee.getFirstName());
18 System.out.printf("%s %s\n", "Last name is",
19 employee.getLastName());
20 System.out.printf("%s %s\n", "Social security number is",
21 employee.getSocialSecurityNumber());
22 System.out.printf("%s %.2f\n", "Gross sales is",
23 employee.getGrossSales());
Fig. 9.7 | BasePlusCommissionEmpTloyee test program. (Part | of 3.)
35 36

Employee information obtained by get methods:

First name is Bob

Last name is Lewis

Social security number is 333-33-3333
Gross sales is 5000.00

Commission rate is 0.04

Base salary is 300.00

Updated employee information obtained by toString:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 1000.00

Fig. 9.7 | BasePlusCommissionEmpTloyee test program. (Part 3 of 3.)

37

Case Study Part 2: Creating and Using a
BasePlus-CommissionEmployee Class (Cont.)

m Much of BasePlusCommissionEmployee’s code is
similar, or identical, to that of CommissionEmployee.

m private instance variables firstName and
TastName and methods setFirstName,
getFirstName, setLastName and getLastName are
identical.
= Both classes also contain corresponding get and set methods.

m The constructors are almost identical

= BasePlusCommissionEmployee’s constructor also sets the
base-Salary.

m The toString methods are nearly identical

= BasePlusCommissionEmployee’s toString also outputs
instance variable baseSalary

38

Case Study Part 2: Creating and Using a BasePlus-
CommissionEmployee Class (Cont.)

m We literally copied CommissionEmployee’s code, pasted it into
BasePlusCommissionEmployee, then modified the new class to
include a base salary and methods that manipulate the base salary.
= This “copy-and-paste” approach is often error prone and time consuming.

= |t spreads copies of the same code throughout a system, creating a code-
maintenance nightmare.

s Software Engineering Observation 9.3

. With inheritance, the common instance variables and
methods of all the classes in the hierarchy are declared in
a superclass. When changes are made for these common
Jeatures in the superclass—subclasses then inberit the
changes. Without inheritance, changes would need ro be
made to all the source-code files that contain a copy of the
code in question.

39

Case Study Part 3: Creating a CommissionEmployee-
BasePlusCommissionEmployee Inheritance Hierarchy

m Class BasePlusCommissionEmployee class extends class
CommissionEmployee

m ABasePlusCommissionEmployee objectisa
CommissionEmployee
® Inheritance passeson class CommissionEmployee’s capabilities.

m Class BasePlusCommissionEmployee also has instance
variable baseSalary.

m Subclass BasePlusCommissionEmployee inherits
CommissionEmployee’sinstance variables and methods

= Only the superclass’s public and protected members are directly
accessible in the subclass.

40

1 // Fig. 9.8: BasePlusCommissionEmployee.java 18 // set base salary
2 // private superclass members cannot be accessed in a subclass. 19 public void setBaseSalary(double salary)
3 20
4 public class BasePlusCommissionEmployee extends CommissionEmployee 21 if (salary >= 0.0)
5 { 22 baseSalary = salary;
6 private double baseSalary; // base salary per week 23 else
7 24 throw new ITlegalArgumentException(
8 // six-argument constructor 25 "Base salary must be >= 0.0");
9 public BasePlusCommissionEmployee(String first, String last, 26 } // end method setBaseSalary
10 String ssn, double sales, double rate, double salary) 27
11 { 28 // return base salary
12 // explicit call to superclass CommissionEmployee constructor 29 public double getBaseSalary()
13 super(first, last, ssn, sales, rate); 30
14 31 return baseSalary;
15 setBaseSalary(salary); // validate and store base salary 32 } // end method getBaseSalary
16 } // end six-argument BasePlusCommissionEmployee constructor 33
17 34 // calculate earnings
35 @verride // indicates that this method overrides a superclass method
Fig. 9.8 | private superclass members cannot be accessed in a subclass. (Part | of :: ?“bhc double earnings()
5) 38 // not allowed: commissionRate and grossSales private in superclass
39 return baseSalary + (commissionRate * grossSales);
40 } // end method earnings

Fig. 9.8 | private superclass members cannot be accessed in a subclass. (Part 2 of

5.)

4
41 . . . BasePTusCommissionEmployee.java:39: commissionRate has private access in
42 // return String representation of BasePlusCommissionEmployee CommissionEmpTloyee
43 @Override // indicates that this method overrides a superclass method return baseSalary + (commissionRate * grossSales);
44 public String toString(Q A
45 { BasePTusCommissionEmployee.java:39: grossSales has private access in
46 // not allowed: attempts to access private superclass members CommissionEmpTloyee
47 return String.format(return baseSalary + (commissionRate * grossSales);
48 "%s: %S %s\n%s: %s\n%s: %.2f\n%s: %.2f\n%s: %.2f", A
49 "base-salaried commission employee”, firstName, lastName, BasePTusCommissionEmployee.java:49: firstName has private access in
50 "social security number", socialSecurityNumber, Comm1ss1onEmp1oyee X L .
51 "gross sales", grossSales, "commission rate", commissionRate, base-salaried commission employee”, r‘ rstName, lastName,
52 "base salary", baseSalar 5 L . 3 q
53 1 // end method th;ring v s BasePTusCommissionEmployee.java:49: lastName has private access in

CommissionEmpTloyee

54 '} // end class BasePlusCommissionEmployee "base-salaried commission employee", firstName, lastName,
A

Fig. 9.8 | private superclass members cannot be accessed in a subclass. (Part 3 of BasePlusCommissionEmployee.java:50: socialSecurityNumber has private access
5.) in CommissionEmployee
"social security number", socialSecurityNumber,
A

BasePTusCommissionEmployee.java:51: grossSales has private access in
CommissionEmpTloyee
"gross sales", grossSales, "commission rate", commissionRate,
A

Fig. 9.8 \ private superclass members cannot be accessed in a subclass. (Part 4 of

5)

43

BasePlusCommissionEmployee.java:51: commissionRate has private access in
CommissionEmpTloyee
"gross sales", grossSales, "commission rate", commissionRate,
A

7 errors

Fig. 9.8 |pﬁvuemmmb$nmeECNWNMamm%dmawMM$(%m5d
5.)

45

Case Study Part 3: Creating a CommissionEmployee—
BasePlusCommissionEmployee Inheritance Hierarchy (Cont.)

m Each subclass constructor must implicitly or explicitly call its
superclass constructor to initialize the instance variables
inherited from the superclass.

= Superclass constructor call syntax—keyword super, followed by a set
of parentheses containing the superclass constructor arguments.

= Must be the first statement in the subclass constructor’s body.

m If the subclass constructor did not invoke the superclass’s
constructor explicitly, Java would attempt to invoke the
superclass’s no-argument or default constructor.
= Class CommissionEmployee does not have such a constructor, so the

compiler would issue an error.

m You can explicitly use super() to call the superclass’s no-
argument or default constructor, but this is rarely done.

46

Case Study Part 4: CommissionEmployee—-
BasePlusCommissionEmployee Inheritance Hierarchy Using
protected Instance Variables

m To enable a subclass to directly access superclass instance
variables, we can declare those members as protected in the
superclass.

m New CommissionEmployee class modified only lines 6—10 of
Fig. 9.4 as follows:
protected String firstName;
protected String lastName;
protected String socialSecurityNumber;
protected double grossSales;
protected double commissionRate;

m With protected instance variables, the subclass gets access
to the instance variables, but classes that are not subclasses
and classes that are not in the same package cannot access
these variables directly.

47

I // Fig. 9.9: BasePlusCommissionEmployee.java

2 // BasePlusCommissionEmpTloyee inherits protected instance

3 // variables from CommissionEmployee.

4

5 public class BasePlusCommissionEmployee extends CommissionEmployee
6 {

7 private double baseSalary; // base salary per week

8

9 // six-argument constructor

10 public BasePlusCommissionEmployee(String first, String last,
1 String ssn, double sales, double rate, double salary)

12 {

13 super(first, last, ssn, sales, rate);

14 setBaseSalary(salary); // validate and store base salary
15 } // end six-argument BasePlusCommissionEmployee constructor

Fig. 9.9 \ BasePTusCommissionEmployee inherits protected instance variables
from CommissionEmployee. (Part | of 3.)

48

17 // set base salary

18 public void setBaseSalary(double salary)
19 {

20 if (salary >= 0.0)

21 baseSalary = salary;

22 else

23 throw new I1legalArgumentException(
24 "Base salary must be >= 0.0");
25 } // end method setBaseSalary

26

27 // return base salary

28 public double getBaseSalary()

29 {

30 return baseSalary;

31 } // end method getBaseSalary

32

33 // calculate earnings

34 @verride // indicates that this method overrides a superclass method
35 public double earnings()

36 {

37 return baseSalary + (commissionRate * grossSales);
38 } // end method earnings

Fig. 9.9 | BasePlusCommissionEmployee inherits protected instance variables
from CommissionEmployee. (Part 2 of 3.)

49

39

40 // return String representation of BasePlusCommissionEmployee

41 @verride // indicates that this method overrides a superclass method
42 public String toString()

43 {

44 return String.format(

45 "%s: %s %s\n%s: %s\n%s: %.2f\n%s: %.2f\n%s: %.2f",

46 "base-salaried commission employee”, firstName, lastName,

47 "social security number"”, socialSecurityNumber,

48 "gross sales", grossSales, "commission rate", commissionRate,
49 "base salary", baseSalary);

50 } // end method toString

51 } // end class BasePlusCommissionEmployee

Fig. 9.9 | BasePlusCommissionEmployee inherits protected instance variables
from CommissionEmployee. (Part 3 of 3.)

50

Case Study Part 4: CommissionEmployee—BasePlus-
CommissionEmployee Inheritance Hierarchy Using
protected Instance Variables (Cont.)

m Class BasePlusCommissionEmployee (Fig. 9.9) extends
the new version of class CommissionEmployee with
protected instance variables.
= These variables are now protected members of

BasePTusCommissionEmployee.

m If another class extends this version of class
BasePlusCommissionEmployee, the new subclass also
can access the protected members.

m The source code in Fig. 9.9 (51 lines) is considerably shorter
than that in Fig. 9.6 (128 lines)

= Most of the functionality is now inherited from
CommissionEmployee

= There is now only one copy of the functionality.

= Code is easier to maintain, modify and debug—the code related to a
commission employee exists only in class CommissionEmployee.

51

Case Study Part 4: CommissionEmployee—BasePlus-
CommissionEmployee Inheritance Hierarchy Using
protected Instance Variables (Cont.)

m Inheriting protected instance variables slightly
increases performance, because we can directly access
the variables in the subclass without incurring the
overhead of a set or get method call.

m In most cases, it’s better to use private instance
variables to encourage proper software engineering, and
leave code optimization issues to the compiler.
® Code will be easier to maintain, modify and debug.

52

Case Study Part 4: CommissionEmployee—BasePlus-
CommissionEmployee Inheritance Hierarchy Using
protected Instance Variables (Cont.)

m Using protected instance variables creates several potential
problems.

m The subclass object can set an inherited variable’s value directly

<~ Error-Prevention Tip 9.2
% When possible, do not include protected instance
variables in a superclass. Instead, include non-private
methods that access private instance variables. This
will help ensure that objects of the class maintain consis-

without using a set method. tent states.
= A subclass object can assign an invalid value to the variable
m Subclass methods are more likely to be written so that they
depend on the superclass’s data implementation.
= Subclasses should depend only on the superclass services and not on the
superclass data implementation.
m We may need to modify all the subclasses of the superclass if the
superclass implementation changes.
® You should be able to change the superclass implementation while still
providing the same services to the subclasses.
53 54
Case Study Part 5: CommissionEmployee—BasePlus-
CommissionEmployee Inheritance Hierarchy Using private
Instance Variables => BEST DESIGN 2
24 // set first name
1 // Fig. 9.10: CommissionEmployee.java 25 public void setFirstName(String first)
2 // CommissionEmployee class uses methods to manipulate its 26 {
3 // private instance variables. ! ! 27 firstName = first; // should validate
4 public class CommissionEmployee instance variables are declared as 28 } // end method setFirstName
5 { - i 29
6 private String firstName; prlve?te anfj pUbllc methods for 30 // return first name
7 private String TastName; manipulating these are provided. 31 public String getFirstName()
8 private String socialSecurityNumber; 32 {
9 private double grossSales; // gross weekly sales 33 return firstName;
10 private double commissionRate; // commission percentage 34 } // end method getFirstName
1 35
12 // five-argument constructor 36 // set last name
13 public CommissionEmployee(String first, String last, String ssn, 37 public void setLastName(String last)
14 double sales, double rate) 38
15 { 39 la5stName = last; // should validate
16 // implicit call to Object constructor occurs here 40 } // end method setLastName
17 firstName = first; 41
18 TastName = last;
19 socialSecurityNumber = ssn; . P . . .
20 cetGrossSales(sales); // validate and store gross sales flg. 9.10 \ CommissionEmployee class uses methods to manipulate its private
21 setCommissionRate(rate); // validate and store commission rate instance variables. (Part 2 of 6.)
22 } // end five-argument CommissionEmployee constructor

Fig. 9.10 | CommissionEmployee class uses methods to manipulate its private
instance variables. (Part | of 6.)

55

56

42 // return last name

43 public String getLastName()

44 {

45 return TastName;

46 } // end method getLastName

47

48 // set social security number

49 public void setSocialSecurityNumber(String ssn)
50

51 socialSecurityNumber = ssn; // should validate
52 } // end method setSocialSecurityNumber

53

54 // return social security number

55 public String getSocialSecurityNumber()

56 {

57 return socialSecurityNumber;

58 } // end method getSocialSecurityNumber

59

Fig. 9.10 | CommissionEmployee class uses methods to manipulate its private
instance variables. (Part 3 of 6.)

60
61
62
63
64
65
66
67
68
69
70
71
72
3
74
75

// set gross sales amount
public void setGrossSales(double sales)

if (sales >= 0.0)
grossSales = sales;
else
throw new ITlegalArgumentException(
"Gross sales must be >= 0.0");
} // end method setGrossSales

// return gross sales amount
public double getGrossSales()
{

return grossSales;
} // end method getGrossSales

Fig. 9.10 \ CommissionEmployee class uses methods to manipulate its private
instance variables. (Part 4 of 6.)

57 58
76 // set commission rate 98 // return String representation of CommissionEmployee object
7 public void setCommissionRate(double rate) 929 @verride // indicates that this method overrides a superclass method
78 { 100 public String toString()
79 if (rate > 0.0 & rate < 1.0) 101 {
80 commissionRate = rate; 102 return String.format("%s: %s %s\n%s: %s\n%s: %.2f\n%s: %.2f"
81 else 103 "commission employee”, getFirstName(), getLastName(Q),
82 throw new I1legalArgumentException(104 "social security number", getSocialSecurityNumber(),
83 "Commission rate must be > 0.0 and < 1.0"); 105 "gross sales", getGrossSales(),
84 } // end method setCommissionRate 106 "commission rate"”, getCommissionRate());
85 107 } // end method toString
86 // return commission rate 108 1} // end class CommissionEmployee
87 public double getCommissionRate()
88 L Fig. 9.10 | CommissionEmployee class uses methods to manipulate its private
89 return commissionRate; .
9 } // end method getCommissionRate instance variables. (Part 6 of 6.)
91
92 // calculate earnings
93 public double earnings()
94 {
95 return getCommissionRate() * getGrossSales();
96 } // end method earnings
97
Fig. 9.10 | CommissionEmployee class uses methods to manipulate its private
instance variables. (Part 5 of 6.)
59 60

Case Study Part 5: CommissionEmployee—BasePlus-
CommissionEmployee Inheritance Hierarchy Using private
Instance Variables (Cont.)

m CommissionEmployee methodsearningsand
toString use the class’s get methods to obtain the values
of its instance variables.
= |f we decide to change the internal representation of the data (e.g.,

variable names) only the bodies of the get and set methods that
directly manipulate the instance variables will need to change.

= These changes occur solely within the superclass-—no changes to the
subclass are needed.

® |ocalizing the effects of changes like this is a good software
engineering practice.
m Subclass BasePlusCommissionEmployee inherits
CommissionEmployee’ s non-private methods and can
access the private superclass members via those methods.

61

Case Study Part 5: CommissionEmployee—BasePlus-
CommissionEmployee Inheritance Hierarchy Using
private Instance Variables (Cont.)

1 // Fig. 9.11: BasePlusCommissionEmpTloyee.java

2 // BasePlusCommissionEmployee class inherits from CommissionEmployee
3 // and accesses the superclass’s private data via inherited

4 // public methods.

5

6 public class BasePlusCommissionEmployee extends CommissionEmployee
7

8 private double baseSalary; // base salary per week

9

10 // six-argument constructor

11 public BasePlusCommissionEmployee(String first, String last,
12 String ssn, double sales, double rate, double salary)

13 {

14 super(first, last, ssn, sales, rate);

15 setBaseSalary(salary); // validate and store base salary
16 } // end six-argument BasePlusCommissionEmployee constructor
17

Fig. 9.11 | BasePTusCommissionEmployee class inherits from
CommissionEmployee and accesses the superclass’s private data via inherited
public methods. (Part | of 3.)

62

18 // set base salary

19 public void setBaseSalary(double salary)

20 {

21 if (salary >= 0.0)

22 baseSalary = salary;

23 else Method earnings overrides class
24 throw new ITlegalArgumentException ’ .

25 hace sa'lar‘?/ friiariodae);(the superclass’s earnings method.
26 } // end method setBaseSalary /

27

28 // return base salary

:g ;zubhc double getBaseSalary() calls CommissionEmployee’ s
31 return baseSalary; earnings method with

32 } // end method getBaseSalary q

33 super.earnings ()

34 // calculate earnings

35 @Override // indicates that this method overrides a Tlass method

36 public double earnings(

37 {

38 return getBaseSalary() + super.earnings();

39 } // end method earnings

Good software engineering practice: If a method performs all or some of the
actions needed by another method, call that method rather than duplicate its code.

63

40

41 // return String representation of BasePlusCommissionEmployee

42 @verride // indicates that this method overrides a superclass method
43 public String toString()

44 {

45 return String.format("%s %s\n%s: %.2f", "base-salaried",

46 super.toString(), "base salary"”, getBaseSalary());

47 } // end method toString

48 1} // end cJass BasePlusCommissionEmployee

Fig. 9.11 ‘ Bas¢PTusCommissionEmployee class inherits from

CommissionEmplgyee and accesses the superclass’s private data via inherited

pubTic methods. [Part 3 of 3.)
BasePlusCommissionEmployee’s toString method
overrides class CommissionEmployee’s toString method

The new version creates part of the String representation by
calling CommissionEmployee’s toString method with the
expression super.toString().

64

Constructors in Subclasses

m Instantiating a subclass object begins a chain of constructor
calls
= The subclass constructor, before performing its own tasks, invokes its
direct superclass’s constructor
m If the superclass is derived from another class, the superclass
constructor invokes the constructor of the next class up the
hierarchy, and so on.

m The last constructor called in the chain is always class
Object’s constructor.

m Original subclass constructor’s body finishes executing last.

m Each superclass’s constructor manipulates the superclass
instance variables that the subclass object inherits.

65

UML Inheritance Diagrams

A class hierarchy in UML notation

Person”

>

An Employee is a Person and so forth; hence
the arrows point up.

66

UML Inheritance Diagrams

m Some details Person
of UML class

hierarchy
from DFEViOUS + setName(String newName): void
+ getName(): String

figure + writeOutput(): void
+ hasSameName(Person otherPerson)): boolean

|

- name: String

Student

studentNumber: int

reset(String newName, int newStudentNumber): void
getStudentNumber(): int

setStudentNumber(int newStudentNumber): void
writeOutput(): void

equals(Student otherStudent): boolean

+ 4+ + + +

67

Acknowledgments

m The course material used to prepare this presentation is mostly
taken/adopted from the list below:
® Java - How to Program, Paul Deitel and Harvey Deitel, Prentice Hall, 2012

® Java - An Introduction to Problem Solving and Programming, Walter
Savitch, Pearson, 2012

68

