
‹#›

BBM 102 – Introduction to 
Programming II
Spring 2020

Instructors: Sevil ŞEN, Selman BOZKIR, Cemil ZALLUHOĞLU
TAs: Nebi YILMAZ, Bahar GEZİCİ

Introduction to Java



‹#›

Today

 Introduction

About the class

Organisation of this course

 Introduction to Java

Java as a Platform

Your First Java Program

Basic Programming Elements



‹#›

Today

 Introduction

About the class

Organisation of this course

 Introduction to Java

Java as a Platform

Your First Java Program

Basic Programming Elements



‹#›

About the course

 This course will help students understand object-oriented 
programming principles and apply them in the construction of 
Java programs.

The course is structured around basic topics such as classes, objects, 
encapsulation, inheritance, polymorphism, abstract classes and interfaces 
and exception handling.

 BBM 104 Introduction to Programming Practicum: The 
students will gain hand-on experience via a set of programming 
assignments supplied as complementary.

 Requirements: You must know basic programming (i.e. 
BBM101).



‹#›

BBM 102-104 Team

Instructors

Selman BOZKIR
(Section 2)

TAs

 Office hours: See Web page

Cemil ZALLUHOĞLU
(Section 1)

Sevil ŞEN
(Section 3)

Nebi YILMAZ Bahar GEZİCİ



‹#›

Reference Book

 Java - An Introduction to Problem Solving and Programming, 
Walter Savitch, Pearson, 2012

 Java - How to Program, Paul Deitel and Harvey Deitel, 
Prentice Hall, 2012



‹#›

Communication

 The course web page will be updated regularly throughout the 
semester with lecture notes, programming assignments, 
announcements and important deadlines. 

http://web.cs.hacettepe.edu.tr/~bbm102

http://web.cs.hacettepe.edu.tr/~bbm102


‹#›

Getting Help

 Office hours

See the web page for details

 BBM 104 Introduction to Programming Practicum
Course related recitations, practice with example codes, etc.

 Communication

Announcements and course related discussions through

BBM 102: https://piazza.com/hacettepe.edu.tr/spring2020/bbm102

BBM 104: https://piazza.com/hacettepe.edu.tr/spring2020/bbm104

https://piazza.com/hacettepe.edu.tr/spring2020/bbm102
https://piazza.com/hacettepe.edu.tr/spring2020/bbm102
https://piazza.com/hacettepe.edu.tr/spring2020/bbm102
https://piazza.com/hacettepe.edu.tr/spring2020/bbm104


‹#›

Course Work and Grading

 2 midterm exams (30 + 30 = 60%)
Closed book and notes

On week 6 (April 1st )and week 11
(May 6th), respectively.

 Final exam (40%)
Closed book

To be scheduled by the registrar

 Class Attendance
Attempting to create false attendance (e.g., signing in the attendance list 

on behalf of someone else) will be punished.

If a student does not attend 4 courses during the semester, that student
will fail because of absenteeism



‹#›

Course Overview

Week Date Title

1 26-Feb Introduction to Java

2 4-Feb Object-Oriented Design

3 11-Mar Classes and Objects in Java

4 18-Mar Encapsulation

5 25-Mar Inheritance

6 1-Apr Review (Midterm Exam 1)

7 8-Apr Polymorphism

8 15-Apr Exceptions

9 22-Apr Collections

10 29-Apr Generics

11 6-May Review (Midterm Exam 2)

12 13-May
Data Structures (Stack, Queue, 

Priority Queue)

13 20-May Data Structures (Sets, Maps)

14 27-May Algorithmic complexity



‹#›

BBM 104 Introduction to Programming Practicum

 Programming assignments (PAs)  
Four assignments throughout the semester.  

Each assignment has a well-defined goal such as solving a specific problem.  

You must work alone on all assignments stated unless otherwise.    

 Quizes
 Five quizes throughout this semester

 No extension

 On Lab Assignment
 One lab assignment (this will be done in the lab)

 Important Dates
See the course web page for schedule.



‹#›

Policies

 Work groups

You must work alone on all assignments stated unless otherwise

 Submission
Assignments due at 23:59 (no extensions!)

Electronic submissions (no exceptions!)

 Lateness penalties
Get penalised 10% per day

No late submission is accepted 3 days after due date



‹#›

Cheating
 What is cheating?  

Sharing code: by copying, retyping, looking at, or supplying a file  

Coaching: helping your friend to write a programming assignment, line by line  

Copying code from previous course or from elsewhere on WWW 

 What is NOT cheating?  

Explaining how to use systems or tools  

Helping others with high-level design issues   



‹#›

Cheating

 Penalty for cheating:  

Removal from course with failing grade   

 Detection of cheating:  
We do check: Our tools for doing this are much better than most cheaters 

think! 



‹#›

Today

 Introduction

About the class

Organization of this course

 Introduction to Java

Java as a Platform

Your First Java Program

Basic Programming Elements



‹#›

What is Java?

 An island of Indonesia lying between the Indian Ocean and the 
Java Sea.



‹#›

What is Java?

 Informal. Brewed coffee. 



‹#›

What is Java?

 A technology which is both a  programming language and a 
platform.

 Developed by Sun Microsystems.

 First public version was released in 1995.



‹#›

Software Development with Java

 All source code is first written in plain text files ending with the “.java” 
extension.

 Those source files are then compiled into “.class” files by the javac compiler.

 A “.class” file does not contain code that is native to your processor; it instead 
contains bytecodes — the machine language of the Java Virtual Machine (Java 
VM).

 The java launcher tool then runs your application with an instance of the Java 
Virtual Machine, i.e. your code is run by JVM.

http://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html



‹#›

Platform Independence: Write Once Run 
Anywhere
 Because the Java VM is available on many different operating systems, the 

same .class files are capable of running on Microsoft Windows, the Solaris™ 
Operating System (Solaris OS), Linux, or Mac OS.

http://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html



‹#›

The Java Platform

 A platform is the hardware or software environment in which a program runs.

 The Java platform has two components:

The Java Virtual Machine: It's the base for the Java platform and is ported onto 
various hardware-based platforms

The Java Application Programming Interface (API): It is a large collection of ready-
made software components that provide many useful capabilities.

 As a platform-independent environment, the Java platform can be a bit 
slower than native code.

However, advances in compiler and virtual machine technologies are bringing performance 
close to that of native code without threatening portability.

http://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html



‹#›

Your First Java Program
HelloWorld.java

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello world!");

}

}

$ javac HelloWorld.java  Compile 

$ java HelloWorld       Run

Hello world!



‹#›

Basic Programming Elements

 Variables, Types and Expressions

 Flow of Control

Branching

Loops



‹#›

Variables

 Variables in a program are used to store data such as numbers 
and letters. They can be thought of as containers of a sort. 

 You should choose variable names that are helpful. Every 
variable in a Java program must be declared before it is used for 
the first time. 

 A variable declaration consists of a type name, followed by a list 
of variable names separated by commas. The declaration ends 
with a semicolon. 

int styleNumber, numberOfChecks, numberOfDeposits;

double amount, interestRate;

char answer;

Syntax:

data_type variable_name [ = initial_value ];



‹#›

Primitive Data Types

Type Name Kind of Value Memory Used Range of Values 

byte Integer 1 byte -128 to 127 

short Integer 2 bytes -32,768 to 32,767 

int Integer 4 bytes -2,147,483,648 to 2,147,483,647 

long Integer 8 bytes 
-9,223,372,036,8547,75,808 to 

9,223,372,036,854,775,807 

float Floating-point 4 bytes ±3.40282347 × 10+38 to ±1.40239846 × 10−45 

double Floating-point 8 bytes 
±1.79769313486231570 × 10+308 to 

±4.94065645841246544 × 10−324 

char 
Single character 

(Unicode) 
2 bytes All Unicode values from 0 to 65,535 

boolean 1 bit True or false  

There are also Class Data Types which we will cover later.



‹#›

Identifiers

 The technical term for a name in a programming language, such as 
the name of a variable, is an identifier. 

 An identifier can contain only letters, digits 0 through 9, and the 
underscore character “_”.

 The first character in an identifier cannot be a digit.

 There is no limit to the length of an identifier.

 Java is case sensitive (e.g., personName and personname are two 
different variables).

Identifier Valid?

outputStream

4you

my.work

FirstName

_tmp

public

public is a
reserved word.

Yes

No

No

Yes

Yes

No



‹#›

Java Reserved Words

abstract assert boolean break byte case

catch char class const continue default

double do else enum extends FALSE

final finally float for goto if

implements import instanceof int interface long

native new null package private protected

public return short static strictfp super

switch synchronized this throw throws transient

TRUE try void volatile while



‹#›

Naming Conventions

 Class types begin with an uppercase letter (e.g. String).

 Primitive types begin with a lowercase letter (e.g. float).

 Variables of both class and primitive types begin with a 
lowercase letters (e.g. firstName, classAverage).

 Multiword names are "punctuated" using uppercase letters.



‹#›

Assignment Statements

 An assignment statement is used to assign a value to a variable.

 The "equal sign" is called the assignment operator

 Syntax:

where expression can be another variable, a literal or constant, 
or something to be evaluated by using operators.

amount = 100;

interestRate = 0.12;

answer = ‘Y’;

fullName = firstName + “ “ + lastName;

variable_name = expression;



‹#›

Initializing Variables

 A variable that has been declared, but no yet given a value is 

said to be uninitialized.

 Uninitialized class variables have the value null.

 Uninitialized primitive variables may have a default value.

 It's good practice not to rely on a default value.

Data Type Default Value

byte 0

short 0

int 0

long 0L

float 0.0f

double 0.0d

char '\u0000'

String (or any 

object) 
null

boolean FALSE



‹#›

Constants

 Literal expressions such as 2, 3.7, or 'y' are called 

constants.

 Integer constants can be preceded by a + or - sign, but 

cannot contain commas.

 Floating-point constants can be written with digits after a 

decimal point or using e notation.

 765000000.0 can be written as 7.65e8

 0.000483 can be written as 4.83e-4



‹#›

Imprecision in Floating Point Numbers

 Floating-point numbers often are only approximations 

since they are stored with a finite number of bits.

 Hence 1.0/3.0 is slightly less than 1/3.

 1.0/3.0 + 1.0/3.0 + 1.0/3.0 is less than 1.



‹#›

Named Constants

 Java provides a mechanism that allows you to define a variable, 
initialise it, and moreover fix the variable’s value so that it 
cannot be changed. 

public static final Type Variable = Constant;

 The convention for naming constants is to use all uppercase 
letters, with an underscore symbol “_” between words. 

public static final double PI = 3.14159;

public static final int DAYS_PER_WEEK = 7;

…

float area = PI * r * r ;

int daysInYear = 52 * DAYS_PER_WEEK ; 



‹#›

Assignment Compatibility

 Java is strongly typed.

 A value of one type can be assigned to a variable of any type further to 

the right (not to the left):

byte  short  int  long  float  double

 You can assign a value of type char to a variable of type int.



‹#›

Type Conversion (Casting)

 Implicit conversion

double doubleVariable = 5; // 5.0

int intVariable = 5; // 5

doubleVariable = intVariable; // 5.0

double doubleVariable = 5.0;

int intVariable = doubleVariable ; // Illegal

int intVariable = (int) doubleVariable ; // Legal, 5

 Explicit conversion



‹#›

Operators and Precedence

 Precedence
First: The unary operators: plus (+), minus(-), not (!), increment (++) and 

decrement (--)

Second: The binary arithmetic operators: multiplication (*), integer division (/) 
and modulus (%)

Third: The binary arithmetic operators: addition (+) and subtraction (-)

 When binary operators have equal precedence, the operator on 
the left acts before the operator(s) on the right.

 When unary operators have equal precedence, the operator on 
the right acts before the operation(s) on the left.

 Parenthesis can change the precedence.



‹#›

Operators and Precedence - Example

Figure from “Java - An Introduction to Problem Solving and Programming, Walter Savitch, Pearson, 

2012”



‹#›

Specialised Assignment Operators

 You can precede the simple assignment operator (=) with an 
arithmetic operator (+, -, *, /, %) to produce a kind of special-
purpose assignment operator.

amount += 5; equals to amount = amount + 5;

amount *= 5; equals to amount = amount * 5; 



‹#›

Increment / Decrement Operators

 Used to increase (or decrease) the value of a variable 
by 1

 The increment operator

 count++  Use the value of count and then increase it.

 ++count  Increase the value of count and then use it.

 The decrement operator

 count--  Use the value of count and then decrease it.

 --count  Decrease the value of count and then use it.



‹#›

Increment / Decrement Operators - Example

 The increment operator (prefix form)

 The increment operator (postfix form)

int n = 3;

int m = 4;

int result = n * (++m);  // result = 15

int n = 3;

int m = 4;

int result = n * (m++); // result = 12



‹#›

Arrays

 Array is a sequence of values.

 Array indices begin at zero.

 Defining Arrays

 Initializing Arrays

Base_Type[] Array_Name = new Base_Type[Length]; 

int[] numbers = new int[100]; // or, 

int[] numbers;

numbers = new int[100]; 

double[] reading = {3.3, 15.8, 9.7}; // or, 

double[] reading = new double[3];

reading[0] = 3.3; 

reading[1] = 15.8; 

reading[2] = 9.7; 



‹#›

Strings

 A value of type String is a 

Sequence (Array) of characters treated as a single item

Character positions start with 0

 Can be declared in three ways:

String greeting;

greeting = "Hello World!”;

String greeting = "Hello World!”;

String greeting = new String("Hello World!”);

Figure from “Java - An Introduction to Problem Solving and Programming, Walter Savitch, Pearson, 

2012”



‹#›

Concatenating Strings

 You can connect—or join or paste—two strings together to 
obtain a larger string. This operation is called concatenation 
and is performed by using the “+” operator.

String greeting, sentence;

greeting = "Hello”;

sentence = greeting + “ my friend!”; 

System.out.println(sentence); // Hello my friend!

String solution = “The answer is ” + 42;

System.out.println(solution); // The answer is 42

// Java converts the number constant 42 to the

// string constant "42" and then concatenates the

// two strings 



‹#›

String Methods

 Homework: Investigate the methods given below. You will be 
responsible in the exams.

charAt (Index) length() 

compareTo(A_String) replace(OldChar, NewChar)

concat(A_String) substring(Start)

equals(Other_String) substring(Start,End)

equalsIgnoreCase(Other_String) toLowerCase() 

indexOf(A_String) toUpperCase() 

lastIndexOf(A_String) trim() 



‹#›

Boolean Type

 Java has the logical type boolean

 Type boolean has two literal constants
true

false

int number = −5;

boolean isPositive = (number > 0); // False



‹#›

Java Comparison Operators

Figure from “Java - An Introduction to Problem Solving and Programming, Walter Savitch, Pearson, 

2012”



‹#›

Java Logical Operators

Figure from “Java - An Introduction to Problem Solving and Programming, Walter Savitch, Pearson, 

2012”



‹#›

Flow of Control

 Flow of control is the order in which a program performs 

actions.

 A branching statement chooses between two or more 

possible actions.

If-else, switch statements

 A loop statement repeats an action until a stopping 

condition occurs.

For, while, do-while loops



‹#›

Basic if Statement

 Syntax

if (Expression)    

Action 

 If the Expression is true then execute Action

 Action is either a single statement or a group of statements 
within braces

if (value2 < value1) { // Rearrange numbers so 

int tmp = value1; // value2 variable should 

value1 = value2; // hold the bigger value

value2 = tmp;

}



‹#›

if-else Statement

 Syntax
if (Expression)

Action1

else

Action2

 If Expression is true then execute Action1 otherwise execute 
Action2

 The actions are either a single statement or a list of statements 
within braces

int maximum;

if (value1 < value2) {   // is value2 larger?

maximum = value2;     // yes: value2 is larger

}

else { // (value1 >= value2)

maximum = value1;     // no: value2 is not larger

}



‹#›

if-else-if Statement

 If statements can be nested (also called as multi-way, multi-
branch if statement)

if (a == ‘0’)

System.out.println (“zero”);

else if (a == ‘1’)

System.out.println (“one”);

else if (a == ‘2’)

System.out.println (“two”);

else if (a == ‘3’)

System.out.println (“three”);

else if (a == ‘4’)

System.out.println (“four”);

else

System.out.println (“five+”);



‹#›

Switch Statement

 Switch statement can be used instead of multi-way if 

statement.

 Syntax
switch(controlling_expression) {

case expression1:

action1;

break;

case expression2:

action2;

break;

…

default:

actionN;

}

 Every case ends with break statement.



‹#›

Switch Statement

 Switch statements are more readable than nested if statements

switch (a) {

case ‘0’:

System.out.println (“zero”); break;

case ‘1’:

System.out.println (“one”); break;

case ‘2’:

System.out.println (“two”); break;

case ‘3’:

System.out.println (“three”); break;

case ‘4’:

System.out.println (“four”); break;

default:

System.out.println (“five+”); break;

}



‹#›

The Conditional (Ternary) Operator

 The ? and : together are called the conditional operator or 

ternary operator.

can be written as:

if (n1 > n2)

max = n1;

else

max = n2;

max = (n1 > n2) ? n1 : n2;



‹#›

for Loops

 The for loop is a pretest loop statement. It has the 

following form.

for (initialisation; boolean-expression; increment){

nested-statements

}

 initialisation is evaluated first. 

 boolean-expression is tested before each iteration of the 

loop.

 increment is evaluated at the end of each iteration. 

 nested-statements is a sequence of statements. If there is 

only one statement then the braces may be omitted



‹#›

Varying Control Variable

 for ( int i = 1; i <= 100; i++ )

 from 1 to 100 in increments of 1

 for ( int i = 100; i >= 1; i-- )

 from 100 to 1 in increments of -1

 for ( int i = 7; i <= 77; i += 7 )

 from 7 to 77 in increments of 7

 for ( int i = 20; i >= 2; i -= 2 )

 from 20 to 2 in decrements of 2



‹#›

For Loop Example

String[] classList = {"Jean", "Claude", "Van", 

"Damme"};

for (int i=0; i<classList.length; i++) {

System.out.println(classList[i]);

}

for (String name : classList) {

System.out.println(name);

}

Jean

Claude

Van

Damme

Jean

Claude

Van

Damme



‹#›

While Loop

 The while loop is a pretest loop statement. It has the 

following form.

while (boolean-expression) {

nested-statements

}

 boolean-expression is an expression that can be true or 

false. 

 nested-statements is a sequence of statements. If there is 

only one statement then the braces can be omitted. 

 The boolean expression is tested before each iteration of 

the loop. The loop terminates when it is false. 



‹#›

While Loop Example

int[] numbers = { 1, 5, 3, 4, 2 };

int i=0, key = 3;

boolean found = false;

while (!found){

if (numbers[i++] == key)

found=true;

}

if (found)

System.out.println("Key is found in the array");

else

System.out.println("Key is NOT found!");

key = 33;

Is there a problem here?

Let’s look for something that does not exist.



‹#›

While Loop Example

int[] numbers = { 1, 5, 3, 4, 2 };

int i=0, key = 3;

boolean found = false;

while (!found && i<numbers.length){

if (numbers[i++] == key)

found=true;

}

if (found)

System.out.println("Key is found in the array");

else

System.out.println("Key is NOT found!");

key = 33;

Figure from “Java - An Introduction to Problem Solving and Programming, Walter Savitch, Pearson, 

2012”

Make sure that the 

loop ends somehow.



‹#›

Do-While Loop

 The do-while loop is a post-test loop statement. It has the 

following form.

do {

nested-statements

} while (boolean-expression);

 nested-statements is a sequence of statements. If there is 

only one statement then the braces may be omitted. 

 boolean-expression is an expression that can be true or 

false. 

 The boolean expression is tested after each iteration of the 

loop. The loop terminates when it is false. 



‹#›

Do-While Example

Scanner scan = new Scanner(System.in);

int myNumber;

do {

System.out.println(

"Enter a number between 0 and 100: ");

myNumber = scan.nextInt();

} while (!(myNumber >= 0 && myNumber <= 100));

System.out.println("You entered a valid number");



‹#›

Break Statement

 The break statement is used in loop (for, while, and do-

while) statements and switch statements to terminate 

execution of the statement. A break statement has the 

following form. 

break;

 After a break statement is executed, execution proceeds to 

the statement that follows the enclosing loop or switch 

statement. 

 Use break statements sparingly (if ever).



‹#›

Continue Statement

 A continue statement 

 Ends current loop iteration 

 Begins the next one

 Use of continue statement is not recommended

 Introduce unneeded complications 



‹#›

Breaking a Loop

int[] numbers = { 1, 5, 3, 4, 2 };

int i = 0, key = 3;

while (i < numbers.length) {

if (numbers[i] == key)

break;

i++;

}

if (i < numbers.length)

System.out.println("Key is found in the array");

else

System.out.println("Key is NOT!");



‹#›

Summary

 So far, it should be fairly easy to follow for those who has basic 
programming skills / who has taken BBM101.

 We will continue with objects next week.

 In the mean time, here is a good starting point to Java:

http://docs.oracle.com/javase/tutorial/index.html

 Also check out these notes by Oğuz Aslantürk in Turkish:

http://web.cs.hacettepe.edu.tr/~bbm102/misc/java_notes_by_o
a.pdf



‹#›

Acknowledgments

 The course material used to prepare this presentation is mostly 
taken/adopted from the list below:

Java - An Introduction to Problem Solving and Programming, Walter 
Savitch, Pearson, 2012.

Java tutorials
http://docs.oracle.com/javase/tutorial/

Aaron Bloomfield, CS101, University of Virginia.

http://docs.oracle.com/javase/tutorial/

