BBM 201
Data structures

Lecture 11

Trees

—C

2017-2018 Fall

5505z

0 P0.

02207 oolIOG.omeewammu ===
O o 08985 -005-0°58 02355 it T
555

o

~9z0> =

%0 0oy

0a09_ Z0%

ook
at that treel!

dad,

Dad,

S

§2

2055899 50--295-202%5505005>

010110199

Vviotoljo !

losoill
1010
10

00010

KTH
°0

10
"o

'
1

1010t
10110

22
-9

[
0
0
IOI.DIO
ololottioll

1S

But

binary tree

Daniel Stori {turnoff.us}

Content

‘erminology
'he Binary Tree

he Binary Search Tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Terminology

* Trees are used to represent relationships
* Trees are hierarchical in nature

— “Parent-child” relationship exists between nodes in
tree.

— Generalized to ancestor and descendant
— Lines between the nodes are called edges

 Asubtree in a tree is any node in the tree together with all
of its descendants

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Terminology
* Only access point is the root
* All nodes, except the root, have one parent

— like the inheritance hierarchy in Java

* Traditionally trees are drawn upside down

root

leaves

Terminology

(a) Atree;
(b) a subtree of the tree in part a

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Terminology

(a) President (b)
Bart
VP VP VP
Marketing Manufacturing Personnel Homer
Director Director
Media Relations Sales Abe Mona

FIGURE 15-2 (a) An organization chart; (b) a family tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Properties of Trees and Nodes

root
* siblings: two nodes that have the /
same parent edge
* edge: the link from one node to ~ \
another Q
* path length: the number of edges that
must be traversed to get from one N
node to another siblings

path length from root to this =

node is 3

General Tree

— A general tree is a data structure in that
each node can have infinite number of
children

— A general tree cannot be empty.

Root

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Binary Tree

* A Binary tree is a data structure in that
each node has at most two nodes left and
right.

* A Binary tree can be empty.

Root

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

n -ary tree

— A generalization of a binary tree whose
nodes each can have no more than n
children.

Example: Algebraic Expressions.

a-b a-b/c (a—b)xc

(b) ()

FIGURE 15-3 Binary trees that
represent
Data Structures and Probles §olvingiwith«C#+: Wallsand Mirrors, Carrano and Henry, © 2013

Level of a Node

* Definition of the level of a node n :
—Ifnistherootof T, it is at level 1.

— If n is not the root of T, its level is 1 greater than
the level of its parent.

@ Level =1

Bob @ Level = 2

-ano and Henry, © 2013

Height of Trees

* Height of a tree T in terms of the levels of
its nodes

—If T is empty, its height is 0.

— If T is not empty, its height is equal to the
maximum level of its nodes.

@ Height of tree =3

Crom>

The Height of Trees

(a)

Height 3 Height 5 Height 7 Height 7

Binary trees with the same nodes but different heights

Depth of a Tree

* The path length from the root of the tree to
this node.

The depth of a node is its distance from the
root

a is at depth zero

/ \ e is at depth 2

The depth of a binary tree is the depth of its

deepest node
/ \ \ This tree has depth 4
g h i j k

1

Full, Complete, and Balanced
Binary Trees

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Full Binary Trees

 Definition of a full binary tree
—If T is empty, T is a full binary tree of height 0.

—If T is not empty and has height h > 0, T is a full
binary tree if its root’s subtrees are both full
binary trees of height h — 1.

— every node other than the
leaves has two children.

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Facts about Full Binary Trees

You cannot add nodes to a full binary tree without
Increasing its height.

The number of nodes that a full binary tree of height h
can haveis 2"—1.

The height of a full binary tree with n nodes is
[log,(n+1)]

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Complete Binary Trees

Every level, except possibly the last, is completely
filled, and all nodes are as far left as possible

FIGURE 15-7 A complete binary tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Full, not bina
ry
Complete ‘

or Other? @ @ D
® © 60 06

Complete
e

Full,
or

Full, A
Complete
or) @

Full, A

Complete
or (other?) (@ D
® &6 6 o

Full, A

Complete
or (other?) (@ D
® &6 6 o

Full, A
Complete >
or Other? @ D

Full, A

Complete

o@herD' D
® & ® O

“

Complete

or Other? @ D
® O ® O

* A balanced binary tree has the minimum possible
height for the leaves

ced Binary Tre ced Binary Tre C e

1]
An unbalanced binary
tree

Number of Nodes in a Binary Tree

Level Number of nodes Total number of nodes at this
at this level level and all previous levels
1 1=2° 1=2"-1
2 2 =2 3=2°-1
3 4=2° 7=2"-1
4 8 =2’ 15=2°-1
h 2h-1 2h - 1
depth: h level: h

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Traversals of a Binary Tree

« General form of recursive traversal algorithm
1. Preorder Traversal

Each node is processed before any node in either of its
subtrees

2. Inorder Traversal

Each node is processed after all nodes in its left
subtree and before any node in its right subtree

3. Postorder Traversal

Each node is processed after all nodes in both of its
subtrees

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Preorder Traversal
1. Visit the root
2. Visit the left subtree @
3. Visit the right subtree
~ »
& ® © @
~
®O0® ®
ONO ®» ©®

Algorithm TraversePreorder (n)
Process node n
if n is an internal node then
TraversePreorder(n -> leftChild)

TraversePreorder(n -> rightChild)

Inorder Traversal

1. Visit Left subtree

s Vememene S
O (32)
@) (& (1) ()
©Oe ®
ORO. (13) (15)

Algorithm TraverseInorder (n)
if n is an internal node then
TraverselInorder(n -> leftChild)
Process node n
if n is an internal node then

TraverseInorder(n -> rightChild)

Postorder Traversals
1. Visit Left subtree “ j
2. Visit Right subtree < 1

3. Visit the root -
(o) (15)
® ® © @
©Oe0 ®
®O ©® @

Algorithm TraversePostorder (n)
if n is an internal node then
TraversePostorder(n -> leftChild)
TraversePostorder(n -> rightChild)

Process node n

Traversals of a Binary Tree

(a) Preorder: 60, 20, 10, 40, 30, 50, 70 (b) Inorder: 10, 20, 30, 40, 50, 60, 70 (c) Postorder: 10, 30, 50, 40, 20, 70, 60

FIGURE 15-11 Three traversals of a

inary ir
Data Structures and Problem Solvitr?g vﬁtl¥é+§:qNalls and Mirrors, Carrano and Henry, © 2013

The 3 different types of traversal

Pre-order Traversal In-order Traversal Post-order Traversal
FBADCEGIH ABCDEFGHI ACEDBHIGF

Binary Tree Operations

Test whether a binary tree is empty.
Get the height of a binary tree.

Get the number of nodes in a binary tree.
Get the data in a binary tree’s root.
Set the data in a binary tree’s root.

Add a new node containing a given data
item to a binary tree.

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Binary Tree Operations

Remove the node containing a given data
item from a binary tree.

Remove all nodes from a binary tree.
Retrieve a specific entry in a binary tree.
Test whether a binary tree contains a
specific entry.

Traverse the nodes in a binary tree in
preorder, inorder, or postorder.

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Represention of Binary Tree ADT

A binary tree can be represented using
- Linked List
- Array

Note : Array is suitable only for full and complete binary trees

struct node

{.

void inorder(node *p)
{
if (p '= NULL)
{
inorder(p->left);
printf(p->key_value);
inorder(p->right);
}
}

void preorder(node *p)
{
if (p = NULL)
{
printf(p->key_value);
preorder(p->left);
preorder(p->right);
}
}

void postorder(node *p)
{
if (p != NULL)
{
postorder(p->left);
postorder(p->right);
printf(p->key_value);

}
}

void destroy tree(struct node *leaf)
{
if(leaf 1=0)
{
destroy_tree(leaf->left);
destroy_tree(leaf->right);
free(leaf);

}
}

The Binary Search Tree

* Binary tree is ill suited for searching a specific
item
» Binary search tree solves the problem

* Properties of each node, n

— n’s value is greater than all values in the left
subtree T,

— n’s value is less than all values in the right subtree
TR
— Both T, and T, are binary search trees.

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

The Binary Search Tree

FIGURE 15-13 A binary search tree of

nam
Data Structures and Problem Solving wa|th 8+S+: Walls and Mirrors, Carrano and Henry, © 2013

The Binary Search Tree

DR

FIGURE 15-14 Binary search trees
with the same data as in Figure 15-13

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

The Binary Search Tree

FIGURE 15-14 Binary search trees
with the same data as in Figure 15-13

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

The Binary Search Tree

DERC

Binary search trees with the same data as in Figure 15-13

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Binary Search Tree Operations

Test whether a binary search tree is empty.
Get height of a binary search tree.

Get number of nodes in a binary search
tree.

Get data in binary search tree’s root.
Insert new item into the binary search tree.

Remove given item from the binary search
tree.

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Binary Search Tree Operations

Remove all entries from a binary search tree.
Retrieve given item from a binary search tree.
Test whether a binary search tree contains a
specific entry.

Traverse items in a binary search tree in

— Preorder

— Inorder
— Postorder.

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Searching a Binary Search Tree

» Search algorithm for binary search tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

struct node *search(int key, struct node *leaf)
{
if(leaf 1=0)
{
if(key==leaf->key_value)
{

return leaf;

}

else if(key<leaf->key value)

{

return search(key, leaf->left);

}

else

{

return search(key, leaf->right);

}
}

else return O;

}

Creating a Binary Search Tree

Empty subtree where the search algorithm terminates when looking for Frank

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Efficiency of Binary Search Tree
Operations

Operation Average case Worst case

Retrieval O(log n) O(n)
Insertion O(log n) O(n)
Removal O(log n) O(n)
Traversal O(n) O(n)

The Big O for the retrieval, insertion, removal, and traversal operations of the
ADT binary search tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

