BBM 201 – DATA STRUCTURES

DEPT. OF COMPUTER ENGINEERING

TRIES

Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton University.

TODAY

- Tries
- R-way tries

R-way tries

Tries

Tries. [from retrieval, but pronounced "try"]

- Store characters in nodes (not keys).
- Each node has R children, one for each possible character.
- Store values in nodes corresponding to last characters in keys.

for now, we do not draw null links

Follow links corresponding to each character in the key.

- Search hit: node where search ends has a non-null value.
- Search miss: reach a null link or node where search ends has null value.

5

- Search hit: node where search ends has a non-null value.
- Search miss: reach a null link or node where search ends has null value.

- Search hit: node where search ends has a non-null value.
- Search miss: reach a null link or node where search ends has null value.

- Search hit: node where search ends has a non-null value.
- Search miss: reach a null link or node where search ends has null value.

Insertion into a trie

- Encounter a null link: create new node.
- Encounter the last character of the key: set value in that node.

trie

put("she", 0)

she

trie

she trie

e)

0

she sells trie S h е e 0 S

she sells trie S h е e 0 S

she sells sea trie S h е a e 0 2 S

she sells sea trie S h е a e 0 2 S S 3

Trie representation: implementation

Node. A value, plus references to R nodes.

R-way trie: implementation

```
Node * root;
put(&root, key, val, 0);
void put(Node ** x, char *key, int val, int d)
{
  if (*x == null) *x = getNode();
   if (d ==strlen(key)) { *x->value = val; return;}
  char c = key[d];
  put(&(x->next[c]), key, val, d+1);
}
•
```

R-way trie: implementation (continued)

```
Node * getNode() {
    Node * pNode = NULL;
    pNode = (Node *)malloc(sizeof(Node));
    if (pNode) {
        for (int i = 0; i < R; i++)
            pNode->next[i] = NULL;
    }
    return pNode;
}
```

R-way trie: implementation (continued)

```
int get(Node * x, char * key, int d)
{
    if (x == null) return -1; //-1 refers no match
    if (d == strlen(key)) return x->value;
    char c = key[d];
    return get(x->next[c], key, d+1);
}
```

Trie performance

Search hit. Need to examine all L characters for equality.

Search miss.

- Could have mismatch on first character.
- Typical case: examine only a few characters (sublinear).

Space. R null links at each leaf.

(but sublinear space possible if many short strings share common prefixes)

Bottom line. Fast search hit and even faster search miss, but wastes space.

String symbol table implementations cost summary

	character accesses (typical case)			
implementation	search hit	Search miss	insert	space (references)
hashing (separate chaining)	Ν	Ν	1	Ν
R-way trie	L	log r N	L	RNw

N = number of entries, L= key length, R= alphabet size, w= average key length

R-way trie.

- Method of choice for small *R*.
- Too much memory for large *R*.

Challenge. Use less memory, e.g., 65,536-way trie for Unicode!