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Tries.  [from retrieval, but pronounced "try"]
• Store characters in nodes (not keys).

• Each node has R children, one for each possible character.
• Store values in nodes corresponding to last characters in keys.
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Follow links corresponding to each character in the key.
• Search hit: node where search ends has a non-null value. 

• Search miss:  reach a null link or node where search ends has null value.
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Search in a trie
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Follow links corresponding to each character in the key.
• Search hit: node where search ends has a non-null value. 

• Search miss:  reach a null link or node where search ends has null value.
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Follow links corresponding to each character in the key.
• Search hit:  node where search ends has a non-null value.

• Search miss: reach a null link or node where search ends has null value.
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Follow links corresponding to each character in the key.
• Search hit:  node where search ends has a non-null value.

• Search miss: reach a null link or node where search ends has null value.
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Search in a trie
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Follow links corresponding to each character in the key.
• Encounter a null link:  create new node.

• Encounter the last character of the key:  set value in that node. 
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Insertion into a trie
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Trie construction demo
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Trie construction demo
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Trie construction demo
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Trie construction demo
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Trie representation:  implementation

Node. A value, plus references to R nodes.

struct Node
{

int value;
Node * next[R];

}

A child node for each character in Alphabet. 

No need to search for character, but a 

pointer reserved for each character in 

memory



#define R 256

Node * root;

put(&root, key, val, 0);  

void put(Node ** x, char *key, int val, int d)
{         

if (*x == null) *x = getNode();
if (d ==strlen(key)) { *x->value = val; return;}
char c = key[d];
put(&(x->next[c]), key, val, d+1);

}

⋮
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R-way trie:  implementation

extended ASCII



Node * getNode(){

Node * pNode = NULL;

pNode = (Node *)malloc(sizeof(Node));

if (pNode){

for (int i = 0; i < R; i++)

pNode->next[i] = NULL;

}

return pNode;

}
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R-way trie:  implementation (continued)



int get(Node * x, char * key, int d)
{

if (x == null) return -1; //-1 refers no match
if (d == strlen(key)) return x->value;
char c = key[d];
return get(x->next[c], key, d+1);

}

}

33

R-way trie:  implementation (continued)



Trie performance

Search hit.  Need to examine all L characters for equality.

Search miss.
• Could have mismatch on first character.
• Typical case:  examine only a few characters (sublinear).

Space.  R null links at each leaf.
(but sublinear space possible if many short strings share common 

prefixes)

Bottom line.  Fast search hit and even faster search miss, but wastes 
space.
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String symbol table implementations cost summary

N = number of entries, L= key length, 

R= alphabet size, w= average key length

R-way trie.
• Method of choice for small R.

• Too much memory for large R.

Challenge.  Use less memory, e.g., 65,536-way trie for Unicode!

character accesses (typical case)

implementation search hit Search miss insert
space 

(references)

hashing

(separate chaining)
N N 1 N

R-way trie L log R N L RNw


