BBM 201
DATA STRUCTURES

Lecture 5:
Stacks and Queues

2017 Fall

Stacks

- A list on which insertion and deletion can be performed.
- Based on Last-in-First-out (LIFO)

- Stacks are used for a number of applications:
- Converting a decimal number into binary
- Program execution
- Parsing
- Evaluating postfix expressions
- Towers of Hanoi

Stacks

A stack is an ordered lists in which insertions and deletions are made at
one end called the top.

Stacks

top

top

> 0 O

top

top

Towers of Hanoi

Object of the game is to move all the disks (animals) over to Tower 3.
But you cannot place a larger disk onto a smaller disk.

Towers of Hanoi

Towers of Hanoi

Towers of Hanoil

Towers of Hanoil

Towers of Hanoil

Towers of Hanoil

Towers of Hanoil

Towers of Hanoil

Stack Operations

Pop()
Push(x)

Top()
|IsEmpty()

L =

- An insertion (of, say x) is called push operation and removing
the most recent element from stack is called pop operation.

- Top returns the element at the top of the stack.

- IsEmpty returns true if the stack is empty, otherwise returns
false.

All of these take constant time - O(1)

N2

* Push(2)

(
« Push(10)
* Pop()
« Push(7)
* Push(9)
e Top(): 5
* IsEmpty(): False

Array implementation

int A[10]
top € -1 //empty stack
Push (x)

{

top € top + 1
A[top] €& x
}
Pop ()
{
top € top — 1
}

of stack (pseudocode)

top
V

2|10(S

© 1 2 3 4§ 5 ¢ +» 8 9
Push(2)
PuSh (10)

Push (5)
PoP()

For an empty stack, top is set to -1.
In push function, we increment top.
In pop, we decrement top by 1.

Array implementation of stack (pseudocode)

Top () top
{ Y
, return A[top] 9 [10] <
ISEmpty () L 4 3 4 F ¢ ? ¥ 9
{ Push(2)

if(top == -1) PuSh (10)

return true Ruk(s)
else PoP ()

return false

Stack

Data Structure

Push Stack

Pop Stack

Implementation of Stacks Using Arrays

More array implementation

// Stack - Array based implementation.
#include<stdio.h>

#define MAX_SIZE 101

int A[MAX_SIZE];

int top = -1;
void Push(int x) {
if(top == MAX_SIZE -1) {
printf("Error: stack overflow\n");|
return; I
}

A[++top] = x;
}

void Pop() {
if(top == -1) {
printf("Error: No element to pop\n");
return;
}
top--;
3}
int Top() {
return A[top];
} I
int main() {

}

vold Print() {
int i;
printf("Stack: ");
for(i = 0;i¢= top,i++)

printf(" ,A[1]);
printf("\)
1 C\Users\animesk\Documents\Visual Studio 2010\Projects\SampleApp5\De

}

int main() {
Push(2);Print();
Push(5);Print();
Push(10);Print();
Pop();Print();
Push(12);Print();

}

Check For Balanced Parentheses
using Stack

m o

(A+B)
{(A+B)+(C+D)}
{(x+y)*(2)
[273]+(A)]

{a+z)

Check For Balanced Parantheses

using

Stack

()
{000}
{()()
[10)]
{)

Yes

Yes

No

No

No

Need: Count of openings = Count of closings
AND
Any parenthesis opened last should be closed first.

ldea: Create an empty list

- Scan from left to right
If opening symbol, add it to the list
Push it into the stack
If closing symbol, remove last opening symbol of the same type
using Pop from the stack
Should end with an empty list

Check For Balanced Parantheses: Pseudocode

CheckBalancedParanthesis (exp)
{

n<¢ length(exp)

Create a stack: S

for i€ 0 to n-1

{

if exp[i] is ‘(' or ‘{’ or ‘[’
Push(exp[i])

elseif exp[i] is ‘)’ or '}’ or ‘]‘

{if (S is not empty)
(top does not pair with exp[i])
{return false}
else

pop()}}

Return S is empty?

Create a stack of characters and scan this string
by using push if the character is an opening parenthesis and
by using pop if the character is a closing parenthesis. (See next slide)

Examples
Exp = [(_]) Sxp = {()()}
" "
L= 2 t= s
(
C’ ‘¢ < Lop
S S

The pseudo code will return false. The pseudo code will return true.

Queues

- A queue is an ordered list on which all insertions take
place at one end called the rear/back and all deletions
take place at the opposite end called the front.

- Based on First-in-First-out (FIFO)

. Queue

¥ CHNTID)
Back Front\

Comparison of Queue and Stack
Queue ADT =

Bueue - First-Im-Fivs{-0ut Stack - Los-Im-First-Out
(FIFo) (LIFO)

Queues

rear
C l—
B =l B
rear
A l—— A le—— A le
front,top front front front

Queue is a list with the restriction that insertion can be made at one end (rear)
And deletion can be made at other end (front).

Built-in Operations for Queue

1. Enqueue(x) or Push(x)

2. Dequeue() or Pop()
3. Front(): Returns the element in the front without

removing it.
4. IsEmpty(): Returns true or false as an answer.
IsFull()
Enqueue Dequeue
= =
8

Each operation takes constant time, therefore has O(1) time complexity.

Applications:
* Printer queue
* Process scheduling

Enqueue (2)

Enqueue (5)
Enqueue(3)
Dequeue ()22
Front ()25
IsEmpty () 2>False

Array implementation of queue (Pseudocode)

int A[10]
front € -1 front Tear
rear € -1 / /
ISEmpty () {
if (front == -1 && rear == -1) 2|5 %
return true © 1 2 3 ¢ 5
stse Engueue (2)
return false} b s e
Enqueue (x) { M
if IsFull(){ Engueune(?)

return
elseif IsSEmpty ()

front € rear < 0}
else{

rear € rear+l}
A[rear] € x}

Array implementation of queue (Pseudocode)

Dequeue () {
if IsEmpty(){

return
elseif (front == rear){
front € rear & -1}
else({

front ¢ front+l}

; ront Year

v

Y
B 2]2]q 0462

0 4L Yk Ko 589
Emgueue(2) E'nzueue (2)
Enzueue (.S') Enzueue (10)
Engueue(z) Lugueve(q)
QNL&&M&() Eniuaueu)
Engueue (3) Jegueue()
Engueue (1) Enguene (2)

At this stage, we cannot Enqueue an element anymore.

Queue
Data Structure

Add Queue

Delete Queue

Circular Queue

- When the queue is full (the rear index equals to
MAX_QUEUE_SIZE)
- We should move the entire queue to the left
- Recalculate the rear

Shifting an array is time-consuming!
- O(MAX_QUEUE_SIZE)

Circular Queue

- More efficient queue representation

EMPTY QUEUE

(41

front
rear

w o

4]

Full Circular Queue

T8 [4) £41

(1] 1]

7 151 Sl ey -

(ol

front =0 : front= 4
rear =5 rear =3

Enqueue for circular array (Pseudocode)

Current position = 1
Next position = (i+1)% N

previous position = (i+N-1)%N _
Enqueue (x) {
if (rear+1)%N == front
return

elseif IsEmpty () {
front € rear < 0}
else({
rear €< (rear+1l)3%N}
A[rear] <& x}

Dequeue for circular array (Pseudocode)

Dequeue (x) {
if IsEmpty(){

return
elseif (front == rear){
front € rear < -1}
else({

front € (front+1l)3%N}

E-n’,ueue. (1.5‘)
Dequeune()

Add Circular Queue

Delete Circular Queue

References

BBM 201 Notes by Mustafa Ege
- http://www.mycodeschool.com/videos

