BBM 201
DATA STRUCTURES

Lecture /:
Introduction to the Lists
(Array-based linked lists)

2017-2018 Fall

Lists

Lists

- We used successive data structures up to now:

- If a; In the memory location L, then ay,, Is in Ly+c (c: constant)

j’

- In a queue, if the i item is in L, i+1. item is in (L;+c)%n. (i.e.
circular queue)

- In a stack, if the top item is in L , the below item is in L ;-C.

ListType

T T T T Insertion and deletion:
S O(1)

le] L] [e] [2] [s] [o]
IntType IntType IntType IntType IntType IntType

Seqguential Access

(ascending or descending)

Example 1:
- Alphabetically ordered lists:

Ape Butterfly | Cat Dog Mouse

23

- Delete ‘Ape’, what happens? s Shift right
- Delete ‘Cat’, what happens? 2 |3
- Add ‘Bear’, what happens?
- Add ‘Chicken’, what happens? T2 13

!

Save new
element

L
Seqguential Access

(ascending or descending)

Example 2:

- The result of the multiplication of two polynomials
o (X7+5x%4-3x2+4)(3x>-2x3+x%+1)

-----ﬂﬂﬂﬂ

12 10 9

- Powers are not ordered. So either we need to sort or shift in order to
solve this problem.

Sorted items

- We want to keep the items sorted, and we want to avoid
the sorting cost.
- We may need to sort after each insertion of a new item.
- Or we need to do shifting.

What is the solution?

D
Towards the Linked List

- Each item has to have a second data field — link.
- Each item has two fields: data and link.

D
Linked List

#define MAX_LIST 10
#define TRUE 1
#define FALSE O
#define NULL -1

L
Linked List

--make empty list

L
Linked List

--get item

Returns a free item from the list:

Linked List

--return item

Free the item:

N o us N PO

name

free

0

link

0O N O O & WD

name link

0] Arzu 1
il Ayse 2
2] Aziz 3
[El Bora 4
4] Kaan 5
5] Muge 6
) Ugur -1
kd 8

-1
free_ =7

List starts at O (*list=0)

name link name link
0] Arzu 1 0] Eyup 4
1] Ayse 2 AL Ayse 2
2] Aziz 3 2] Aziz 3
&) Bora 4 El Bora 0
4] Kaan 7 4] Kaan 7
5 Muge 6 Sl Muge 6
6] Ugur -1 6] Ugur -1
] Leyla 5 7] Leyla 5
8] 8] 9
-1 -1
free_ = 8 (“Leyla” added) free_ =0 ("Arzu” deleted)
*list = 0 free_ =8 ("Eyup” added)
*list =1

L
Linked List

--Insert item

Criginal List

first
ih 2 —_ = 4 — P | B

List with 5 added

first
L 2 S E— _ & — L B

L
Linked List

--Insert item

INSERT at the Front

1

M—Q—'zs - dd

The new item is inserted before the head of the list.

Mz_~m;agdﬂg

Linked List

--Insert item

L
Linked List

--delete item
current\l/ Looking to delete "14"
12 | » 14 | » 24 | «
current
1 1
12 | » 14 | » 24 | .
delete
current

N

12 | « 24 | »

L
Linked List

--delete item

Deleting from the front:

Deleted node

) sl next il next
20 10
head

-

data next
MULL

!

‘--------"—‘--

Linked list

Linked List

--delete item

References

- Data Structures Notes, Mustafa Ege.

- Fundamentals of Data Structures in C. Ellis Horowitz,
Sartaj Sahni, and Susan Anderson-Freed, 1993.

