
BBM 201

DATA STRUCTURES

Lecture 8:

Dynamically Allocated Linked Lists

2017-2018 Fall

int x;

x = 8;

int A[4];

An array is stored as one contiguous block of memory.

How can we add a fifth element to the array A above???

If we used dynamic memory allocation, we need to use realloc.

Otherwise, we can use a linked list.

To input elements to the linked list, the memory manager finds an

address for each element one by one.

We store not only the value of each element but also the address of

the following element for each element.

Struct Node

{

 int data; // 4 bytes

 Node* next; // 4 bytes

}

• For each element (or node) two fields are stored, each costing four

bytes.

• The first node is called the head node. The address of the last node

is NULL or 0.

• The address of the head node gives us access to the complete list.

• To access a node, we need to traverse ALL nodes with smaller

index.

Adding a new node

Create a node independently with some memory location and adjust

the links properly. Say the node 3 gets address 252.

• The linked list is always identified by the address of the head node.

• Unlike array, it costs O(n) to access an element of a linked list.

Array vs. Linked List:
1) Cost of accessing an element

• If we know the starting address of the array, we

can calculate the address of the ith element in the

array. This takes constant (O(1)) time for any

element in the array!

• To find the address of the i’th element in the linked

list, we need to traverse all elements until that

element (O(n) time).

Array vs. Linked List:
2) Memory requirements

• Before creating an

array, we need to

know its possible

size.

• For linked list, we

ask from memory

one node at a time,

but we use twice

the size since also

the address of each

consecutive node is

stored.

If we have a data of complex type, then for each element in the

linked list, 20 bytes are used.

The strategy to decide which one to use depends on the case.

Array vs. Linked List:
2) Memory requirements

Array Linked List

Has fixed size No unused memory

Extra memory for pointer

variables

Memory may not be

available as one large

block

Memory may be

available as multiple

small blocks

Array vs. Linked List:
3) Cost of inserting an element

Cost of inserting a new

element (worst case):

Array Linked List

a) At the beginning O(n) O(1)

b) At the end O(1) (if array

is not full)

O(n)

c) At i’th position O(n) O(n)

• To insert an element to the beginning of an array all elements need

 to be shifted by one to the next address.

• To add an element to the end of a linked list all elements need to be

 traversed.

Linked List: Implementation in C and C++

• We define such data type using Structure. Integer is the type of the

 variable data stored as the element of the linked list.

• The second field called link is of type pointer.

• The last line creates one node in the memory.

Struct Node

{

 int data;

 Node* next;

}

Node* A;

A = NULL; //empty list

Node* temp = (Node*)malloc(sizeof(Node))

Dereferencing

• The data part of this node is 2 and the temp variable is pointing to it.

• The link part is NULL since it is the last node.

• Finally, write the address of the newly created node to A.

Struct Node

{

 int data;

 Node* next;

}

Node* A;

A = NULL; //empty list

Node* temp = (Node*)malloc(sizeof(Node))

(*temp).data = 2;

(*temp).link = NULL;

A = temp;

C++ implementation

Struct Node

{

 int data;

 Node* next;

}

Node* A;

A = NULL;

Node* temp = new Node();

temp->data = 2;

temp->link = NULL;

A = temp;

Traversal of a list

• temp stores the address of the new node.

• We need to record the address of the new node and to do so

 we need to traverse the whole list to go to the end of the list.

• While traversing, if the link of the node is not NULL, we can move

 to the next node.

• Finally, the loop prints the elements in this list.

Node* A;

A = NULL;

Node* temp = new Node();

(*temp).data = 2;

(*temp).link = NULL;

A = temp;

temp = new Node();

temp->data = 4;

temp->link = NULL;

Node* temp1 = A;

while(temp1 != NULL){

 print “temp1->data”;

 temp1 = temp1->link;

}

Inserting a node at the beginning

• Pointer storing the address of the next node is called next. (In

 C++, only Node* next; is written.)

• Insert each number x into the linked list by calling a method insert

 and print it.

Implementing the insert function

• If the list is empty as above, we want head to point to this new node.

• If the list is not empty, by the line temp->next = head, the new

 node points to the address 100.

• Next, to cut the link from head to 100, we have the line

 head = temp.

Implementing the print function

Note that each newly entered number is stored as the beginning of the list.

Implementing the print function

Implementing the print function

Head will be passed to

print as local variable and

therefore an

argument of the print

function.

Since head is a local

variable in print, we can

change the value of

head inside the print

function instead of

defining a temporary

variable temp.

The insert method also

passes the return as head.

Inserting a node at the n’th position

Say, we want to insert a value 8 at 3rd position.

The link field of the new node should be 250 and the link field of the

second node should be the address of the new node as shown below.

In this implementation of Insert

function, the new node is

defined

using C++ syntax (without using

malloc).

Finally, we set the link of the

new node to the link of the

(n-1)st node and then we set the

link of the (n-1)st node to the

new node.

In the implementation above, again the pointer to the beginning of

the linked list, called head, is defined as a global variable.

The insert function takes the value of the new node and the position

we want to insert the new node.

Print will print all the numbers in the linked list.

Location of data in the memory

When we store something in the heap using new or malloc, we do

not have a variable name for this and we can only access it through

a pointer variable as seen above.

Deleting a node at n’th position

The user is asked to enter a position and

the program will delete the

node at this particular position.

In the first case, we handle the case when there is a node before the

node we want to delete.

Create a temporary variable temp1 and point this to head.

Create a temporary variable temp2 that points to the nth node.

Example

temp1 points to the first node (first position).

In the final step, temp1 points to the second

node and temp2 points to the third node.

At the end, the address stored by temp1,

which is 150, changes to temp2.next, which is

250.

Example

Reverse a linked list using

iterative method

Links should be changed. Head node should point to the node at

address 250. For the first node, we cut the link from head and

build a link to NULL.

Two solutions: iterative approach and recursion.

In the iterative solution, we write a loop that traverses each node

and make it point to the preceding node instead of the next node.

To traverse a list, create a temporary

node pointing to the currently traversed

node, called current, first point it to the

head node and then run a loop as shown

in the code.

We will have to keep track of the previous

node of each node while traversing. Call

this temporary node prev.

And at each step of the traversal, we need to store

the address of the old next node of the current node

using a temporary variable, otherwise we loose this

link. So, call this temporary variable next.

Initially, prev points to NULL, current points to the

first node. After the first iteration of the while loop,

next points to the second node and the address field

of first node stores NULL after using the

dereferencing current->next=prev.

In the last two lines of the while loop, we update

where prev and current are pointing to complete the

traversal of one node.

Note that the next in current->next and the local

variable next are different variables!!!

The reverse function takes the

address of the head node as

argument and returns the address

of the head node.

In the main method, head is defined as a local variable. The insert

function takes two arguments: the address of the head node and the

data to be inserted.

The insert function returns the address of the head node. Print

function prints the elements in the list.

Print elements of a linked list in forward and

reverse order using recursion

The print function takes the

address of a node, so the

argument is of type pointer.

For now forget about how we

input the linked list, assume it is

already entered. Printf will print

the value at the node p.

Then we make a recursive call to

the print function passing the

address of the next node without

forgetting the exit condition for

the recursion.

In the insert function, the insert function returns the current address

of the head node after insertion. (Note that, head is a local variable

in the main method.)

Here, the insert function inserts a node at the end of the list.

By using the recursive print function, we were able to print the linked list in

forward order. See next slide for steps.

Each time print is visited, it prints the data stored in the address input as

an argument.

The arrows showing the steps of the recursion is called a recursion tree.

Reverse a linked list using

recursion

The address passed to the reverse function is the address of the first node.

As soon as we reach the last node, the program modifies the head pointer to

point to the fourth node.

Below, we see the links after Reverse(250) and Reverse(150) are finished.

The last three lines will execute after the recursive calls are finished and we

are traversing the list in backwards direction.

When Reverse(150) is executed, p would be 150 and q would be p.next. See

next slide.

Question 1: Print the contents of a given linked list

pointed with a list pointer (list *)?

void print_items (listnode * list)
{
 printf (" \n list contents: ");
 for(;list; list= list-> link)
 printf (" %d ", list->data);
 printf (" \n ");
}

Question 2: Count the number of items in a given linked list

pointed with a list pointer (list *)?

int count_items (listnode * list)
{
 int n=0;
 for(;list; list= list-> link, n++);
 return n;
}

Question 3: list1 and list2 are two pointers pointing to

two separate linked list. Append list2 to the end of list1.

void appendlists (listnode * list1, listnode * list2)
{
 list * p;
 if(list1) {
 for(p=list; p->link; p = p -> link);
 p->link = list2;
 }
 else
 list1=list2;
 list2=NULL;
}

a1 a2 a3

b1 b2 b3

list1

list2

a1 a2 a3

list1

b1 b2 b3

