Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton University.
TODAY

- Directed Graphs
- Digraph API
- Digraph search
Directed graphs

Digraph. Set of vertices connected pairwise by *directed* edges.
Vertex = intersection; edge = one-way street.
Digraph applications

<table>
<thead>
<tr>
<th>digraph</th>
<th>vertex</th>
<th>directed edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>transportation</td>
<td>street intersection</td>
<td>one-way street</td>
</tr>
<tr>
<td>web</td>
<td>web page</td>
<td>hyperlink</td>
</tr>
<tr>
<td>food web</td>
<td>species</td>
<td>predator-prey relationship</td>
</tr>
<tr>
<td>WordNet</td>
<td>synset</td>
<td>hypernym</td>
</tr>
<tr>
<td>scheduling</td>
<td>task</td>
<td>precedence constraint</td>
</tr>
<tr>
<td>financial</td>
<td>bank</td>
<td>transaction</td>
</tr>
<tr>
<td>cell phone</td>
<td>person</td>
<td>placed call</td>
</tr>
<tr>
<td>infectious disease</td>
<td>person</td>
<td>infection</td>
</tr>
<tr>
<td>game</td>
<td>board position</td>
<td>legal move</td>
</tr>
<tr>
<td>citation</td>
<td>journal article</td>
<td>citation</td>
</tr>
<tr>
<td>object graph</td>
<td>object</td>
<td>pointer</td>
</tr>
<tr>
<td>inheritance hierarchy</td>
<td>class</td>
<td>inherits from</td>
</tr>
<tr>
<td>control flow</td>
<td>code block</td>
<td>jump</td>
</tr>
</tbody>
</table>
Some digraph problems

Path. Is there a directed path from \(s \) to \(t \)?

Shortest path. What is the shortest directed path from \(s \) to \(t \)?

Topological sort. Can you draw the digraph so that all edges point upwards?

Strong connectivity. Is there a directed path between all pairs of vertices?

Transitive closure. For which vertices \(v \) and \(w \) is there a path from \(v \) to \(w \)?

PageRank. What is the importance of a web page?
DIRECTED GRAPHS

- Digraph API
- Digraph search
% Digraph tinyDG.txt
0->5
0->1
2->0
2->3
3->5
3->2
4->3
4->2
5->4
::
11->4
11->12
12->9
Set-of-edges digraph representation

Store a list of the edges (linked list or array).
Maintain a two-dimensional v-by-v boolean array; for each edge $v \rightarrow w$ in the digraph: $\text{adj}[v][w] = \text{true}$.
Adjacency-lists digraph representation

Maintain vertex-indexed array of lists.
Adjacency-list graph representation: implementation

```java
//for each edge call addEdge twice
addEdge(v, w);

public void addEdge(int v, int w){
    node *q;
    //acquire memory for the new node
    q=(node*)malloc(sizeof(node));
    q->vertex=w;
    q->next=NULL;
    //insert the node to beginning of the linked list
    q->next=adj[v];
    adj[v]= q;
}

typedef struct node
{
    struct node *next;
    int vertex;
}node;

node * adj [13];
```
Digraph representations

In practice. Use adjacency-lists representation.
- Algorithms based on iterating over vertices pointing from \(v \).
- Real-world digraphs tend to be sparse.

Digraph representations

<table>
<thead>
<tr>
<th>representation</th>
<th>space</th>
<th>insert edge from (v) to (w)</th>
<th>edge from (v) to (w)?</th>
<th>iterate over vertices pointing from (v)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>list of edges</td>
<td>(E)</td>
<td>(1)</td>
<td>(E)</td>
<td>(E)</td>
</tr>
<tr>
<td>adjacency matrix</td>
<td>(V^2)</td>
<td>(1)</td>
<td>(1)</td>
<td>(V)</td>
</tr>
<tr>
<td>adjacency lists</td>
<td>(E + V)</td>
<td>(1)</td>
<td>outdegree((v))</td>
<td>outdegree((v))</td>
</tr>
</tbody>
</table>

- huge number of vertices, small average vertex degree
DIRECTED GRAPHS

- Digraph API
- Digraph search
Reachability

Problem. Find all vertices reachable from s along a directed path.
Depth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked vertices w pointing from v.
To visit a vertex v:
- Mark vertex v as visited.
- Recursively visit all unmarked vertices pointing from v.

A directed graph
To visit a vertex v:
- Mark vertex v as visited.
- Recursively visit all unmarked vertices pointing from v.

![Directed Graph]

<table>
<thead>
<tr>
<th>v</th>
<th>marked[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>–</td>
</tr>
</tbody>
</table>
To visit a vertex \(v \):

- Mark vertex \(v \) as visited.
- Recursively visit all unmarked vertices pointing from \(v \).

Depth-first search

Visit 0: check 5 and check 1
Depth-first search

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices pointing from v.

\[
\begin{array}{c|c|c}
\text{v} & \text{marked[]} & \text{edgeTo[]} \\
\hline
0 & T & - \\
1 & F & - \\
2 & F & - \\
3 & F & - \\
4 & F & - \\
5 & T & 0 \\
6 & F & - \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & - \\
\end{array}
\]

visit 5: check 4
Depth-first search

To visit a vertex \(v \):
• Mark vertex \(v \) as visited.
• Recursively visit all unmarked vertices pointing from \(v \).

\[
\begin{array}{cccc}
 v & \text{marked[]} & \text{edgeTo[]} \\
0 & T & - \\
1 & F & - \\
2 & F & - \\
3 & F & - \\
4 & T & 5 \\
5 & T & 0 \\
6 & F & - \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & - \\
\end{array}
\]

visit 4: check 3 and check 2
To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices pointing from v.

Depth-first search

Visit 3: check 5 and check 2
Depth-first search

To visit a vertex \(v \):
- Mark vertex \(v \) as visited.
- Recursively visit all unmarked vertices pointing from \(v \).

Visit 3: check 5 and check 2
Depth-first search

To visit a vertex v:
• Mark vertex v as visited.
• Recursively visit all unmarked vertices pointing from v.

visit 2: check 0 and check 3
To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices pointing from v.

Depth-first search

Visit 2: check 0 and check 3

<table>
<thead>
<tr>
<th>v</th>
<th>marked[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>-</td>
</tr>
</tbody>
</table>
Depth-first search

To visit a vertex v:
- Mark vertex v as visited.
- Recursively visit all unmarked vertices pointing from v.
Depth-first search

To visit a vertex \(v \):

- Mark vertex \(v \) as visited.
- Recursively visit all unmarked vertices pointing from \(v \).
To visit a vertex v:
- Mark vertex v as visited.
- Recursively visit all unmarked vertices pointing from v.

Visit 4: check 3 and check 2
To visit a vertex \(v \):

- Mark vertex \(v \) as visited.
- Recursively visit all unmarked vertices pointing from \(v \).
To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices pointing from v.

\[\begin{array}{c|c|c}
 v & \text{marked}[] & \text{edgeTo}[] \\
 \hline
 0 & T & - \\
 1 & F & - \\
 2 & T & 3 \\
 3 & T & 4 \\
 4 & T & 5 \\
 5 & T & 0 \\
 6 & F & - \\
 7 & F & - \\
 8 & F & - \\
 9 & F & - \\
 10 & F & - \\
 11 & F & - \\
 12 & F & - \\
\end{array} \]
Depth-first search

To visit a vertex v:
- Mark vertex v as visited.
- Recursively visit all unmarked vertices pointing from v.

visit 0: check 5 and check 1

<table>
<thead>
<tr>
<th>v</th>
<th>marked[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>-</td>
</tr>
</tbody>
</table>
Depth-first search

To visit a vertex \(v \):

- Mark vertex \(v \) as visited.
- Recursively visit all unmarked vertices pointing from \(v \).
To visit a vertex v

- Mark vertex v as visited.
- Recursively visit all unmarked vertices pointing from v.

<table>
<thead>
<tr>
<th>v</th>
<th>marked[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>-</td>
</tr>
</tbody>
</table>
Depth-first search

To visit a vertex v:
- Mark vertex v as visited.
- Recursively visit all unmarked vertices pointing from v.
Depth-first search

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices pointing from v.

![Diagram of a graph with vertices and edges marked.]

<table>
<thead>
<tr>
<th>v</th>
<th>marked[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>-</td>
</tr>
</tbody>
</table>
To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices pointing from v.

深度优先搜索（Depth-first search）
void DFS(int i)
{
 node *p = adj[i];
 visited[i]=1;
 while(p != NULL)
 {
 i = p->vertex;
 if(!visited[i])
 DFS(i);
 p = p->next;
 }
}

typedef struct node
{
 struct node *next;
 int vertex;
}node;

//GLOBAL PARAMETERS
node * adj [13];
int visited[13];

Same as undirected graph
Reachability application: program control-flow analysis

Every program is a digraph.
• Vertex = basic block of instructions (straight-line program).
• Edge = jump.

Dead-code elimination.
Find (and remove) unreachable code.

Infinite-loop detection.
Determine whether exit is unreachable.
Every data structure is a digraph.
- Vertex = object.
- Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program (starting at a root and following a chain of pointers).
Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]

• Mark: mark all reachable objects.
• Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS stack).
Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- BFS is a **digraph** algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.

Repeat until the queue is empty:

- remove the least recently added vertex v
- for each unmarked vertex pointing from v:
 - add to queue and mark as visited.