
BBM 201
DATA STRUCTURES

Lecture 10:
Doubly Linked Lists

2018-2019 Fall

Doubly Linked Lists

Each node stores not only the address of the next node, but also the
address of the previous node. So, each node stores three fields.

For temp being 600, temp-> next points to the address 800 and temp->prev points
to the address 400.

Note: head is a global variable. Each node inside the InsertAtHead
function is created locally and the node myNode does not exist
after the function is executed.
Therefore, local node allocation is NOT preferred.

Now, we create a new node in a separate function, called
GetNewNode.

Preferred Method:
Each “newNode” is created in the dynamic memory and the
node exists after the function is executed.

Now, one node is created in the list with head pointing to it using
the line head = newNode.

We have two nodes, head is pointing to the node at address 400 and
newNode is pointing to the node at address 600.

4

Set the prev-field of the head node as 600 (address of the new node).
Then, set the next-field of the new node as 400 (the address of the
head node).
And now, head can point to 600, that is the address of the final head node.

4

4

Reverse Printing

the code first goes to the end of the list
and then traverses backwards.

Doubly vs. Singly Linked List

Doubly Linked List

• Uses extra space for previous pointers.

• Requires extra work for Insertion/Deletion.

• Has ready Access/Insert on oth ends.

• Can work as a Queue and a Stack at the same time.

• Does not require additional pointers for Node Deletion.

struct Node* reverse(struct Node* head)
{

struct Node* n = head, next;
//running till the last node
while(n->next != NULL){

next = n->next;
n->next = n->prev;
n->prev = next;
n = next;

}
//for the last node
n->next = n->prev;
n->prev = NULL;
// n is the new head.
return n;

}

Reverse a doubly linked list

Doubly Circular Linked List

typedef struct node *node_pointer;
typedef struct node{

node_pointer leftlink;
element item;
node_pointer rightlink;};

Doubly linked circular linked list with head node:

Empty doubly linked circular linked list with head node:

ptr = ptr->leftlink->rightlink = ptr->rightlink->leftlink

rightlinkleftlink

Inserting into a doubly-linked circular list:
void dinsert(node_pointer node, node_pointer newnode)
{

/* insert newnode to the right of node */
newnode->leftlink = node;
newnode->rightlink = node->rightlink;
node->rightlink->leftlink = newnode;
node->rightlink = newnode;}

Insertion into an empty doubly linked circular linked list:

Inserting into a doubly-linked circular list:
void dinsert(node_pointer node, node_pointer newnode)
{

/* insert newnode to the right of node */
newnode->leftlink = node;
newnode->rightlink = node->rightlink;
node->rightlink->leftlink = newnode;
node->rightlink = newnode;}

......
node

newnode

Inserting into a doubly-linked circular list:
void dinsert(node_pointer node, node_pointer newnode)
{

/* insert newnode to the right of node */
newnode->leftlink = node;
newnode->rightlink = node->rightlink;
node->rightlink->leftlink = newnode;
node->rightlink = newnode;}

......
node

newnode

Inserting into a doubly-linked circular list:
void dinsert(node_pointer node, node_pointer newnode)
{

/* insert newnode to the right of node */
newnode->leftlink = node;
newnode->rightlink = node->rightlink;
node->rightlink->leftlink = newnode;
node->rightlink = newnode;}

......
node

newnode

Inserting into a doubly-linked circular list:
void dinsert(node_pointer node, node_pointer newnode)
{

/* insert newnode to the right of node */
newnode->leftlink = node;
newnode->rightlink = node->rightlink;
node->rightlink->leftlink = newnode;
node->rightlink = newnode;}

......
node

newnode

Inserting into a doubly-linked circular list:
void dinsert(node_pointer node, node_pointer newnode)
{

/* insert newnode to the right of node */
newnode->leftlink = node;
newnode->rightlink = node->rightlink;
node->rightlink->leftlink = newnode;
node->rightlink = newnode;}

......
node

newnode

Deletion from a doubly-linked circular list:
void ddelete(node_pointer node, node_pointer deleted)
{

// node points to the head node of the list
if(node == deleted)

printf(“Deletion of head node not permitted.\n”);
else

deleted->leftlink->rightlink = deleted->rightlink;
deleted->rightlink->leftlink = deleted->leftlink;
free(deleted);}

}

Deletion from a doubly linked circular linked list:

Deletion from a doubly-linked circular list:
void ddelete(node_pointer node, node_pointer deleted)
{

// node points to the head node of the list
if(node == deleted)

printf(“Deletion of head node not permitted.\n”);
else

deleted->leftlink->rightlink = deleted->rightlink;
deleted->rightlink->leftlink = deleted->leftlink;
free(deleted);}

}

... ...
deleted

Deletion from a doubly-linked circular list:
void ddelete(node_pointer node, node_pointer deleted)
{

// node points to the head node of the list
if(node == deleted)

printf(“Deletion of head node not permitted.\n”);
else

deleted->leftlink->rightlink = deleted->rightlink;
deleted->rightlink->leftlink = deleted->leftlink;
free(deleted);}

}

... ...
deleted

Deletion from a doubly-linked circular list:
void ddelete(node_pointer node, node_pointer deleted)
{

// node points to the head node of the list
if(node == deleted)

printf(“Deletion of head node not permitted.\n”);
else

deleted->leftlink->rightlink = deleted->rightlink;
deleted->rightlink->leftlink = deleted->leftlink;
free(deleted);}

}

... ...
deleted

Deletion from a doubly-linked circular list:
void ddelete(node_pointer node, node_pointer deleted)
{

// node points to the head node of the list
if(node == deleted)

printf(“Deletion of head node not permitted.\n”);
else

deleted->leftlink->rightlink = deleted->rightlink;
deleted->rightlink->leftlink = deleted->leftlink;
free(deleted);}

}

... ...

