
BBM 201
Data structures

Lecture 11:
Trees

2019-2020 Fall

Content

• Terminology
• The Binary Tree
• The Binary Search Tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Terminology

• Trees are used to represent relationships
• Trees are hierarchical in nature

– “Parent-child” relationship exists between nodes in
tree.

– Generalized to ancestor and descendant
– Lines between the nodes are called edges

• A subtree in a tree is any node in the tree together with all
of its descendants

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Terminology
• Only access point is the root
• All nodes, except the root, have one parent

– like the inheritance hierarchy in Java

• Traditionally trees are drawn upside down

root

leaves

Terminology

(a) A tree;
(b) a subtree of the tree in part a

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Terminology

FIGURE 15-2 (a) An organization chart; (b) a family tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Properties of Trees and Nodes

• siblings: two nodes that have the
same parent

• edge: the link from one node to
another

• path length: the number of edges that
must be traversed to get from one
node to another

root

siblings

edge

path length from root to this
node is 3

General Tree
– A general tree is a data structure in that

each node can have infinite number of
children

– A general tree cannot be empty.

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Binary Tree

• A Binary tree is a data structure in that
each node has at most two children
nodes: left and right.

• A Binary tree can be empty.

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

n-ary tree

– A generalization of a binary tree whose nodes
each can have no more than n children.

n

Example: Algebraic Expressions.

FIGURE 15-3 Binary trees that represent
algebraic expressions

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Level of a Node

• Definition of the level of a node n :
– If n is the root of T, it is at level 1.
– If n is not the root of T, its level is 1 greater than

the level of its parent.

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Level = 1

Level = 2

Level = 3

Height of Trees

• The height of a node is the number of edges on
the longest downward path between that node
and a leaf.

Height of tree = 2

The Height of Trees

Binary trees with the same nodes but different heights

Height 2 Height 4 Height 6 Height 6

Depth of a Tree

• The path length from the root of the tree to
this node.

a

b c

d e f

g h i j k

l

The depth of a node is its distance from the
root

a is at depth zero
e is at depth 2

The depth of a binary tree is the depth of its
deepest node

This tree has depth 4

Full, Complete, and Balanced
Binary Trees

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Full Binary Trees

• Definition of a full binary tree
– If T is empty, T is a full binary tree of height 0.
– If T is not empty and has height h > 0, T is a full

binary tree if its root’s subtrees are both full
binary trees of height h – 1.

– Every node other than the
leaves has two children.

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Facts about Full Binary Trees

• You cannot add nodes to a full binary tree without
increasing its height.

• The number of nodes that a full binary tree of height h
can have is 2 (h+1) – 1.

• The height of a full binary tree with n nodes is
log 2 (n+1) – 1

• The height of a complete binary tree with n nodes is
floor(log 2 n)

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Complete Binary Trees

FIGURE 15-7 A complete binary tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Every level, except possibly the last, is completely
filled, and all nodes are as far left as possible

Full,
Complete
or Other?

A

C D

FI E

B

RS P

GH

T

ML OKJ

Q

N

not binary

Full,
Complete
or other?

A

D

FI

B

RS P

GH

T

ML OK N

Full,
Complete
or other?

A

D

FI

B

RS P

GH

T

ML OK N

Full,
Complete
or other?

A

D

FI

B

RS P

GH

T

ML OK N

Full,
Complete
or other?

A

D

FI

B

R

S

P

GH

T

ML OK N

Full,
Complete
or Other?

A

D

FI

B

Q

S

R

GH

T

ML PK N O

Full,
Complete
or other?

A

D

FI

B

Q

S

R

GH

T

ML PK N O

Full,
Complete
or Other?

A

D

FI

B

Q R

GH

ML PK N O

• A balanced binary tree has the minimum possible
height for the leaves

a

b

c

d

e

f

g h

i j
An unbalanced binary
tree

Number of Nodes in a Binary Tree

depth: h-1

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

number of levels: h

h 2h-1 2h-1

Traversals of a Binary Tree

• General form of recursive traversal algorithm
1. Preorder Traversal

Each node is processed before any node in either of its
subtrees

2. Inorder Traversal
Each node is processed after all nodes in its left
subtree and before any node in its right subtree

3. Postorder Traversal
Each node is processed after all nodes in both of its
subtrees

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Traversals of a Binary Tree
• Preorder traversal while duplicating nodes and values can make a

complete duplicate of a binary tree. It can also be used to make a
prefix expression (Polish notation) from expression trees: traverse the
expression tree pre-orderly.

• Inorder traversal is very commonly used on binary search trees
because it returns values from the underlying set in order, according to
the comparator that set up the binary search tree (hence the name).

• Postorder traversal while deleting or freeing nodes and values can
delete or free an entire binary tree. It can also generate a postfix
representation of a binary tree.

It boils down to the logistical needs of an algorithm. For example, if
you don't use post-order traversal during deletion, then you lose the
references you need for deleting the child trees.

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

A

D

FI

B

RS P

GH

T

ML OK N

Preorder Traversal
1. Visit the root
2. Visit the left subtree
3. Visit the right subtree

1

2

3

4 5

6 7

8

9 10

11

12 13

14

15 16

Algorithm TraversePreorder(n)

Process node n

if n is an internal node then

TraversePreorder(n -> leftChild)

TraversePreorder(n -> rightChild)

A

D

FI

B

RS P

GH

T

ML OK N

1

Inorder Traversal
1. Visit Left subtree
2. Visit the root
3. Visit Right subtree

1

3

4

5

7

8

9

10

11

12

13

14

15

16

1

1

6

2

Algorithm TraverseInorder(n)

if n is an internal node then

TraverseInorder(n -> leftChild)

Process node n

if n is an internal node then

TraverseInorder(n -> rightChild)

A

D

FI

B

RS P

GH

T

ML OK N

Postorder Traversals
1. Visit Left subtree
2. Visit Right subtree
3. Visit the root

1

2 3

4

5

6 7

8

9

10

11 12

13

14

15

16

2

23

Algorithm TraversePostorder(n)

if n is an internal node then

TraversePostorder(n -> leftChild)

TraversePostorder(n -> rightChild)

Process node n

Traversals of a Binary Tree

FIGURE 15-11 Three traversals of a
binary treeData Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Binary Tree Operations

• Test whether a binary tree is empty.
• Get the height of a binary tree.
• Get the number of nodes in a binary tree.
• Get the data in a binary tree’s root.
• Set the data in a binary tree’s root.
• Add a new node containing a given data

item to a binary tree.

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Binary Tree Operations

• Remove the node containing a given data
item from a binary tree.

• Remove all nodes from a binary tree.
• Retrieve a specific entry in a binary tree.
• Test whether a binary tree contains a

specific entry.
• Traverse the nodes in a binary tree in

preorder, inorder, or postorder.
Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Represention of Binary Tree ADT
A binary tree can be represented using

- Linked List
- Array

Note : Array is suitable only for full and complete binary trees

struct node
{
int key_value;
struct node *left;
struct node *right;

};

struct node *root = 0;

void inorder(node *p)
{

if (p != NULL)
{

inorder(p->left);
printf(p->key_value);
inorder(p->right);

}
}

void preorder(node *p)
{

if (p != NULL)
{

printf(p->key_value);
preorder(p->left);
preorder(p->right);

}
}

void postorder(node *p)
{

if (p != NULL)
{

postorder(p->left);
postorder(p->right);
printf(p->key_value);

}
}

void destroy_tree(struct node *leaf)
{
if(leaf != NULL)
{

destroy_tree(leaf->left);
destroy_tree(leaf->right);
free(leaf);

}
}

The Binary Search Tree

• Binary tree is ill suited for searching a specific
item

• Binary search tree solves the problem
• Properties of each node, n

– n’s value is greater than all values in the left
subtree TL

– n’s value is less than all values in the right subtree
TR

– Both TR and TL are binary search trees.

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

The Binary Search Tree

FIGURE 15-13 A binary search tree of
namesData Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

The Binary Search Tree

FIGURE 15-14 Binary search trees
with the same data as in Figure 15-13

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

The Binary Search Tree

FIGURE 15-14 Binary search trees
with the same data as in Figure 15-13

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

The Binary Search Tree

Binary search trees with the same data as in Figure 15-13

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Binary Search Tree Operations

• Test whether a binary search tree is empty.
• Get height of a binary search tree.
• Get number of nodes in a binary search

tree.
• Get data in binary search tree’s root.
• Insert new item into the binary search tree.
• Remove given item from the binary search

tree.
Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Binary Search Tree Operations

• Remove all entries from a binary search tree.
• Retrieve given item from a binary search tree.
• Test whether a binary search tree contains a

specific entry.
• Traverse items in a binary search tree in

– Preorder
– Inorder
– Postorder.

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Searching a Binary Search Tree

• Search algorithm for binary search tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

struct node* search(int key, struct node *leaf)
{
if(leaf != NULL)
{

if(key == leaf->key_value)
{

return leaf;
}
else if(key < leaf->key_value)
{

return search(key, leaf->left);
}
else
{

return search(key, leaf->right);
}

}
else return 0;

}

Creating a Binary Search Tree

Empty subtree where the search algorithm terminates when looking for Frank

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

struct node *newNode(int key) {
struct node *temp = (struct node *)malloc(sizeof(struct node));
temp->key = key;
temp->left = temp->right = NULL;
return temp;

}

struct node* insert(int key, struct node *leaf)
{

/* If empty, return a new node */
if (leaf == NULL) return newNode(key);

/* Otherwise, recur down the tree */
if (key < leaf->key)

leaf->left = insert(leaf->left, key);
else if (key > leaf->key)

leaf->right = insert(leaf->right, key);

/* return the (unchanged) node pointer */
return leaf;

}

Efficiency of Binary Search Tree
Operations

The Big O for the retrieval, insertion, removal, and traversal operations of the
ADT binary search tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

