BBM 201
DATA STRUCTURES

Lecture 2:
Recursion & Performance analysis

2019-2020 Fall

L
System Life Cycle

- Programs pass through a period called ‘system life cycle’,
which is defined by the following steps:

- 1. Requirements: It is defined by the inputs given to the program
and outputs that will be produced by the program.

- 2. Analysis: The first job after defining the requirements is to
analyze the problem. There are two ways for this:

- Bottom-up
- Top-down

L
System Life Cycle (cont’)

- 3. Design: Data objects and the possible operations between the
objects are defined in this step. Therefore, abstract data objects
and the algorithm are defined. They are all independent of the
programming language.

- 4. Refinement and Coding: Algorithms are used in this step in
order to do operations on the data objects.

- 5. Verification: Correctness proofs, testing and error removal are
performed in this step.

Cast of Characters

Programmer needs to develop
a working solution. <

-

u

&

Student might play

. / any or all of these

i

Client wants to solve

problem efficiently. roles someday.

Theoretician wants
to understand.

Recursion

Recursion

- Recursion is all about breaking a big problem into smaller
occurrences of that same problem.

- Each person can solve a small part of the problem.
- What is a small version of the problem that would be easy to answer?
- What information from a neighbor might help me?

;ﬁ neighbor, help me out!
9, neighbor, help me out!
;{, neighbor, help me out!

(4
"

Recursive Algorithm

- Number of people behind me:

- |f there is someone behind me,
ask him/her how many people are behind him/her.

- When they respond with a value N, then | will answer N + 1.

- If there is nobody behind me, | will answer 0.

;ow many people are behind me?
;m many people are behind me?
;)w many people are behind me?

v
"

Recursive Algorithms

- Functions can call themselves (direct recursion)

- A function that calls another function is called by the
second function again. (indirect recursion)

L
Recursion

- Consider the following method to print a line of * characters:

// Prints a line containing the given number of
stars.

// Precondition: n >= 0
vold printStars(int n) {
for (int 1 = 0; 1 < n; 1++) {
System.out.print ("*");

}
System.out.println () ; // end the line of output

- Write a recursive version of this method (that calls itself).
- Solve the problem without using any loops.
- Hint: Your solution should print just one star at a time.

D
A basic case

- What are the cases to consider?
- What is a very easy number of stars to print without a loop?

public static void printStars (int n) {
if (n == 1) {
// base case; just print one star
System.out.println("*");
} else {

}

L
Handling more cases

- Handling additional cases, with no loops (in a bad way):

public static void printStars (int n) {
if (n == 1) |
/ base case; just print one star
System.out.println("*");

} else 1f (n == 2) {

System.out.print ("*");
System.out.println("*");

} else 1f (n == 3) {
System.out.print ("*");
System.out.print ("*");
System.out.println("*");

} else 1f (n == 4) {
System.out.print ("*");
System.out.print ("*");
System.out.print ("*");
System.out.println("*

} else

14
14
14
1A

) ;

L
Handling more cases 2

- Taking advantage of the repeated pattern (somewhat better):

public static void printStars (int n) {
if (n == 1) {
// base case; just print one star
System.out.println("*");

} else 1f (n == 2) {
System.out.print ("*");
printStars (1) ; // prints "*"
} else 1f (n == 3) {
System.out.print ("*");
printStars (2) ; // prints "**"
} else 1f (n == 4) {
System.out.print ("*");
printStars (3) ; // prints "***"

} else

L
Using recursion properly

- Condensing the recursive cases into a single case:

public static void printStars (int n) {

if (n == 1) {
// base case; just print one star
System.out.println("*");

} else {
// recursive case; print one more star
System.out.print ("*");
printStars(n - 1) ;

L
Even simpler

- The real, even simpler, base case is an n of 0, not 1:

public static void printStars (int n) {

if (n == 0) {
// base case; just end the line of output
System.out.println();

} else {
// recursive case; print one more star
System.out.print ("*");
printStars(n - 1);

L
Recursive tracing

- Consider the following recursive method:

public static int mystery(int n) {
if (n < 10) {
return n;
} else {
int a = n / 10;
int b =n % 10;
return mystery(a + b);

}

- What is the result of the following call?
mystery (648)

A recursive trace

mystery (648) :
=int a = 648 / 10; // 64
=int b = 648 % 10; // 8
= return mystery(a + Db); // mystery (72)

mystery (72) :

=int a = 72 / 10; // 7

= int b = 72 % 10; // 2

= return mystery(a + b); // mystery(9)

mystery (9) :

" return 9;

L
Recursive tracing 2

- Consider the following recursive method:

public static int mystery(int n) {
if (n < 10) {
return (10 * n) + n;
} else {
int a = mystery(n / 10);
int b = mystery(n % 10);
return (100 * a) + b;

}

- What is the result of the following call?
mystery (348)

L
A recursive trace 2

mystery (348)

|11nt a = mystery

(34);

lint a = mystery (3);
+ 3

)

return (10 * 3) ; // 33

4

lint b = mystery (4
return (10 * 4) + 4; // 44
- return (100 * 33) + 44; // 3344

=1int b = mystery(8);
return (10 * 8) + 8; // 88

- return (100 * 3344) + 88; // 334488

- What is this method really doing?

Selection Sort

- Let’s sort an array that consists of randomly inserted
items.

Selection Sort

R - :
SWAP

- prototype:

Recursive Selection Sort

* index refers to the starting element. When first calling, it is O.

L
Binary Search

- Avalue is searched in a sorted array. If found, the index of
the item is returned, otherwise -1 is returned.

- Macro for ‘COMPARE’:

L
Binary Search

Let’s search for 18:

4 13| 18 | 19 | 24 | 27

LEFT RIGHT

LEFT RIGHT

4 A | 481 2% | 29| 2ZF

LEFT RIGHT

Binary Search (revisited)

Binary Search (revisited)

search left right | middle

list
18 0 9 4

2

main

search | left | right | middle
list

B [o |3 | 3

case 1 2
search | left right | middle

list
18 2 3 2

=

case -1 B

Permutation problem

- Finding all the permutations of a given set with size n=1.
- Remember there are n! different sequences of this set.
- Example: Find all the permutations of {a,b,c}

(abc)
(acb) —p(bac)
(b ac)
(b c a) (cba)
(c b a)

(cab)

Permutation problem

- Example: Find all the permutations of {a,b,c,d}

- All the permutations of {b,c,d} follow ‘a’
- All the permutations of {a,c,d} follow ‘b’
- All the permutations of {a,b,d} follow ‘C’
- All the permutations of {a,b,c} follow ‘d’

Factorial Function

‘nl=n*(n-1)*n-2)*..*2*1 forany integer n>0
0!'=1

- lterative Definition:

D
Factorial Function

Recursive Definition

- To define n! recursively, n! must be defined in terms of the factorial of
a smaller number.

- Observation (problem size is reduced):
n'=n*n-1)!

- Base case:
O!'=1

- We can reach the base case by subtracting 1 from n if n is a positive
integer.

L
Factorial Function

Recursive Definition

Recursive definition

n'=n*mn-1)! if n>0

This fact function satisfies the four criteria of a recursive solution.

Four Criteria of a Recursive Solution

1. A recursive function calls itself.
= This action is what makes the solution recursive.

2. Each recursive call solves an identical, but smaller, problem.

» A recursive function solves a problem by solving another problem that is identical in nature
but smaller in size.

3. Atestfor the base case enables the recursive calls to stop.

* There must be a case of the problem (known as base case or sto&ping case) that is handled
differently from the other cases (without recursively calling itself.)

» In the base case, the recursive calls stop and the problem is solved directly.

4. Eventually, one of the smaller problems must be the base case.

» The manner in which the size of the problem diminishes ensures that the base case is
eventually is reached.

Fibonacci Sequence

- It is the sequence of integers:

O 1 1 2 3 5 8

- Each element in this sequence is the sum of the two
preceding elements.

- The specification of the terms in the Fibonacci sequence:

n ifnisOorl(i.e.n<?2)
t- —

n

t o+t {otherwise

n—-1

Fibonacci Sequence

- Iterative solution

Fibonacci Sequence

- Recursive solution

int fibonacci(int n)

{

if (n<2)
return n;
else
return (fibonacci(n-2)+fibonacci(n-1));

Performance Analysis

L
Running Time

“ As soon as an Analytic Engine exists, it will necessarily guide the future
course of the science. Whenever any result is sought by its aid, the question
will arise—By what course of calculation can these results be arrived at by
the machine in the shortest time? ” — Charles Babbage (1864)

how many times do you
have to turn the crank?

Analytic Engine

Observations
Example-1

3-SuM. Given N distinct integers, how many triples sum to exactly zero?

8
30 -40 -20 -10 40 0 10 5 ‘

30 -40 10 0

)) 2 30 20 -10 0

% java ThreeSum 8ints.txt

4 3 -40 40 0 0
4 .10 0 10 0

Context. Deeply related to problems in computational geometry.

Observations
Example-1: 3-SUM brute force algorithm

for (int i =0; i < N; i++)
for (int j = i+1; j < N; j++)
for (int k = j+1; k < N; k++) check each triple
if (ali] + a[j] + a[k] == 0) for simplicity, ignore
count++; integer overflow

Empirical Analysis

Run the program for various input sizes and measure running time.

— time (seconds) t

250 0.0

500 0.0
1,000 0.1
2,000 0.8
4,000 6.4
8,000 51.1

16,000 ?

Data Analysis

Standard plot. Plot running time T(N) vs. input size N.

standard plot 5q -

running time T(N)
w S
o o
1 |

N
o
|

10 -

Mathematical Models for Running Time

Total running time: sum of cost x frequency for all operations.

« Need to analyze program to determine set of operations.
» Cost depends on machine, compiler.

« Frequency depends on algorithm, input data.

THE CLASSH. WORK T Ol Woms
NIWLY LPDATID AND REVISEX Nw

The Art of The Art of The Art of The Art of
Computer Computer Computer Computer
Programming Programming Programming Programming

Fundamertal Algorithes N T e sl A vt P
Third Edition Theed 1ahee =

DONALD E. KNUTH DONALD E KNUTH

DONALD E. KNUTH DONALD E KNUTH

In principle, accurate mathematical models are available.

Donald Knuth
1974 Turing Award

Cost of Basic Operations

Challenge. How to estimate constants.

operation example nanoseconds 1

integer add a+b 2.1
integer multiply a*b 2.4
integer divide a/b 5.4

floating-point add a+b 4.6
floating-point multiply a*b 4.2
floating-point divide a/b 13.5
sine Math.sin(theta) 91.3
arctangent Math.atan2(y, x) 129.0

t Running OS X on Macbook Pro 2.2GHz with 2CGB RAM

Cost of Basic Operations

Observation. Most primitive operations take constant time.

operation example nanoseconds t

variable declaration int a ¢
assignment statement a=>b c2
integer compare a<b e
array element access ali] Ca
array length a.length Cs
1D array allocation new int[N] cs N
2D array allocation new int[N][N] e N2

Caveat. Non-primitive operations often take more than constant time.

\

novice mistake: abusive string concatenation

Example: 1-Sum

Q. How many instructions as a function of input size N?

int count = 0;
for (int i = 0; i < N; i++)
if (a[i] == 0)
count++;

N array accesses

variable declaration 2
assignment statement 2
less than compare N+1
equal to compare N
array access N

increment Nto2 N

Example: 2-Sum

Q. How many instructions as a function of input size N?

int count = 0;
for (int i =0; i < N; i++)
for (int j = i+1l; j < N; j++)
if (a[i] + a[j] == 0)
count++;

Awl‘-'
L3

0+14+24+...+(N-1) N(N-1)

Pf. [n even] _
HEEN

1 1

0+1+2+...+(N—-1) = 5N2 - 3N

half of half of
square diagonal

Example: 2-Sum

Q. How many instructions as a function of input size N?

int count = 0;
for (int i =0; i < N; i
for (int j = i+1l; j < N;
if (a[i] + a[j] == 0)

v/

j++)

count++;

0+14+24...+(N-1)

-

N(N-1)

NN
L3

variable declaration N+2
assignment statement N+2
less than compare BIN+1)(N+2) h
equal to compare BNN-1)
> tedious to count exactly
array access NN-1)
increment BKNIN-1)tON(N-1)

Simplifying the Calculations

“ It is convenient to have a measure of the amount of work involved

in a computing process, even though it be a very crude one. We may
count up the number of times that various elementary operations are
applied in the whole process and then given them various weights.
We might, for instance, count the number of additions, subtractions,
multiplications, divisions, recording of numbers, and extractions

of figures from tables. In the case of computing with matrices most
of the work consists of multiplications and writing down numbers,
and we shall therefore only attempt to count the number of
multiplications and recordings. ” — Alan Turing

ROUNDING-OFF ERRORS IN MATRIX PROCESSES
By A. M. TURING

(National Physical Laboratory, Teddington, Middiesex)
[Reostved & Novernber 1947)

SUMMARY
A number of methods of solving sets of hnear equations and tng
are discused. The theory of the rounding off srvors involved s investigated for
some of the methods. In all cnsen snmmined, incloding the well kn ‘Gan
elumination process’, it & found that the errore are normally quite maderate no
enponential buld up meed aocur

Simplification: cost model

Cost model. Use some basic operation as a proxy for running time.

int count = 0;
H

for (int i = i < N; i+4)

for (int j = i+1; j < N; j++)
if (@il + a[ij]l = 0)
count++;

04+1+42+...+(N-1)

Aw'.—.
23

N(N-1)

variable declaration N+2
assignment statement N+2
less than compare LN+ D) (N+2)
equal to compare LUN(N-1)
array access N(N-1) «——— cost model = array accesses
. (we assume compiler/JVM do not
increment LN(N-1toONWN-1)

optimize any array accesses away’)

L
Asymptotic Notation: 2-SUM problem

Q. Approximately how many array accesses as a function of input size N?

int count = 0;
for (int i = 0; i < N; i++)
for (int j = i+1; j < N; j++)
if (a[i] + a[j] == 0) « “inner loop”

count;\
0+1+24...+(N=1)

A. ~ NZ2array accesses.

N(N-1)

Il
53
X

Asymptotic Notation: 3-SUM problem

Q. Approximately how many array accesses as a function of input size N?

int count = 0;
for (int 1 =0; 1 < N; i++)
for (int j = i+1; j < N; j++)
for (int k = j+1; k < N; k++)
if (a[i] + a[j] + a[k] == 0) =« “inner loop"
count++;

Cﬁ _ N(N-1)(N-2)
B 3!
A. ~¥% N?array accesses. e

~

-
6

Binary search (jJava implementation)

Invariant. If key appears in array a[], then a[1o] = key = a[hi].

one "3-way compare”

Binary search: mathematical analysis

Proposition. Binary search uses at most 1 +1g N key compares to search in
a sorted array of size .

Def. T(N) = # key compares to binary search a sorted subarray of size < N.

Binary search recurrence. T(W) < T(N/2) + 1 forN =1, with T(1)=1.
t t

left or right half possible to implement with one
(floored division) 2-way compare (instead of 3-way)

Pf sketch. [assume N is a power of 2]

TN = T(N/2)+1 [given]
< TWN/H+1+1 [apply recurrence to first term]
< TN/ +1+1+1 [apply recurrence to first term]
<

ITININ+1+1+ ...+ 1 [stopapplying, I(1)=1]

= 1+1gN o

L
Types of Analyses

Best case : Lower bound on cost.
Determined by “easiest” input.
Provides a good for all inputs.

Worst case : Upper bound on cost.
Determined by “most difficult” input..
Provides a guarantee for all inputs.

Average case : Expected cost for random input.

Need a model for “random” input.
Provides a way to predict performance.

slide by R. Sedgewick and K.Wayne

L
Types of Analyses

Ex 1. Array accesses for brute-force 3-Sum.

Best: ~ Y% N3

Average: ~ % N?

Worst: ~ % N? Ex 2. Compares for binary search.
Best: ~ 1
Average: ~ IgN

Worst: ~ IgN

Mathematical Models for Running Time

In principle, accurate mathematical models are available.

In practice,
« Formulas can be complicated.

« Advanced mathematics might be required.
« Exact models best left for experts.

costs (depend on machine, compiler)

— 7\ T

In=ciA+ 2B+ c3C +csD + s E
A = array access

B = integer add § frequencies

C = integer compare “— (depend on algorithm, input)
D = increment 7

E = variable assignment

Bottom line. We use approximate models in this course: T(N) ~ ¢ N3.

L
Asymptotic notation: O (Big Oh)

f(n) = O(g(n)) iff there exist positive constants ¢ and n, such that
f(n) <=cg(n) for alln,n >=n,

3n+2 = 0(n) as 3n+2 <=4n foralln>=2
10n%+4n+2 = O(n?) as 10n°+ 4n+ 3 <=11n? for n>=5
6*2™ + n%= 0O(2m) 6%2" + n? <= T*2n for n>=4
3n+3 = O(n) Correct, OK.

3n+3 = 0O(n?) Correct, NO!

Question

How many array accesses does the following code fragment make as a
function of N?

int count = 0;
for (int i = 0; i < N; i++)
for (int j = i+1l; j < N; j++)
for (int k = 1; k < N; k = k*2)
if (a[i] + al[j] >= a[k])
count++;

A. ~3N2

B. ~3/2N2IgN
C. ~32 N3

D. ~3 N3

E. Idon't know.

Performance Analysis

- There are various criteria in order to evaluate a program.

- The questions:

- Does the program meet the requirements determined at the
beginning?

- Does it work correctly?

- Does it have any documentation on the subject of how it works?

- Does it use the function effectively in order to produce the logical
values: TRUE and FALSE?

- Is the program code readable?

- Does the program use the primary and the secondary memory
effectively?

- Is the running time of the program acceptable?

Performance Analysis

Performance Evaluation

Space Complexity Time Complexity

L
Space Complexity

- Memory space needed by a program to complete its
execution:
- Afixed part 2 ¢
- Avariable part - S, (instance)

S(P) = ¢ + S/(instance)

Sabc(|)=0

Ssum(n)=0

L
Space Complexity

- Recursive function call:

- What is the total variable memory space of this method for
an input size of 20007?

Time Complexity

- Total time used by the program is: T(P)

- Where T(P)=compile time + run (execution) time (Tp)

Time Complexity

- What is the number of steps required to execute this
method?

2n+2

Time Complexity

- What is the number of steps required to execute this
method?

2rows*cols+2rows+1

L
O (Big Oh) Notation

- Time complexity = algorithm complexity
- f(n)<cg(n) = 1(n)=0(g(n))

* Tsum(N)=2n+3 2 T5u,(n)=0(n)
: Trsum(n)=2n+2 2 Tsum(n)=0(n)

- T,qq(rows,cols)=2rows*cols+2rows+1 = T,44(n)=O(rows*cols)
=O(n?)

L
Asymptotic Notation

- Example: f(n)=3n3+6n2+7n

- What is the algorithm complexity in O notation?

Practical Complexities

Complexity
(tlme)

constant
logn logarithmic 0 1 2 3 4 5
n linear 1 2 4 8 16 32
nlogn log linear 0 2 8 24 64 160
n2 quadratic 1 4 16 64 256 1024
n3 cubic 1 8 64 512 4096 32768
2 exponential 2 4 16 256 65536 329496729
n! factorial 1 2 24 40326 2092278 26313*1033

9888000

Practical Complexities

log-log plot
512T -

|
exponential

64T -

time

8T -

4T

2T - S
logarithmic

constant

| I 1 I | I I | |

|
IK 2K 4K 8K 512K

size

O T T T S

20
30

40
50
100
1000

10.000

100.000

1.000.000

0.01p

0.02u
0.03u

0.04pu
0.05u
0.10p

Ty

10

100p

1ms

0.03p

0.09u
0.15u

0.21p
0.28u
0.66u
9.96u

130.03u

1.66ms

19.92ms

0.1p
0.4
0.9u

1.6
2.5
10

1ms

100ms

10sec

16.67min

8y
27
64u
125y
1ms

1sec

16.67min

11.57d

31.71yr

160
810p

2.56ms
6.25ms
100ms
16.67min

115.7d

3171yr

3.17*107
yr

10 sec

2.84 hr
6.83 d

121.36 d
3.1yr
3171 yr

3.17*10"3
yr
3.17*10%
yr
3.17*10%3
yr
3.17*10%
yr

1 ms

1 sec
18.3 min
13 d
4*10"3 yr

Survey of Common Running Times

Tilde notation

« Estimate running time (or memory) as a function of input size N.
« lgnore lower order terms.
— when N is large, terms are negligible
— when N is small, we don't care

Ex1. YN2+20N +16 ~ KNN3
Ex2. Y%N? + 100N+ + 56 ~ %N? EBEET Jf N6 = N2 L NI
Ex3. WN2-1uN2+M Ig ~ ¥%N? e
. =
N— 1,000
discard lower:ou:der terms N Laading-tarm approximation
(e.g., N=1000: 166.67 million vs. 166.17 million)

Technical definition. AN)~ g(N) means hm W _,

N—== o(N)

Tilde Notation (~) (same as 6-notation)

» Estimate running time (or memory) as a function of input size N.

« Ignore lower order terms.

- when N is large, terms are negligible
- when N is small, we don't care

variable declaration
assignment statement
less than compare
equal to compare
array access

increment

N+2
N+2
LN+ N+2)
“N(N-1)
N(N-1)

BN(N-1)toN(N-1)

~%BN?to ~N?

L
Asymptotic notation: Q (Omega)

f(n) = O(g(n)) iff there exist positive constants ¢ and n, such that
f(n) >=cg(n) foralln,n >=n,

an+2=0)(n) as 3n+2 >= 3n foralln>=1
10n2+4n+2=0Q(n? as 10n®+4n+ 2 >=n? for n>=1
627+ n2= (Q(2n) 6%27 + n2>= 2n for n>=1
3n+3 =) (n) Correct, OK.

3n+3=0) (1) Correct, NO!

L
Asymptotic notation: © (theta)

1R

(same as “~” notation)

f(n) = O(g(n)) iff there exist positive constants c,, ¢,, and n, such that

c,g(n) <=1f(n) <= c,g(n) foralln,n >=n,

3n+2 = ((n) as 3n+2 >=3n for all n>= 1
10n2+4n+2 =F®?) as 10n?+ 4n+ 2 >=n? for n>=1
6*27 + n2= (2 6%28 + n2>= 2n for n>=1
an+3=() (n) Correct, OK.

3n+3 = () (2n) Correct, not used!

Linear time: O(n)
Linear time. Running time is proportional to input size.

Computing the maximum. Compute maximum of n numbers q;. ..., a,.

Linear time: O(n)

Merge. Combine two sorted lists A=a,.a,.....a, with B=b,.b,.b, into sorted
whole.

/1117 | A

Merged result

.
™S

/// b B

Claim. Merging two lists of size n takes O(n) time.
Pf. After each compare, the length of output list increases by 1.

L
Linearithmic time: O(n log n)

O(n log n) time. Arises in divide-and-conquer algorithms.

Sorting. Mergesort and heapsort are sorting algorithms that perform

O(n log n) compares.

Largest empty interval. Given n time-stamps x;.....x, on which copies of a

file arrive at a server, what is largest interval when no copies of file arrive?

O(n log n) solution. Sort the time-stamps. Scan the sorted list in order,
identifying the maximum gap between successive time-stamps.

Quadratic time: O(n?)

Ex. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane (x.v)). (x,. V,),
find the pair that is closest.

O(n2) solution. Try all pairs of points.

Remark. Q(n?) seems inevitable, but this is just an illusion. [see Chapter 5]

L
Cubic time: O(n3)

Cubic time. Enumerate all triples of elements.

Set disjointness. Given n sets S;. ..., S, each of which is a subset of
1.2.....n, is there some pair of these which are disjoint?

O(n3) solution. For each pair of sets, determine if they are disjoint.

Polynomial time: O(n¥)

Independent set of size k. Given a graph, are there k nodes such that no
two are joined by an edge? AN

k is a constant

O(nk) solution. Enumerate all subsets of & nodes.

foreach subset S of k nodes {
check whether S in an independent set
if (S is an independent set)
report S is an independent set

}

* Check whether S is an independent set takes O(k?) time.

* Number of k element subsets = (n) _nn-1)n-2)x---x(@n-k+1) _ n*
[S = h— e .

. O(2nE] k)= O, k kE—1)(k—2) x -~ x 1 2]

poly-time for k=17,
but not practical

Exponential time

Independent set. Given a graph, what is maximum cardinality of an
independent set?

0O(n? 2n) solution. Enumerate all subsets.

Sublinear time

Search in a sorted array. Given a sorted array A of n numbers, is a given
number x in the array?

O(log n) solution. Binary search.

References

- Kevin Wayne, “Analysis of Algorithms”
- Sartaj Sahni, “Analysis of Algorithms”
- BBM 201 Notes by Mustafa Ege

- Marty Stepp and Helene Martin, Recursion

