
BBM 201
DATA STRUCTURES

Lecture 7:
Introduction to the Lists
(Array-based linked lists)

2019-2020 Fall

Lists

Lists
• We used successive data structures up to now:

• If aij in the memory location Lij, then aij+1 is in Lij+c (c: constant)
• In a circular queue, if the ith item is in Li, (i+1)st item is in (Li+c)%n.
• In a stack, if the top item is in L T, the below item is in L T-c.

Insertion and deletion:
O(1)

Sequential Access
(ascending or descending)

Example 1:
• Alphabetically ordered lists:

• Delete ‘Ape’, what happens?
• Delete ‘Cat’, what happens?
• Add ‘Bear’, what happens?
• Add ‘Chicken’, what happens?

Ape Butterfly Cat Dog Mouse

Sequential Access
(ascending or descending)

Example 1:
• Delete ‘Ape’

t0 Ape Butterfly Cat Dog Mouse

t1 Butterfly Cat Dog Mouse

t2 Butterfly Cat Dog Mouse

t3 Butterfly Cat Dog Mouse

t4 Butterfly Cat Dog Mouse

t5 Butterfly Cat Dog Mouse

Sequential Access
(ascending or descending)
Example 1:
• Add ‘Ant’

• What if array is full?

t0 Ape Butterfly Cat Dog Mouse

t1 Ape Butterfly Cat Dog Mouse

t2 Ape Butterfly Cat Dog Mouse

t3 Ape Butterfly Cat Dog Mouse

t4 Ape Butterfly Cat Dog Mouse

t5 Ape Butterfly Cat Dog Mouse

t6 Ant Ape Butterfly Cat Dog Mouse

Sequential Access
(ascending or descending)

Example 2:
• The result of the multiplication of two polynomials

• (x7 + 5x4 - 3x2 + 4)(3x5 - 2x3 + x2 + 1)

• Powers are not ordered. So either we need to sort or shift in order to
solve this problem.

3 -2 1 1 15 -10 5 5 -9 6 -3 12 … …

12 10 9 7 9 7 6 4 7 5 4 5 … …

Sorted items
• We want to keep the items sorted, and we want to avoid

the sorting cost.
• We may need to sort after each insertion of a new item.
• Or we need to do shifting.

What is the solution?

Towards the Linked List
• Idea :

• Each data item has a link (index) to the next data item
• Each free item slot has a link to the next free item slot
• We remember the locations of the first item and the first free slot

link: 1
item 10 link: 2

item 21 link: 43 link: 5 4link: -1
item 32p

first = 0
free_ = 3

link:5

Initialisation

link: ?
?0 link: ?

?1 link: ?
?3 link: ?

?4link: ?
?2p

first = ?
free_ = ?

link: ?
?5

typedef struct{
char name[5];
//other fields
int link;

} item;

item linkedlist[MAX_LIST];
int first;
int free_;

#include <stdio.h>
#include <string.h>

#define MAX_LIST 6
#define TRUE 1
#define FALSE 0
#define NULL -1

Initialisation

link: 10 link: 21 link: 43 link: 5 4link: 32p

first = NULL
free_ = 0

link: -15

void initialise()
{

first = NULL;
free_ = 0;
for (int i = 0; i < MAX_LIST; i++)

linkedlist[i].link = i + 1;

linkedlist[MAX_LIST - 1].link = NULL;
}

get a free item slot

link: 1
a0 link: 2

b1 link: -1
d3 link: 5 4link: 3

c2p link: -1 5

first = 0
free_ = 4

int get_free_slot(int* slot) {
if (free_ == NULL) // All slots are occupied

return FALSE;
else // Return the first free slot

*slot = free_;
return TRUE;

}

find item

link: 1
a0 link: 2

b1 link: -1
d3 link: 5 4link: 3

c2p link: -1 5

first = 0
free_ = 4

int find_item(char name[]) {
if (first == NULL) // list is empty

return NULL;
else { // iterate over items

for (int next = first; next != NULL; next = linkedlist[next].link)
if (strcmp(linkedlist[next].name, name) == 0)

return next;
}
return NULL;

}

insert an item

link: 1
a0 link: 2

b1 link: 43 link: 5 4link: -1
c2p link: -1 5

first = 0
free_ = 3

insert("d")

link: 1
a0 link: 2

b1 link: -1
d3 link: 5 4link: 3

c2p link: -1 5

first = 0
free_ = 4

insert an item

link: 1
a0 link: 2

b1 link: -1
d3 link: 5 4link: 3

c2p link: -1 5

first = 0
free_ = 4

insert("bb")

link: 1
a0 link: 4

b1 link: -1
d3 link: 2

bb4link: 3
c2p link: -1 5

first = 0
free_ = 5

insert an item

insert("_a")

link: 1
a0 link: 4

b1 link: -1
d3 link: 2

bb4link: 3
c2p link: 0

_a5

first = 5
free_ = NULL

link: 1
a0 link: 4

b1 link: -1
d3 link: 2

bb4link: 3
c2p link: -1 5

first = 0
free_ = 5

int insert_item(char name[]) {
int free_slot;
if (get_free_slot(&free_slot)) { // get_free_slot successful

strcpy(linkedlist[free_slot].name, name);
free_ = linkedlist[free_slot].link;
int next = first;
int prev = NULL;
while (next != NULL && strcmp(linkedlist[next].name, name) < 0) {

prev = next;
next = linkedlist[next].link;

}

if (prev == NULL) { // Insert as the first item
linkedlist[free_slot].link = first;
first = free_slot;

} else {
linkedlist[free_slot].link = next;
linkedlist[prev].link = free_slot;

}

printf("Item %s inserted. \n", name);
return TRUE;

}
else {

// No free slot exists
printf("No free slot exists.\n");
return FALSE;

}
}

delete an item

delete("e")

NOT FOUND!

link: 1
a0 link: 4

b1 link: -1
d3 link: 2

bb4link: 3
c2p link: -1 5

first = 0
free_ = 5

delete an item

delete("c")

link: 1
a0 link: 4

b1 link: -1
d3 link: 2

bb4link: 3
c2p link: -1 5

first = 0
free_ = 5

link: 1
a0 link: 4

b1 link: -1
d3 link: 3

bb4link: 52p link: -1 5

first = 0
free_ = 2

delete an item

delete("a")

link: 20 link: 4
b1 link: -1

d3 link: 3
bb4link: 52p link: -1 5

first = 1
free_ = 0

link: 1
a0 link: 4

b1 link: -1
d3 link: 3

bb4link: 52p link: -1 5

first = 0
free_ = 2

int delete_item(char name[]) {
int next = first;
int prev = NULL;
while (next != NULL && strcmp(linkedlist[next].name, name) != 0) {

prev = next;
next = linkedlist[next].link;

}

if (prev == NULL) // Deleting the first item
first = linkedlist[first].link;

else if (next != NULL) // Deleting normal item
linkedlist[prev].link = linkedlist[next].link;

else
return FALSE;

linkedlist[next].link = free_;
free_ = next;
return TRUE;

}

Example Code
• https://onlinegdb.com/rJk3gW76B

https://onlinegdb.com/rJk3gW76B

References
• Data Structures Notes, Mustafa Ege.
• Fundamentals of Data Structures in C. Ellis Horowitz,

Sartaj Sahni, and Susan Anderson-Freed, 1993.

