
BBM 201
DATA STRUCTURES

Lecture 11:
Data Structures for Strings

OUTLINE

‣ Tries
‣ R-way tries
‣ Patricia Trees
‣ Suffix Trees (details will be discussed in BBM202)
‣ Suffix Arrays (details will be discussed in BBM202)

Introduction

Numbers as key values: are data items of constant size and can be
compared in constant time.

In real applications, text processing is more important than the
processing of numbers

 We need different structures for strings than for numeric keys.

Motivating Example

Example: 112 < 467 , Numerical comparison in O(1).

 Compare Strings lexicographically does not reflect the similarity of
strings.
• Western > Eastern , Strings comparison in O(min(|s1|,|s2|)). where |s|

denotes the length of the string s

Text fragments have a length; they are not elementary objects that
the computer can process in a single step.

• Pneumonoultramicroscopicsilicovolcanoconiosis !!!

Applications

Bioinformatics (DNA/RNA or protein sequence data).

Search Engines

Spell checkers

Tries. [from retrieval, but pronounced "try"]
• Store characters in nodes (not keys).

• Each node has R children, one for each possible character.

• Store values in nodes corresponding to last characters in keys.

6

Tries

e

r

e

a l

l

s

b

y

o

h

e

t

7

50

3

1

6

4

s

l

l

e

h

s

root
link to trie for all keys

that start with s link to trie for all keys
that start with she

value for she in node
corresponding to last

key character

key value

by 4

sea 6

sells 1

she 0

shells 3

shore 7

the 5

for now, we do not 
draw null links

Follow links corresponding to each character in the key.
• Search hit: node where search ends has a non-null value.

• Search miss: reach a null link or node where search ends has null value.

7

Search in a trie

e

r

get("shells")

e

a l

l

s

b

y

o

h

e

t

7

50

3

1

6

4

ss

ll

ll

ee

hh

ss

return value associated
with last key character

(return 3)

3

Follow links corresponding to each character in the key.
• Search hit: node where search ends has a non-null value.

• Search miss: reach a null link or node where search ends has null value.

8

Search in a trie

e

r

get("she")

e

a l

l

s

b

y

o

h

e

t

7

50

3

1

6

4

s

l

l

ee

hh

ss

search may be terminated
at an intermediate node

(return 0)

0

Follow links corresponding to each character in the key.
• Search hit: node where search ends has a non-null value.

• Search miss: reach a null link or node where search ends has null value.

9

Search in a trie

e

r

get("shell")

e

a l

l

s

b

y

o

h

e

t

7

50

3

1

6

4

s

ll

ll

ee

hh

ss

no value associated
with last key character

(return null)

Follow links corresponding to each character in the key.
• Search hit: node where search ends has a non-null value.

• Search miss: reach a null link or node where search ends has null value.

10

Search in a trie

e

r

get("shelter")

e

a l

l

s

b

y

o

h

e

t

7

50

3

1

6

4

s

l

ll

ee

hh

ss

no link to 't'
(return null)

Follow links corresponding to each character in the key.
• Encounter a null link: create new node.

• Encounter the last character of the key: set value in that node.

11

Insertion into a trie

e

r

put("shore", 7)

e

a l

l

s

e

l

s

b

y

l

o

h

e

t

hh

ss

7

50

3

1

6

4

Trie construction demo

12

trie

e

Trie construction demo

13

put("she", 0)

h

s

0

value is in node
corresponding to
last character

key is sequence
of characters from
root to value

e

Trie construction demo

14

she
trie

h

s

0

h

e

Trie construction demo

15

she
trie

s

0

h

e

Trie construction demo

16

she
put("sells", 1)

s

l

l

e

ss

1

0

h

e

Trie construction demo

17

she
sells
trie

l

l

s

s

e

1

0

h

e

Trie construction demo

18

she
sells
trie

l

l

s

s

e

0

1

h

ea

Trie construction demo

19

she
sells
put("sea", 2)

l

l

s

ee

ss

2

1

0

h

ea

Trie construction demo

20

she
sells
sea
trie

l

l

s

s

e

1

2 0

a

Trie construction demo

21

she
sells
sea
put("shells", 3)

l

l

s

e

s

l

l

ee

hh

ss

3

1

2 0

a

Trie construction demo

22

she
sells
sea
trie

l

l

s

l

s

s

l

he

e

3

1

2 0

y

b

a

Trie construction demo

23

she
sells
sea
put("by", 4)

l

l

s

l

s

s

l

he

e

4

3

1

2 0

b

y

a

Trie construction demo

24

she
sells
sea
by
trie

l

l

s

l

s

s

l

he

e

3

1

2

4

0

b

y

a

Trie construction demo

25

she
sells
sea
by
put("the", 5)

l

l

s

l

s

s

l

he

e e

h

t

5

3

1

2

4

0

a

Trie construction demo

26

she
sells
sea
by
the
trie

e

l

l

s

l

s

b

y

s

l

h h

t

e e 5

3

1

2

4

0

2a

Trie construction demo

27

put("sea", 6)

l

l

s

e

l

s

b

y

l

h h

e

t

a

ee

ss

6

overwrite
old value with
new value

5

3

1

4

0

Trie construction demo

28

trie

e

a l

l

s

e

l

s

b

y

s

l

h h

e

t

5

3

1

6

4

0

Trie construction demo

29

trie

e

a l

l

s

e

l

s

b

y

s

l

h h

e

t

3

1

6

4

0 5

e

r

Trie construction demo

30

she
sells
sea
by
the
put("shore", 7)

e

a l

l

s

e

l

s

b

y

l

o

h

e

t

hh

ss

7

5

3

1

6

4

0

Trie construction demo

31

she
sells
sea
by
the
shore
trie

e

a l

l

s

e

l

s

b

y

s

l

o

r

e

h

t

h

e 5

7

3

1

6

4

0

32

Trie representation: implementation

Node. A value, plus pointers to R nodes.

class Node
{
 int value;
 Node* next[R];
}

A child node for each character in Alphabet.
No need to search for character, but a pointer

reserved for each character in memory

 #define R 256

 Node root;

 put(&root, key, val, 0);

 void put(Node*& x, char* key, int val, int d)
 {
 if (x == NULL)
 x = getNode();
 if (d ==strlen(key)) {x->value = val; return;}
 char c = key[d];
 put(x->next[c], key, val, d+1);
 }

 ⋮

33

R-way trie: implementation

extended ASCII

Node* getNode(){

 Node* pNode = NULL;

 pNode = new Node;

 if (pNode){

 for (int i = 0; i < R; i++)

 pNode->next[i] = NULL;

 }

 return pNode;

}

34

R-way trie: implementation (continued)

int get(Node* x, char key, int d)
 {
 if (x == NULL) return -1; //-1 refers no match
 if (d == strlen(key))
 return x->value;
 char c = key[d];
 return get(x->next[c], key, d+1);
 }

}

35

R-way trie: implementation (continued)

Trie performance

Search hit. Need to examine all L characters for equality.

Search miss.
• Could have mismatch on first character.

• Typical case: examine only a few characters (sublinear).

Space. R links at each node; R null links at each leaf.
(but sublinear space possible if many short strings share common
prefixes)

Bottom line. Fast search hit and even faster search miss, but wastes
space.

36

Tries cont.

• Prefix Vs. Suffix.
Ex. “computer”.

- Prefix:(c, co, com).
- Suffix: (r, er, ter)

• Each node in this tree structure corresponds to a prefix of some
strings of the set.

• If the same prefix occurs several times, there is only one node to
represent it.

• The root of the tree structure is the node corresponding to the empty
prefix.

String Termination

Strings are sequences of characters from some alphabet. But for use in
the computer, we need an important further information: how to
recognize where the string ends.

There are two solutions for this:
1. We can have an explicit termination character, which is added at the

end of each string, but may not occur within the string “\0” (ASCII
code 0) , or

2. We can store together with each string its length.

String Termination

• The use of the special termination character ’\0’ has a number of
advantages in simplifying code.

• It has the disadvantage of having one reserved character in the
alphabet that may not occur in strings.

• There are many nonprintable ASCII codes that should never occur in
a text and ’\0’ is just one of them.

• There are also many applications in which the strings do not represent
text, but, for example, machine instructions.

eft

x

e

\0

a

m

p

l

a

l

l

\0

i

r

e

Strings:

• exam

• example

• fail

• false

• tree

• trie

• true

\0

s

e

\0

iu

e

\0

e

\0

e

\0

Find, Insert and Delete

 To perform a find operation in this structure:
1. Start in the node corresponding to the empty prefix.
2. Read the query string, following for each read character the outgoing pointer

corresponding to that character to the next node.
3. After we read the query string, we arrived at a node corresponding to that

string as prefix.
4. If the query string is contained in the set of strings stored in the trie, and that

set is prefix-free, then this node belongs to that unique string.

Find, Insert and Delete

 To perform a find operation in this structure:
1. Start in the node corresponding to the empty prefix.
2. Read the query string, following for each read character the outgoing pointer

corresponding to that character to the next node.
3. After we read the query string, we arrived at a node corresponding to that

string as prefix.
4. If the query string is contained in the set of strings stored in the trie, and that

set is prefix-free, then this node belongs to that unique string.
To perform an insert operation in this structure:
1. Perform find
2. Any time we encounter a nil pointer we create a new node

Find, Insert and Delete

 To perform a find operation in this structure:
1. Start in the node corresponding to the empty prefix.
2. Read the query string, following for each read character the outgoing pointer

corresponding to that character to the next node.
3. After we read the query string, we arrived at a node corresponding to that

string as prefix.
4. If the query string is contained in the set of strings stored in the trie, and that

set is prefix-free, then this node belongs to that unique string.
To perform an insert operation in this structure:
1. Perform find
2. Any time we encounter a nil pointer we create a new node
To perform a delete operation in this structure:
1. Perform find
2. Delete all nodes on the path from ‘\0’ to the root of the tree unless we reach a

node with more than 1 child

44

String symbol table implementations cost summary

N = number of entries, L= key length,
R= alphabet size, w= average key length

R-way trie.
• Method of choice for small R.

• Too much memory for large R.

Challenge. Use less memory, e.g., 65,536-way trie for Unicode!

character accesses (worst case)

implementation Search hit Search miss insert
space

(references)

hashing
(separate chaining)

NL NL 1 N

R-way trie L L L RNw

 Alphabet Size

• The problem here is the dependence on the size of the alphabet which
determines the size of the nodes.

• There are several ways to reduce or avoid the problem of the
alphabet size.
• A simple method, is to replace the big nodes by linked lists of all the entries

that are really used.
• Another way to avoid the problem with the alphabet size R is alphabet

reduction. We can represent the alphabet R as set of k -tuples from some
direct product R1xR2 … xRk

For the standard ASCII codes, we

can break each 8-bit character by

two 4-bit characters, which reduces

the node size from 256 pointers to

16 pointers

Other Reduction Techniques

• The trie structure with balanced search trees as nodes

• The ternary trie structure: nodes are arranged in a manner similar to a
binary search tree, but with up to three children. each node contains
one character as key and one pointer each for query characters that
are smaller, larger, or equal

Patricia Tree (a.k.a. Compressed Trie)

• “Practical Algorithm To Retrieve information Coded in
Alphanumeric.”

• A path compression trie.

• The path compressed trie contains only nodes with at least two
outgoing edges.
• All internal nodes have >=2 child

• Edges may be labeled with strings instead of single characters.

• The edge labels are represented using the pointer/length string
representation. (Again null terminated strings)

S = {ape, apple, org, organ}

a

p

p

e

l

e

$

$

o

r

g

a

n

$

$

Trie

$: end of string symbol

S = {ape, apple, org, organ}

Trie
redundant nodes

a

p

p

e

l

e

$

$

o

r

g

a

n

$

$

S = {ape, apple, org, organ}

Trie
redundant nodes

Compressed Trie

ap

e$

org

an$$ple$

a

p

p

e

l

e

$

$

o

r

g

a

n

$

$

S = {ape, apple, org, organ}

Compressed Trie

Pointer and length representation of strings is used

ap

e$

org

an$$ple$

2

a | p | e | $

o | r | g | $

o | r | g | a | n | $

a | p | p | l | e | $

2 4

3

1 3

S = {ape, apple, org, organ}

Compressed Trie

a | p | e | $

a | p | p | l | e | $

Pointer and length representation of strings

o | r | g | a | n | $

a | b | c | d | … | o | … | z

length = 2

a | b | … | e | … | o | p |..

length = 2

a | b | … | e | … | o | … |

length = 4

a | b | … | e | … | o | … |

length = 3

a | b | … | e | f | … …| $ |

o | r | g | $

length = 1

a | b | … | e | … | o | … |

length = 0

length = 3

a | b | … | e | … | o | … |

Alternative Representation-via string array indexes

String Array

(word-index,

start-index,

end-index)

[0] [1] [2] [3] [4] [5]

[0] a p e $

[1] a p p l e $

[2] o r g $

[3] o r g a n $

Note that

a | b | … | e | … | o | … |

(w, s, e)

a | b | … | e | … | o | p |..|

(0, 0, 1)

a | b | … | e | … | $ | … |

(2, 0, 2)

a | b | … | e | … | o | … |

(0, 2, 3)

a | b | … | e | … | o | … |

(1, 2, 5)
a | b | … | e | … | o | … |

(2, 3, 3)

a | b | … | e | … | o | … |

(3, 3, 5)

a | b | … | e | … | o | p |..|

(-, -, -)

Patricia Tree (a.k.a. Compressed Trie)

• Searching for a string s in a Patricia Tree:
• similar to searching in a trie, except that when the search traverses

an edge it checks the edge label against a substring of s (instead of a
single char)

• if the substring matches, the edge is traversed.
• if there is a mismatch, the search fails without finding s.
• if the search uses up all the characters of s, then it is a hit.

• the leaf reached contains s.
• O(|s|)

ap

e$

org

an$$ple$

(2, 3, 3)

(0, 0, 1) (2, 0, 2)

(0, 2, 3) (1, 2, 5) (3, 3, 5)

an$

ap org

e$ ple$ $

Patricia Tree (a.k.a. Compressed Trie)

• Inserting a string s in a Patricia Tree:
• similar to searching up until the point where the search gets stuck

• since s is not in the tree
• if the search is over in the middle of an edge, e, then e is split into

two new edges, joined by a new node u
• the remainder of s becomes new edge label, which connects u to

the new leaf node
• if the search is over at a node u, the remainder of s becomes new

edge label, which connects u to the new leaf node
• O(|s|+|Σ|), |s| for search+|Σ| for node creation&initialization

[0] [1] [2] [3] [4] [5]

[0] a p e $

[1] a p p l e $

[2] o r g $

[3] o r g a n $

• Σ: alphabet

Patricia Tree (a.k.a. Compressed Trie)

[0] [1] [2] [3] [4] [5]

[0] a p e $

[1] a p p l e $

[2] o r g $

[3] o r g a n $

[4] o r t o $

(2, 3, 3)

(0, 0, 1) (2, 0, 2)

(0, 2, 3) (1, 2, 5) (3, 3, 5)

an$

ap org

e$ ple$ $

insert “orto”

Patricia Tree (a.k.a. Compressed Trie)

[0] [1] [2] [3] [4] [5]

[0] a p e $

[1] a p p l e $

[2] o r g $

[3] o r g a n $

[4] o r t o $

(2, 3, 3)

(0, 0, 1) (2, 0, 2)

(0, 2, 3) (1, 2, 5) (3, 3, 5)

an$

ap org

e$ ple$ $

search fails here: SPLITinsert “orto”

Patricia Tree (a.k.a. Compressed Trie)
[0] [1] [2] [3] [4] [5]

[0] a p e $

[1] a p p l e $

[2] o r g $

[3] o r g a n $

[4] o r t o $

(2, 3, 3)

(0, 0, 1)

(2, 0, 2)(0, 2, 3) (1, 2, 5)

(3, 3, 5)

an$

ap or

e$ ple$

$

u: splitted node

insert “orto”

(2, 0, 1)

g

Patricia Tree (a.k.a. Compressed Trie)
[0] [1] [2] [3] [4] [5]

[0] a p e $

[1] a p p l e $

[2] o r g $

[3] o r g a n $

[4] o r t o $

(2, 3, 3)

(0, 0, 1)

(2, 0, 2)(0, 2, 3) (1, 2, 5)

(3, 3, 5)

an$

ap or

e$ ple$

$

u: splitted node

insert “orto”

(2, 0, 1)

(4, 2, 4)

to$

new leaf node

g

Patricia Tree (a.k.a. Compressed Trie)
[0] [1] [2] [3] [4] [5]

[0] a p e $

[1] a p p l e $

[2] o r g $

[3] o r g a n $

[4] o r t o $

[5] a p r o n $

(2, 3, 3)

(0, 0, 1)

(2, 0, 2)(0, 2, 3) (1, 2, 5)

(3, 3, 5)

an$

ap or

e$ ple$

$

insert “apron”

(2, 0, 1)

(4, 2, 4)

to$g

search fails here:

NO NEED TO SPLIT

Patricia Tree (a.k.a. Compressed Trie)
[0] [1] [2] [3] [4] [5]

[0] a p e $

[1] a p p l e $

[2] o r g $

[3] o r g a n $

[4] o r t o $

[5] a p r o n $

(2, 3, 3)

(0, 0, 1)

(2, 0, 2)(0, 2, 3) (1, 2, 5)

(3, 3, 5)

an$

ap or

e$ ple$

$

insert “apron”

(2, 0, 1)

(4, 2, 4)

to$g

search fails here:

NO NEED TO SPLIT

(5, 2, 5)

ron$

Patricia Tree (a.k.a. Compressed Trie)
[0] [1] [2] [3] [4] [5]

[0] a p e $

[1] a p p l e $

[2] o r g $

[3] o r g a n $

[4] o r t o $

[5] a p r o n $

(2, 3, 3)

(0, 0, 1)

(2, 0, 2)(0, 2, 3) (1, 2, 5)

(3, 3, 5)

an$

ap or

e$ ple$

$

insert “apron”

(2, 0, 1)

(4, 2, 4)

to$g

search fails here:

NO NEED TO SPLIT

(5, 2, 5)

ron$

Patricia Tree (a.k.a. Compressed Trie)

• Removing a string s from a Patricia Tree:
• opposite of insertion
• locate the leaf corresponding to s and remove it from the tree

• if the parent node u is left with only one child, w, then we also
remove u and replace it with a single edge, e, joining u’s parent to
w.

• O(|s|+|Σ|), |s| for search+|Σ| for node creation

Patricia Tree (a.k.a. Compressed Trie)

[0] [1] [2] [3] [4] [5]

[0] a p e $

[1] a p p l e $

[2] o r g $

[3] o r g a n $

[4] o r t o $

(2, 3, 3)

(0, 0, 1) (2, 0, 2)

(0, 2, 3) (1, 2, 5) (3, 3, 5)

an$

ap org

e$ ple$ $

remove “org”

Patricia Tree (a.k.a. Compressed Trie)

[0] [1] [2] [3] [4] [5]

[0] a p e $

[1] a p p l e $

[2] o r g $

[3] o r g a n $

[4] o r t o $

(2, 3, 3)

(0, 0, 1) (2, 0, 2)

(0, 2, 3) (1, 2, 5) (3, 3, 5)

an$

ap org

e$ ple$ $

located leaf node for

removal

remove “org”

parent node: u

Patricia Tree (a.k.a. Compressed Trie)

[0] [1] [2] [3] [4] [5]

[0] a p e $

[1] a p p l e $

[2] o r g $

[3] o r g a n $

[4] o r t o $

(0, 0, 1) (2, 0, 2)

(0, 2, 3) (1, 2, 5) (3, 3, 5)

an$

ap org

e$ ple$

single child: w

remove “org”

parent node: u

Patricia Tree (a.k.a. Compressed Trie)

[0] [1] [2] [3] [4] [5]

[0] a p e $

[1] a p p l e $

[2] o r g $

[3] o r g a n $

[4] o r t o $

(0, 0, 1) (2, 0, 2)

(0, 2, 3) (1, 2, 5) (3, 3, 5)

an$

ap org

e$ ple$

single child: w

remove “org”

parent node: u

Remove u and join

parent(u) and w

Patricia Tree (a.k.a. Compressed Trie)

[0] [1] [2] [3] [4] [5]

[0] a p e $

[1] a p p l e $

[2] o r g $

[3] o r g a n $

[4] o r t o $

(0, 0, 1)

(0, 2, 3) (1, 2, 5)

(3, 0, 5)

ap organ$

e$ ple$

remove “org”

joined node

Patricia Tree-Alternative representations

• We skip these nodes and keep track of the number of skipped
characters.

• It contains a number, which is the number of characters that should
be skipped before the next relevant character is looked at.

• This reduces the required number of nodes from the total length of
all strings to the number of words in our structure.

• We need in each access a second pass over the string to check all
those skipped characters of the found string against the query string.

• This technique to reduce the number of nodes is justified only if the
alphabet is large.

Patricia Tree Example

Patricia Tree: Insert & Delete

• The insertion and deletion operations create significant difficulties.

• We need to find where to insert a new branching node, but this
requires that we know the skipped characters.

• One (clumsy) solution would be a pointer to one of the strings in the
subtrie reached through that node, for there we have that skipped
substring already available.

Suffix Trees

The suffix tree is a static structure that preprocesses a long string s and
answers for a query string q, if and where it occurs in the long string.

• Each substring of s is prefix of a suffix of s.

• If we construct a trie that stores all suffixes of the long string s, then
its nodes correspond to the substrings of s, and we can decide for any
query q in O(length(q)) whether it is a substring of s.

• This structure would use O(length(s)2) nodes.

Suffix tree

A more Compact Representation

No need to store all suffixes explicitly, but can encode each by a
beginning and end address in the long string S. ➔ O(length(s)) nodes
representation.

Suffix Arrays

The suffix array is an alternative structure to the suffix tree that was
developed by Manber and Myers (1993). It preprocesses a long string
and then answers for a query string whether it occurs as substring in
the preprocessed string.

Possible Advantages:
• Its size does not depend on the size of the alphabet.
• It offers a quite different tool to attack the same type of string

problems.
• Straightforward implementation and it is said to be smaller than suffix

trees

The Underlying Idea

To consider all suffixes of the preprocessed string s in lexicographic
order and perform binary search on them to find a given query string.

O(|s|logN)

|s|: length of the query string

N: suffix array size

