
BBM 201
DATA STRUCTURES

Lecture 11:
Priority Queues (Heaps)

2

Priority Queues
• Many applications require that we process records

with keys in order, but not necessarily in full sorted
order.

• Often we collect a set of items and process the one
with the current minimum value.
– e.g. jobs sent to a printer,
– Operating system job scheduler in a multi-user

environment.
– Simulation environments

• An appropriate data structure is called a priority
queue.

3

Definition
• A priority queue is a data structure that supports

two basic operations: insert a new item and
remove the minimum item.

Priority Queue
insertdeleteMin

4

Simple Implementations

• A simple linked list:
– Insertion at the front (O(1)); find minimum (O(N)), or
– Keep list sorted; insertion O(N), findMin O(1)

• A binary search tree:
– This gives an O(log N) average for both operations.
– But BST class supports a lot of operations that are not

required.
– Self-balancing BSTs O(log N) worst for both operations.

• An array: Binary Heap
– Does not require links and will support both operations

in O(logN) wost-case time. findMin in O(1) at worst.

5

Binary Heap

• The binary heap is the classic method used
to implement priority queues.

• We use the term heap to refer to the binary
heap.

• Heap is different from the term heap used in
dynamic memory allocation.

• Heap has two properties:
– Structure property
– Ordering property

6

Structure Property

• A heap is a complete binary tree,
represented as an array.

• A complete binary tree is a tree that is
completely filled, with the possible
exception of the bottom level, which is
filled from left to right.

7

Properties of a complete binary tree

• A complete binary tree of height h has between
2h-1 and 2h – 1 nodes

• The height of a complete binary tree is
⎣log2 N⎦.

• It can be implemented as an array such that:
– For any element in array position i :

• the left child is in position 2i,
• the right child is in the cell after the left child (2i + 1),

and
• the parent is in position ⎣ i/2 ⎦.

8

Figure 21.1
A complete binary tree and its array representation

9

Heap-Order Property

• In a heap, for every node X with parent P, the key
in P is smaller than or equal to the key in X.

• Thus the minimum element is always at the root.
– Thus we get the extra operation findMin in constant

time.
• A max heap supports access of the maximum

element instead of the minimum, by changing the
heap property slightly.

10

Figure 21.3
Two complete trees: (a) a heap; (b) not a heap

11

Binary Heap Class
template <class Comparable>
class BinaryHeap
{
 public:
 BinaryHeap(int capacity = 100);
 bool isEmpty() const;
 const Comparable & findMin() const;

 void insert(const Comparable & x);
 void deleteMin();
 void deleteMin(Comparable & minItem);
 void makeEmpty();

 private:
 int theSize; // Number of elements in heap
 vector<Comparable> array; // The heap array
 void buildHeap();
 void percolateDown(int hole);
};

12

Basic Heap Operations: Insert

• To insert an element X into the heap:
– We create a hole in the next available location.
– If X can be placed there without violating the

heap property, then we do so and are done.
– Otherwise

• we bubble up the hole toward the root by sliding the
element in the hole’s parent down.

• We continue this until X can be placed in the hole.
• This general strategy is known as a

percolate up.

13

Figure 21.7
Attempt to insert 14, creating the hole and bubbling the hole up

14

Figure 21.8
The remaining two steps required to insert 14 in the original heap shown
in Figure 21.7

15

Insert procedure
// Insert item x into the priority queue, maintaining heap

order.
// Duplicates are allowed.
template <class Comparable>
void BinaryHeap<Comparable>::insert(const Comparable & x)
{
 array[0] = x; // initialize sentinel
 if(theSize + 1 == array.size())
 array.resize(array.size() * 2 + 1);

 // Percolate up
 int hole = ++theSize;
 for(; x < array[hole / 2]; hole /= 2)
 array[hole] = array[hole / 2];
 array[hole] = x;
}

16

Delete Minimum
� deleteMin is handled in a similar manner as

insertion:
• Remove the minimum; a hole is created at the

root.
• The last element X must move somewhere in the

heap.
– If X can be placed in the hole then we are done.
– Otherwise,

• We slide the smaller of the hole’s children into the hole, thus
pushing the hole one level down.

• We repeat this until X can be placed in the hole.

� deleteMin is logarithmic in both the worst and
average cases.

17

Figure 21.10
Creation of the hole at the root

18

Figure 21.11
The next two steps in the deleteMin operation

19

Figure 21.12
The last two steps in the deleteMin operation

20

deleteMin procedure
// Remove the smallest item from the priority queue.
// Throw UnderflowException if empty.
template <class Comparable>
void BinaryHeap<Comparable>::deleteMin()
{
 if(isEmpty())
 throw UnderflowException();

 array[1] = array[theSize--];
 percolateDown(1);
}

21

// Internal method to percolate down in the heap.
// hole is the index at which the percolate begins.
template <class Comparable>
void BinaryHeap<Comparable>::percolateDown(int hole)
{
 int child;
 Comparable tmp = array[hole];

 for(; hole * 2 <= theSize; hole = child)
 {
 child = hole * 2;
 if(child != theSize && array[child + 1] < array[child])
 child++;
 if(array[child] < tmp)
 array[hole] = array[child];
 else
 break;
 }
 array[hole] = tmp;
}

22

Building a Heap

• Take as input N items and place them into
an empty heap.

• Obviously this can be done with N
successive inserts: O(NlogN) worst case.

• However buildHeap operation can be done
in linear time (O(N)) by applying a
percolate down routine to nodes in reverse
level order.

23

buildHeap method
// Establish heap-order property from an arbitrary
// arrangement of items. Runs in linear time.
template <class Comparable>
void BinaryHeap<Comparable>::buildHeap()
{
 for(int i = theSize / 2; i > 0; i--)
 percolateDown(i);
}

24

Figure 21.17
Implementation of the linear-time buildHeap method

Initial
complete tree After percolatedown(7)

25

Figure 21.18
(a) After percolateDown(6); (b) after percolateDown(5)

26

Figure 21.19
(a) After percolateDown(4); (b) after percolateDown(3)

27

Figure 21.20
(a) After percolateDown(2); (b) after percolateDown(1) and buildHeap terminates

28

Analysis of buildHeap

• The linear time bound of buildHeap, can
be shown by computing the sum of the
heights of all the nodes in the heap, which is
the maximum number of dashed lines.

• For the perfect binary tree of height h
containing N = 2h – 1 nodes, the sum of the
heights of the nodes is N – H – 1.

• Thus it is O(N).

29

C++ STL Priority Queues
• priority_queue class template

– Implements deleteMax instead of deleteMin in default
– MaxHeap instead of MinHeap

• Template
– Item type
– container type (default vector)
– comparator (default less)

• Associative queue operations
– Void push(t)
– void pop()
– T& top()
– void clear()
– bool empty()

Max Heap Example

https://visualgo.net/en/heap

30

https://visualgo.net/en/heap

