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Priority Queues
• Many applications require that we process records 

with keys in order, but not necessarily in full sorted 
order.

• Often we collect a set of items and process the one 
with the current minimum value.
–  e.g. jobs sent to a printer,
– Operating system job scheduler in a multi-user 

environment.
– Simulation environments

• An appropriate data structure is called a priority 
queue.
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Definition
• A priority queue is a data structure that supports 

two basic operations: insert a new item and 
remove the minimum item.

Priority Queue
insertdeleteMin
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Simple Implementations

• A simple linked list:
– Insertion at the front (O(1)); find minimum (O(N)), or
– Keep list sorted; insertion O(N), findMin O(1)

• A binary search tree:
– This gives an O(log N) average for both operations.
– But BST class supports a lot of operations that are not 

required.
– Self-balancing BSTs O(log N) worst for both operations.

• An array: Binary Heap
– Does not require links and will support both operations 

in O(logN) wost-case time. findMin in O(1) at worst.
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Binary Heap

• The binary heap is the classic method used 
to implement priority queues. 

• We use the term heap to refer to the binary 
heap.

• Heap is different from the term heap used in 
dynamic memory allocation.

• Heap has two properties:
– Structure property 
– Ordering property
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Structure Property

• A heap is a complete binary tree, 
represented as an array.

• A complete binary tree is a tree that is 
completely filled, with the possible 
exception of the bottom level, which is 
filled from left to right.
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Properties of a complete binary tree

• A complete binary tree of height h has between 
2h-1 and 2h – 1 nodes

• The height of a complete binary tree is 
⎣log2 N⎦.

• It can be implemented as an array such that:
– For any element in array position i : 

• the left child is in position 2i, 
• the right child is in the cell after the left child (2i + 1), 

and
• the parent is in position ⎣ i/2 ⎦.
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Figure 21.1
A complete binary tree and its array representation
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Heap-Order Property

• In a heap, for every node X with parent P, the key 
in P is smaller than or equal to the key in X.

• Thus the minimum element is always at the root.
– Thus we get the extra operation findMin in constant 

time.
• A max heap supports access of the maximum 

element instead of the minimum, by changing the 
heap property slightly.
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Figure 21.3
Two complete trees: (a) a heap; (b) not a heap
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Binary Heap Class
template <class Comparable>
class BinaryHeap
{
  public:
    BinaryHeap( int capacity = 100 );
    bool isEmpty( ) const;
    const Comparable & findMin( ) const;

    void insert( const Comparable & x );
    void deleteMin( );
    void deleteMin( Comparable & minItem );
    void makeEmpty( );

  private:
    int theSize;  // Number of elements in heap
    vector<Comparable> array;   // The heap array
    void buildHeap( );
    void percolateDown( int hole );
};
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Basic Heap Operations: Insert

• To insert an element X into the heap:
– We create a hole in the next available location.
–  If X can be placed there without violating the 

heap property, then we do so and are done.
– Otherwise 

• we bubble up the hole toward the root by sliding the 
element in the hole’s parent down.

• We continue this until X can be placed in the hole.
• This general strategy is known as a 

percolate up.
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Figure 21.7
Attempt to insert 14, creating the hole and bubbling the hole up
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Figure 21.8
The remaining two steps required to insert 14 in the original heap shown 
in Figure 21.7
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Insert procedure
// Insert item x into the priority queue, maintaining heap 

order.
// Duplicates are allowed.
template <class Comparable>
void BinaryHeap<Comparable>::insert( const Comparable & x )
{
    array[ 0 ] = x;   // initialize sentinel
    if( theSize + 1 == array.size( ) )
        array.resize( array.size( ) * 2 + 1 );

    // Percolate up
    int hole = ++theSize;
    for( ; x < array[ hole / 2 ]; hole /= 2 )
        array[ hole ] = array[ hole / 2 ];
    array[ hole ] = x;
}
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Delete Minimum
� deleteMin is handled in a similar manner as 

insertion:
• Remove the minimum; a hole is created at the 

root.
• The last element X must move somewhere in the 

heap.
– If X can be placed in the hole then we are done.
– Otherwise,

• We slide the smaller of the hole’s children into the hole, thus 
pushing the hole one level down.

• We repeat this until X can be placed in the hole.

� deleteMin is logarithmic in both the worst and 
average cases.
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Figure 21.10
Creation of the hole at the root
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Figure 21.11
The next two steps in the deleteMin operation
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Figure 21.12
The last two steps in the deleteMin operation
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deleteMin procedure
// Remove the smallest item from the priority queue.
// Throw UnderflowException if empty.
template <class Comparable>
void BinaryHeap<Comparable>::deleteMin( )
{
    if( isEmpty( ) )
        throw UnderflowException( );

    array[ 1 ] = array[ theSize-- ];
    percolateDown( 1 );
}
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// Internal method to percolate down in the heap.
// hole is the index at which the percolate begins.
template <class Comparable>
void BinaryHeap<Comparable>::percolateDown( int hole )
{
  int child;
  Comparable tmp = array[ hole ];

  for( ; hole * 2 <= theSize; hole = child )
  {
    child = hole * 2;
    if( child != theSize && array[child + 1] < array[child])
       child++;
    if( array[ child ] < tmp )
       array[ hole ] = array[ child ];
    else
       break;
  }
  array[ hole ] = tmp;
}
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Building a Heap

• Take as input N items and place them into 
an empty heap.

• Obviously this can be done with N 
successive inserts: O(NlogN) worst case.

• However buildHeap operation can be done 
in linear time (O(N)) by applying a 
percolate down routine to nodes in reverse 
level order.
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buildHeap method
// Establish heap-order property from an arbitrary
// arrangement of items. Runs in linear time.
template <class Comparable>
void BinaryHeap<Comparable>::buildHeap( )
{
    for( int i = theSize / 2; i > 0; i-- )
        percolateDown( i );
}
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Figure 21.17
Implementation of the linear-time buildHeap method

Initial 
complete tree After percolatedown(7)
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Figure 21.18
(a) After percolateDown(6); (b) after percolateDown(5)
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Figure 21.19
(a) After percolateDown(4); (b) after percolateDown(3)
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Figure 21.20
(a) After percolateDown(2); (b) after percolateDown(1) and buildHeap terminates



28

Analysis of buildHeap

• The linear time bound of buildHeap, can 
be shown by computing the sum of the 
heights of all the nodes in the heap, which is 
the maximum number of dashed lines.

• For the perfect binary tree of height h 
containing N = 2h – 1 nodes, the sum of the 
heights of the nodes is N – H – 1.

• Thus it is O(N).
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C++ STL Priority Queues
• priority_queue class template

– Implements deleteMax instead of deleteMin in default
– MaxHeap instead of MinHeap

• Template
– Item type
– container type (default vector)
– comparator (default less)

• Associative queue operations
– Void push(t)
– void pop()
– T& top()
– void clear()
– bool empty()



Max Heap Example

https://visualgo.net/en/heap
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https://visualgo.net/en/heap

