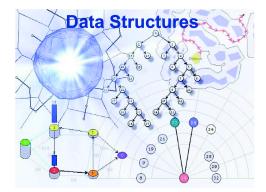
BBM 201 DATA STRUCTURES

Lecture 3:

Representation of Multidimensional Arrays



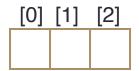
What is an Array?

- An array is a fixed size sequential collection of elements of identical types.
- A multidimensional array is treated as an array of arrays.
 - Let a be a k-dimensional array; the elements of A can be accessed using the following syntax:

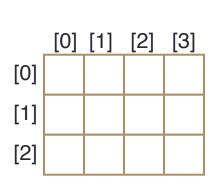
```
A[i_1][i_2]...[i_k]
```

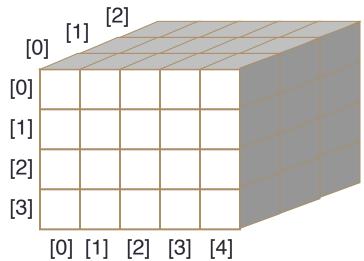
The following loop stores 0 into each location in a two dimensional array A:

One-dimensional arrays are linear containers.



Multi-dimensional Arrays

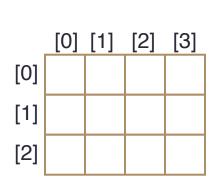


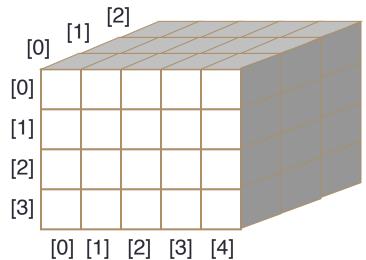


abstract view

One-dimensional arrays are linear containers.

Multi-dimensional Arrays





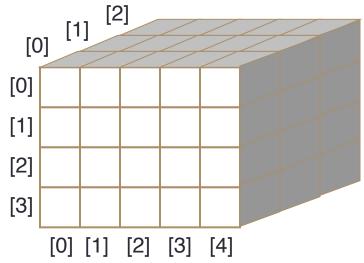
abstract view

One-dimensional arrays are linear containers.

Multi-dimensional Arrays

	[0]	[1]	[2]	[3]
[0]		5		
[1]				
[2]				-1

```
int A[3][4];
A[0][1]=5;
A[2][3]=-1;
```



abstract view

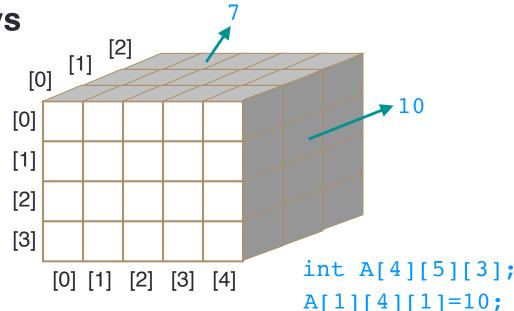
abstract view

One-dimensional arrays are linear containers.

Multi-dimensional Arrays

	[0]	[1]	[2]	[3]
[0]		5		
[1]				
[2]				-1

```
int A[3][4];
A[0][1]=5;
A[2][3]=-1;
```



A[0][1][2]=7;

Dynamic Allocation of 2d Arrays

A dynamically allocated 2d array of dims: [3][5] could be considered as a matrix with 3 rows and 5 columns

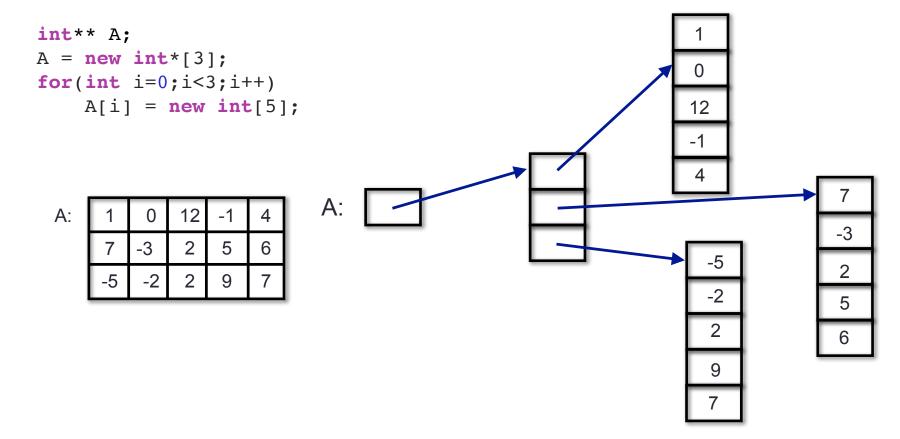
```
int** A;
A = new int*[3];
for(int i=0;i<3;i++)
    A[i] = new int[5];</pre>
```

A:	1	0	12	-1	4
	7	-3	2	5	6
	-5	-2	2	9	7

Dynamic Allocation of 2d Arrays

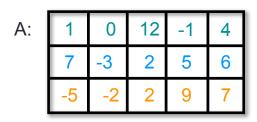
A dynamically allocated 2d array of dims: [3][5] could be considered as a matrix with 3 rows and 5 columns

But in reality, A holds a reference to an array of 3 items, where each item is a reference to an array of 5 items



Dynamic Allocation behind the scenes...

```
int** A;
A = new int*[3];
for(int i=0;i<3;i++)
    A[i] = new int[5];</pre>
```



A: 0x209280

64 bit addressing	0x2092a0
0x209288	0x2092c0
0x209290	0x2092e0

0x2092a0	1
UAZUJZdU	
0x2092a4	0
0x2092a8	12
0x2092ac	-1
0x2092b0	4
0x2092c0	7
0x2092c4	-3
0x2092c8	2
0x2092cc	5
0x2092d0	6
	1
0x2092e0	-5
0x2092e4	-2
0x2092e8	2
0x2092ec	9
0x2092f0	7

Array size

In a d-dimensional array, which is declared as

$$<$$
type $>$ a[N₁][N₂]...[N_d];

the number of items is:
$$\prod_{i=1}^{i=a} N_i$$

Example: What is the number of items in a[20][20][1]?

Storage Allocation

 The storage arrangement shown in this example uses the array subscript, i.e. array indices.

```
Array declaration: int a[3][4]; Array elements:
```

```
a[0][0] a[0][1] a[0][2] a[0][3]
a[1][0] a[1][1] a[1][2] a[1][3]
a[2][0] a[2][1] a[2][2] a[2][3]
```

Two-Dimensional Storage Allocation

A 2d array declared in C++ as: int A[3][5];

could be considered as a matrix with 3 rows and 5 columns

A:	1	0	12	-1	4
	7	-3	2	5	6
	-5	-2	2	6	7

But in reality, it has a linear structure.

Α	:	0xb0
A[0]	:	0xb0
0xb0	:	1
0xb4	:	0
0xb8	:	12
0xbc	:	-1
0xc0	:	4
A[1]	:	0xc4
0xc4	:	7
0xc8	:	-3
0xcc	:	2
0xd0	:	5
0xd4	:	6
A[2]	:	0xd8
0xd8	:	-5
0xdc	:	-2
0xe0	:	2
0xe4	:	9
0xe8	:	7

A: 0xb0 0xc4 8bx0

-3

6

Two-Dimensional Storage Allocation

A 2d array declared in C++ as: int A[3][5];

Spoiler Alert: Row major ordering of elements

could be considered as a matrix with 3 rows and 5 columns

A: -3

But in reality, it has a linear structure.

Α	:	0xb0
A[0]	:	0xb0
0xb0	:	1
0xb4	:	0
0xb8	:	12
0xbc	:	-1
0xc0	:	4
A[1]	:	0xc4
0xc4	:	7
0xc8	:	-3
0xcc	:	2
0xd0	:	5
0xd4	:	6
A[2]	:	0xd8
0xd8	:	-5
0xdc	:	-2
0xe0	:	2
0xe4	:	9
0xe8	:	7

A: 0xb0 12 0xc4 8bx0

-3

6

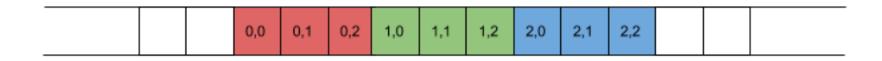
Memory Storage

- There are two types of placement for multidimensional arrays in memory:
 - Row major ordering
 - Column major ordering

Raw Major Ordering

row,col

0,0	0,1	0,2
1,0	1,1	1,2
2,0	2,1	2,2

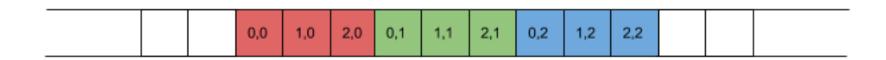


$$offset = i_{row} * NCOLS + i_{col}$$

Column Major Ordering

row,col

0,0	0,1	0,2
1,0	1,1	1,2
2,0	2,1	2,2



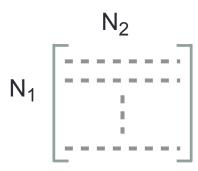
$$offset = i_{col} * NROWS + i_{row}$$

Memory Storage

- There are two types of placement for multidimensional arrays in memory:
 - Row major ordering
 - Column major ordering

Example: In an array which is defined as $A[N_1][N_2]$, if the memory address of A[0][0] is α , then what is the memory address of A[i][0] (according to row major ordering)?

$$\alpha + i * N_2$$



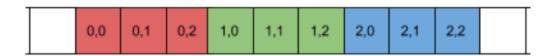
Multi-dimensional Arrays

- In row-major layout of multi-dimensional arrays, the last index is the fastest changing.
 - In case of matrices the last index is columns, so this is equivalent to the previous definition.

offset =
$$n_d + N_d(n_{d-1} + N_{d-1}(n_{d-2} + N_{d-2}(\dots + N_2n_1)\dots))) = \sum_{i=1}^d (\prod_{j=i+1}^d N_j)n_i$$

• For a matrix (2D):

$$offset = n_2 + N_2 \cdot n_1$$



the last index is the fastest changing

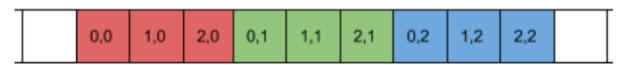
Multi-dimensional Arrays

- In column-major layout of multi-dimensional arrays, the *first* index is the fastest changing.
 - In case of matrices the first index is rows, so this is equivalent to the previous definition.

offset =
$$n_1 + N_1(n_2 + N_2(n_3 + N_3(\dots + N_{d-1}n_d)\dots))) = \sum_{i=1}^{d} (\prod_{j=1}^{i-1} N_j) n_i$$

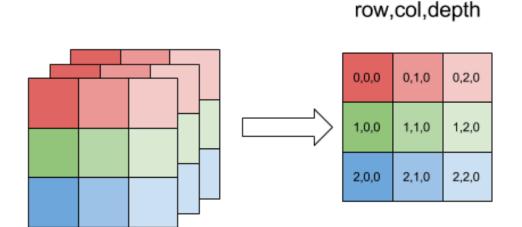
For a matrix (2D):

$$offset = n_1 + N_1 \cdot n_2$$



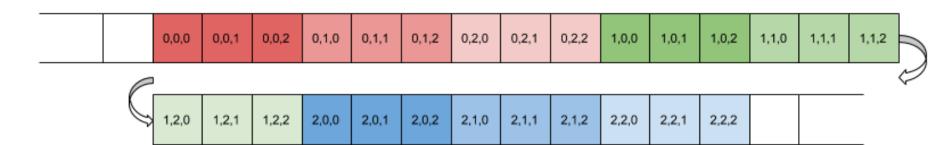
the first index is the fastest changing

3D row-major order layout



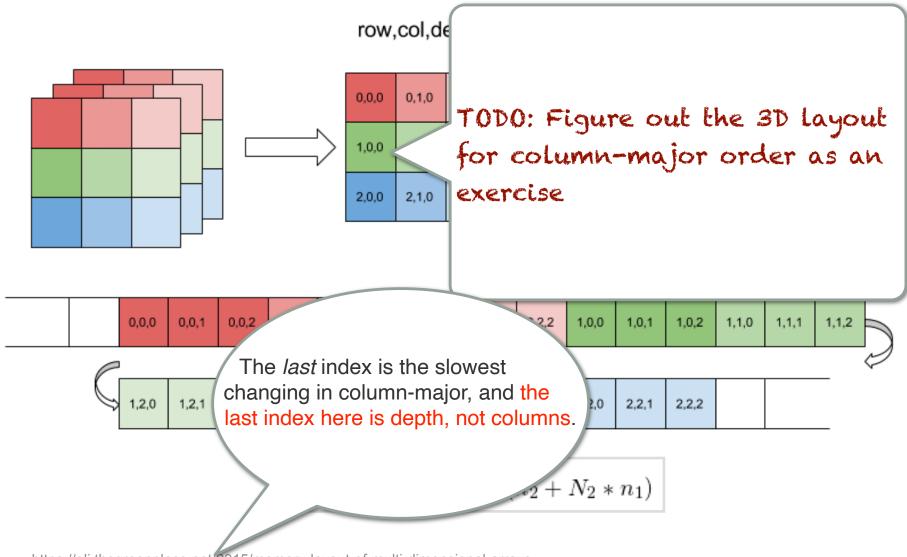
0,0,1	0,1,1	0,2,1
1,0,1	1,1,1	1,2,1
2,0,1	2,1,1	2,2,1

0,0,2	0,1,2	0,2,2
1,0,2	1,1,2	1,2,2
2,0,2	2,1,2	2,2,2



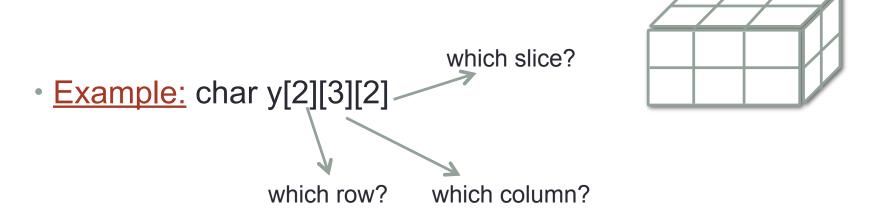
$$offset = n_3 + N_3 \cdot (n_2 + N_2 \cdot n_1)$$

3D row-major order layout



Memory Storage

For a three-dimensional array A[N₁][N₂][N₃]
 what is the memory storage like?



• Assuming row-major order, what is the memory address of y[1][2][0], if the memory address of y[0][0][0] α ?

Memory Storage

Suppose the memory address of a[0][0][0] is α ; the memory address of a[i][0][0] is:

$$\alpha + i * N_2 * N_3$$

Therefore, the memory address of a[i][j][k] becomes:

$$\alpha + i * N_2 * N_3 + j * N_3 + k$$

The memory address of $a[i_1][i_2][i_3]...[i_n]$ is:

$$\alpha + \sum_{j=1}^{n} i_j a_j \qquad \text{where,} \qquad a_j = \prod_{k=j+1}^{n} N_k \quad 0 \le j \le n-1$$

$$a_n = 1$$

Lower/Upper Triangular Matrix Band Matrix Sparse Matrix

THE MATRIX!!!!!

Triangular matrix

Upper triangular matrix

$$U = \begin{bmatrix} u_{11} & u_{12} & u_{13} & \dots & u_{1n} \\ 0 & u_{22} & u_{23} & & \dots \\ 0 & 0 & u_{33} & & \dots \\ \vdots & & \ddots & & \dots \\ 0 & \ddots & \ddots & \ddots & \dots \\ 0 & \ddots & \ddots & \ddots & \dots \end{bmatrix}$$

Lower triangular matrix

- Does the definition of a special data structure for triangular matrix provide any benefits over a typical matrix in terms of memory and processing time?
- We can insert the items in a single dimensional array:

•	ALT	a ₀₀	a ₁₀	a ₁₁	a ₂₀	a ₂₁	a ₂₂	a ₃₀	a ₃₁	a ₃₂	a ₃₃
		[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]

Number of items in the array becomes:

$$1 + 2 + ... + (n-1) + n = \frac{n(n+1)}{2}$$

- How can we find the position of u[i][j] in the array?
 - Answer: i=1, there is one item in the 0th row, 2 items in the 1st row.
 - i=2, there is one item in the 0th row, 2 items in the 1st row, 3 items in the 2nd row.
 - Therefore the address of u[i][j] in the array is calculated as below:

$$k = \sum_{t=0}^{i} (t) + (j) = (0 + 1 + 2 + \dots + i) + (j)$$
$$= \frac{i(i+1)}{2} + (j)$$

```
void main(void) {
   int alt[MAX_SIZE];
   int i, n;
   cin>>n; //matrix size
   readtriangularmatrix(alt,n);
   for(i=0; i<=n*(n+1)/2-1; i++)
        cout<< alt[i]<<"";

i=gettriangularmatrix(3,0,n);
   if(i==-2)
        cout<<"\n invalid index\n";
   else if(i==-1)
        cout<<"\n access to the upper triangular\n";
   else
        cout<<"\n the position in 'alt' matrix:"<<i<" value:"<<
alt[i]<<"\n";</pre>
```

```
int gettriangularmatrix(int i, int j, int n){
    if(i<0 || i>=n || j<0 || j>=n){
        //invalid index;
        return -2;
    }
    else if(i>=j) //valid index
        return (i+1)*i/2+j;
    else return -1; //outside of the
triangular; value is zero
}
```

Upper Triangular Matrix

Triangular matrix

Upper triangular matrix

$$U = \begin{bmatrix} u_{11} & u_{12} & u_{13} & \dots & u_{1n} \\ 0 & u_{22} & u_{23} & & \dots \\ 0 & 0 & u_{33} & & \dots \\ \vdots & & \ddots & & \dots \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 & u_{nn} \end{bmatrix}$$

Lower triangular matrix

$$\boldsymbol{L} = \begin{bmatrix} l_{11} & 0 & 0 & \dots & 0 \\ l_{21} & l_{22} & 0 & & \dots \\ l_{31} & l_{32} & l_{33} & & \dots \\ \vdots & & & \ddots & \vdots \\ \vdots & & & \ddots & \vdots \\ l_{n1} & \dots & \dots & \vdots & l_{nn} \end{bmatrix}$$

Upper Triangular Matrix

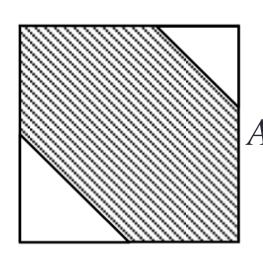
How can we find the position of u[i][j] in the array?

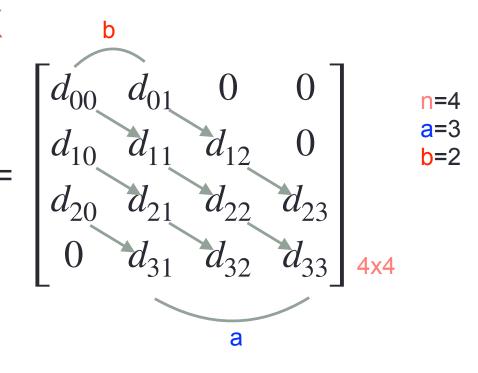
Lower =>
$$k = \sum_{t=0}^{i} (t) + (j) = (0 + 1 + 2 + \dots + i) + (j)$$
$$= \frac{i(i+1)}{2} + (j)$$

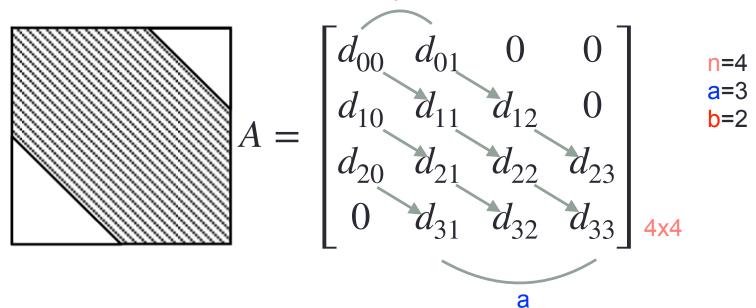
Upper =>

$$\begin{bmatrix} B_{11} & B_{12} & 0 & \cdots & \cdots & 0 \\ B_{21} & B_{22} & B_{23} & \ddots & \ddots & \vdots \\ 0 & B_{32} & B_{33} & B_{34} & \ddots & \vdots \\ \vdots & \ddots & B_{43} & B_{44} & B_{45} & 0 \\ \vdots & \ddots & \ddots & B_{54} & B_{55} & B_{56} \\ 0 & \cdots & \cdots & 0 & B_{65} & B_{66} \end{bmatrix}$$

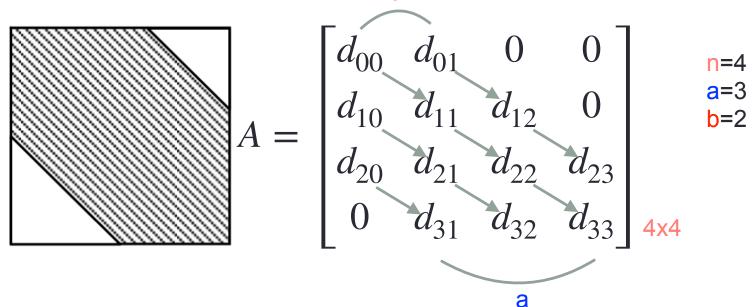
Matrix (n, a): n by n matrix, non-zero entries are confined to a diagonal band, comprising the main diagonal and zero or more diagonals (a-1) on either side.





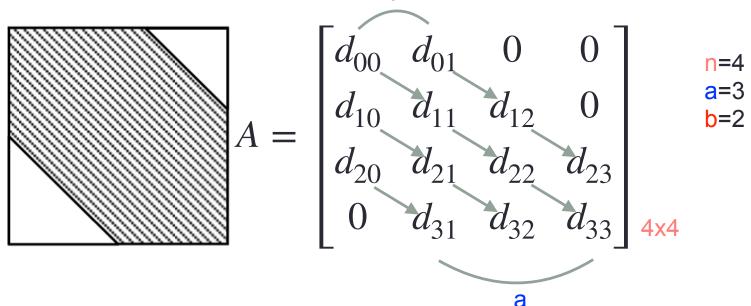


[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]
d ₂₀	d ₃₁	d_{10}	d ₂₁	d ₃₂	d_{00}	d ₁₁	d ₂₂	d ₃₃	d_{01}	d ₁₂	d ₂₃



[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]
d ₂₀	d ₃₁	d_{10}	d_{21}	d ₃₂	d ₀₀	d ₁₁	d ₂₂	d ₃₃	d_{01}	d ₁₂	d ₂₃

$$n+(n-1)+(n-2)+\ldots+(n-(a-1))$$
 # of elements below triangle (including diagonal)
$$(n-1)+(n-2)+\ldots+(n-(b-1))$$
 # of elements above triangle



[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]
d ₂₀	d ₃₁	d ₁₀	d ₂₁	d ₃₂	d_{00}	d ₁₁	d ₂₂	d ₃₃	d_{01}	d_{12}	d ₂₃

$$n+(n-1)+(n-2)+\ldots+(n-(a-1))$$
 # of elements on and below the diagonal $(n-1)+(n-2)+\ldots+(n-(b-1))$ # of elements above the diagonal $n\cdot(a+b-1)-\frac{a\cdot(a-1)}{2}-\frac{b\cdot(b-1)}{2}$ Total # of elements

- What is the number of items in the array?
 - Number of items on and below the diagonal:

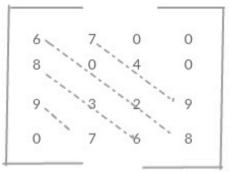
$$n+(n-1)+(n-2)+...+n-(a-1)$$

Number of items above the diagonal:

$$(n-1)+(n-2)+...+n-(b-1)$$

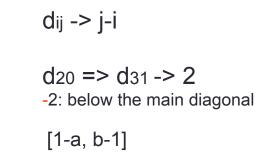
Sum of these becomes:

$$Sum = n + (n-1) + (n-2) + ... + n - (a-1) + (n-1) + (n-2) + ... + n - (b-1)$$
$$= n(a+b-1) - \frac{(a-1)a}{2} - \frac{(b-1)b}{2}$$



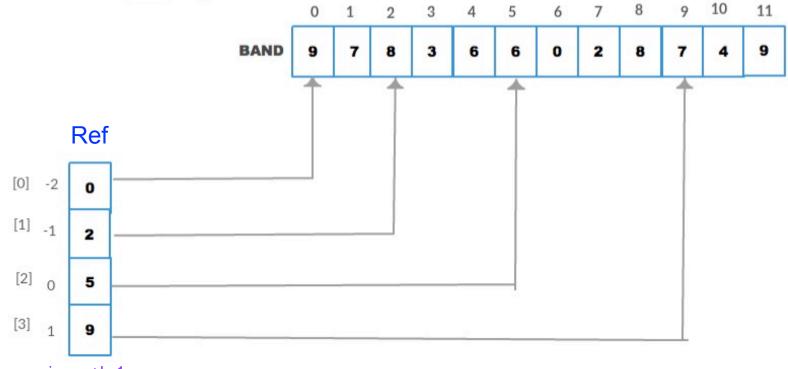
$$A = \begin{bmatrix} d_{00} & d_{01} & 0 & 0 \\ d_{10} & d_{11} & d_{12} & 0 \\ d_{20} & d_{21} & d_{22} & d_{23} \\ 0 & d_{31} & d_{32} & d_{33} \end{bmatrix}$$

$$b=2 \qquad -2 \qquad -1 \qquad 0$$



Fetch from Lower triangle: BAND[Ref[j-i+a-1]+j]

Fetch from Upper triangle: BAND[Ref[j-i+a-1]+i]



size: a+b-1

```
void main(void) {
   int band[MAX SIZE];
   int search[MAX SIZE];
   int i, n, a, b;
   cin>>n; cout<<"n:"<<n;
   cin>>a; cout<<"a:"<<a;
   cin>>b; cout<<"b:"<<b;
   buildbandmatrix(band, search, a, b);
   for (i=0; i \le n*(a+b-1)-a*(a-1)/2-b*(b-1)/2-1; i++)
       cout<<band[i]<<" ";
   cout<<endl:
   for(i=0; i<=a+b-2; i++)
      cout<<search[i]<<" ";
   i=getbandmatrix(3,3,n,a,b,search);
   if(i==2)
      cout<<"\n invalid index";
   else if(i==1)
       cout<<"\n item to be searched: 0";
   else
       cout<<"\n item to be searched: "<<i<"->"<< band[i]:
```

```
void buildbandmatrix(int band[], int search[], int n, int a, int b){
    int i, k, itemnum;
    if(n*(a+b-1)-a*(a-1)/2-b*(b-1)/2 > MAX SIZE){
        cout<<"\n not enough memory";</pre>
        exit(-1);
    else{
       itemnum=0;
       for(i=-a+1; i<=b-1; i++){ //for each diagonal
            search[i+a-1]=itemnum;
            for(k=0; k<= n-abs(i)-1; k++) //for the current diagonal
                cin>>band[search[i+a-1]+k];
            itemnum = itemnum+(n-abs(i));
```

```
void getbandmatrix(int i, int j, int n, int a, int b, int search[]){
   if(i>=n || i<0 || j>=n || j<0){ //index overflow
        cout<<"\n invalid index\n";</pre>
        return -2;
   else{
        if(j>i) //above the diagonal
           if(j-i<b) //above the upper band
               return(search[a-1+j-i]+i); //yes
           else //no
               return -1;
         else if(i-j<a) //below or on the diagonal
               return(search[j-i+a-1]+j);
         else //not on the band
               return -1;
```

Sparse Matrix

- Most of the elements are zero.
- It wastes space.

Sparsity: the fraction of zero elements.

Basic matrix operations:

- Creation
- Addition
- 3. Multiplication
- 4. Transpose

```
15
       0
            22
                    -15
0
           3
              0
       11
                 0
                      0
       0
           0
              -6
                 0
       0
           0
            0
    91
       0
          28
                      0
```

Sparse Matrix

Data Structure

```
#define MAX_TERMS 101
typedef struct{
         int col;
         int row;
         int value;
        }term;
term a[MAX_TERMS];
```

- a[0].row: row index
- <u>a[0].col:</u> column index
- <u>a[0].value</u>: number of items in the sparse matrix

Rows and columns are in ascending order!

Sparse Matrix

 A
 0
 1
 2
 3
 4
 5

 0
 15
 0
 0
 22
 0
 -15

 1
 0
 11
 3
 0
 0
 0

 2
 0
 0
 0
 -6
 0
 0

 3
 0
 0
 0
 0
 0

 4
 91
 0
 0
 0
 0

 5
 0
 0
 28
 0
 0
 0

Bookkeeping the parameters: # of rows, # of cols, # of elms

	Row	Column	Value
A[0]	6	6	8
A[1]	0	0	15
A[2]	0	3	22
A[3]	0	5	-15
A[4]	1	1	11
A[5]	1	2	3
A[8]	5	2	28

 Replacement of rows and columns in a matrix is called the transpose of the matrix:

$$A = \begin{bmatrix} 1 & 3 \\ 0 & 4 \end{bmatrix} \qquad A' = \begin{bmatrix} 1 & 0 \\ 3 & 4 \end{bmatrix}$$

$$A' = \begin{vmatrix} 1 & 0 \\ 3 & 4 \end{vmatrix}$$

The item a[i][j] becomes a[j][i].

```
void transpose(term a[], term b[])
  int n,i,j,currentb;
  n=a[0].value; //number of items
  b[0].row=a[0].col; //number of rows
  b[0].col=a[0].row; //number of columns
  b[0].value=n;
   if(n>0){
      currentb=1;
      for(i=0; i<a[0].col; i++)
          for(j=1; j<=n; j++) //find the ones with col i in a
              if(a[j].col==i){
                     b[currentb].row=a[j].col;
                     b[currentb].col=a[j].row;
                     b[currentb].value=a[j].value;
                     currentb++;
```

Question: What is the complexity of this method?

```
void transpose(term a[], term b[])
   int n,i,j,currentb;
  n=a[0].value; //number of items
  b[0].row=a[0].col; //number of rows
  b[0].col=a[0].row; //number of columns
  b[0].value=n;
   if(n>0){
      currentb=1;
      for(i=0; i<a[0].col; i++)
          for(j=1; j<=n; j++) //find the ones with col i in a
              if(a[j].col==i){
                     b[currentb].row=a[j].col;
                     b[currentb].col=a[j].row;
                     b[currentb].value=a[j].value;
                     currentb++;
```

Question: What is the complexity of this method? O(cols*n)

Question: What is the complexity of this method for a full matrix?

```
void transpose(term a[], term b[])
   int n,i,j,currentb;
  n=a[0].value; //number of items
  b[0].row=a[0].col; //number of rows
  b[0].col=a[0].row; //number of columns
  b[0].value=n;
   if(n>0){
      currentb=1;
      for(i=0; i<a[0].col; i++)
          for(j=1; j<=n; j++) //find the ones with col i in a
              if(a[j].col==i){
                     b[currentb].row=a[j].col;
                     b[currentb].col=a[j].row;
                     b[currentb].value=a[i].value;
                     currentb++;
```

Question: What is the complexity of this method? O(cols*n)

Question: What is the complexity of this method for a full matrix? O(cols2*rows)

Fast Transpose

```
#define MAX TERM 101
typedef struct{
            int row;
            int col;
            int value;
    } term;
term a[MAX TERM];
void fastTranspose(term a[], term b[])
   int ItemNum[MAX COL], StartPos[MAX COL];
   int i,j,ColNum=a[0].col,TermNum=a[0].value;
   b[0].value=TermNum;
   if(TermNum>0) { //does the item exist?
         for (i=0;i<ColNum;i++)</pre>
               ItemNum[i]=0;
         for (i=1;i<=TermNum;i++)</pre>
               ItemNum[a[i].col]++;
         StartPos[0]=1; // start from index 1
         for (i=1;i<ColNum;i++)</pre>
                StartPos[i]=StartPos[i-1]+ItemNum[i-1];
         for (i=1;i<=TermNum;i++) {</pre>
               j=StartPos[a[i].col]++;
               b[j].row=a[i].col;
              b[j].col=a[i].row;
              b[j].value=a[i].value;
```

Fast Transpose

- Execute the fastTranspose method.
- Question: What is the complexity of the method?
- Compare its complexity with the previous transpose method.