BBM 201
DATA STRUCTURES

Lecture 3:
Representation of Multidimensional Arrays

What is an Array?

- An array is a fixed size sequential collection of elements of identical types.

- A multidimensional array is treated as an array of arrays.
- Let a be a k-dimensional array; the elements of A can be accessed using

the following syntax:
AlipIliz][]

The following loop stores 0 into each location in a two dimensional array A :

int row, column;

int A[3][4];
0; row < 3; rowtt)

for (row =
{
for (column = 0; column < 4; column++)
{
A[row][column] = 0;
}

Definition of a Multidimensional Array

- One-dimensional arrays are linear containers.
[0] [1] [2]

Multi-dimensional Arrays

2
1

[0] [1] [2] I[3] o
(0] [0]
1] [1]
2] [2]
[3]

[0] [1] [2] [3] [4]

abstract view

Definition of a Multidimensional Array

- One-dimensional arrays are linear containers.

int A[r371; [0] 1] [2]
A[l]=2; 2

Multi-dimensional Arrays

2
1

[0] [1] [2] I[3] o
(0] [0]
1] [1]
2] [2]
[3]

[0] [1] [2] [3] [4]

abstract view

Definition of a Multidimensional Array

- One-dimensional arrays are linear containers.

int A[371; [0] 1] [2]
A[l]=2; 2

Multi-dimensional Arrays

2
1

0

o] [1] [2] [3] o
ol |s [0]
1 [1]
2 - 2]
3]

int A[3][4]; L
A[0][1]=5; [0] [1] [2] [3] [4]

A[2][3]=-1; abstract view

Definition of a Multidimensional Array

- One-dimensional arrays are linear containers.
int A[371; [0] 1] [2]

A[l]=2; 2
Multi-dimensional Arrays /
2
o
[0] 1] [2] [3] 10
o1 s o]
1] [1]
2] _1 [2]
int A[3]1[4]; ol .
=i A[1][4][1]=10;
A[2][3]=-1; abstract view

A[O][1][21=7;

Dynamic Allocation of 2d Arrays

A dynamically allocated 2d array
of dims: [3][D] could be considered
as a matrix with 3 rows and 5 columns

int** A;

A = new int*[3];

for(int i=0;i<3;i++)
A[i] = new int[5];

Dynamic Allocation of 2d Arrays

A dynamically allocated 2d array But in reality, A holds a reference to
of dims: [3][5] could be considered an array of 3 items, where each item
as a matrix with 3 rows and 5 columns is a reference to an array of 5 items

int** A;

A = new int*[3];

for(int i=0;i<3;i++)
A[i] = new int[5];

L
Dynamic A"OcatiOn behind the scenesQ

int** A; A
A = new int*[3];
for(int 1i=0;i<3;i++)

A[i] = new int[5];

64 bit addressing 0x2092c0
0x209280 |0x2092a0

A: [0x2@928@| 0x209288 |0x2092c0
0x2092cc

0x209290]0x2092e0

Array size

* In a d-dimensional array, which is declared as
<type> a[N;][N;]..[N4];

i=d

the number of items is: N,
i=1

Example: What is the number of items in a[207[20]1[117

Storage Allocation

 The storage arrangement shown in this example uses the
array subscript, i.e. array indices.

Array declaration: int a[3][4];

Array elements:
a[0][0] af0][1l] a[0][2] a[O0][3]
a[l1][0] afl][l] afll]l[2] all][3]
a[2][0] a[2][1] a[2][2] a[2][3]

Two-Dimensional Storage Allocation

A 2d array declared in C++ as: S
int A[3](5 0
could be considered as a matrix A : 0xbo
: A[0] : Oxbe
with 3 rows and 5 columns oxbo : 1
0xh4 : 0
r . 0xb8: 12
Arl 11 012)-114 Oxbc: -1 0xc4
S22 2197 A[1] : 0xc4
0xc4 : 7
Oxc8: -3
But in reality, it has a linear structure. Oxcc: 2
oxdo: 5 6
0xd4 : 6 oxds
A[2]: oxd8
0xd8 : -5
oxdc: -2
0xeO : 2
Oxe4 : 9 n
O0xe8: 7

Two-Dimensional Storage Allocation

A 2d array declared in C++ as: [SISelERAE]E R
int A[3][51; Row maijor ordering of elements n
could be considered as a matrix A : 0xbo
: A[0]: ©xbo
with 3 rows and 5 columns oxbo : 1
0xh4 : 0
. oxb8: 12
A1l o)12l-1]4 Oxbc: -1 Oxc4
S22 2197 A[1] : 0xc4
. 0xc4 : 7
Oxc8: -3
But in reality, it has a linear structure. Oxcc: 2
oxdo: 5 6
0xd4 : 6 oxds
A[2]: oxd8
0xd8 : -5
oxdc: -2
0xeO : 2
Oxe4 : 9 n
Oxe8: 7

L
Memory Storage

* There are two types of placement for multidimensional
arrays in memory:
- Row major ordering
+ Column major ordering

Raw Major Ordering

row,col

offset =i.,,*NCOLS + i

col

https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays

Column Major Ordering

row,col

offset =i.,;* NROWS + i

row

https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays

L
Memory Storage

* There are two types of placement for multidimensional
arrays in memory:
- Row major ordering
+ Column major ordering

Example: In an array which is defined as A[N4][N5], if the memory

address of A[0][0] is a, then what is the memory address of A[i][0]
(according to row major ordering)?

a+i*N, N [

Multi-dimensional Arrays

* In row-major layout of multi-dimensional arrays, the /astindex is the fastest changing.
* In case of matrices the last index is columns, so this is equivalent to the previous
definition.

d d
offset = ny+ Nyng_; + Ny_(ng_o+ Nyo(...+ Nyny) .. = D (]| Npm,

i=1 j=i+1

« For a matrix (2D):

offset = ny, + N, - n,

- the /astindex is the fastest changing

https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays

Multi-dimensional Arrays

* In column-major layout of multi-dimensional arrays, the first index is the fastest
changing.
* In case of matrices the first index is rows, so this is equivalent to the previous
definition.

d i-1
offset = ny + Ny(ny + Ny(ny + Ny(...+ Ny_ymg) .. 0) = Y- ([[V
i=1 j=1

« For a matrix (2D):

offset =n,+ N, - n,

- the first index is the fastest changing

https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays

3D row-major order layout

row,col,depth

021 | 022

C 120 | 121 | 122

220 | 221 | 222

Offset = n3 + N3 . (”2 + N2 y nl)

https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays

3D row-major order layout

row,col,d

TODO: Figure out the 3D layout
for column-major order as an

—

exercise

110 | 1,11 | 11,2

The lastindex is the slowest
e e (changlng in column-major, and the
B last index here is depth, not columns.

0 | 221 | 222

+ No * n1)

https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays

Memory Storage

- For a three-dimensional array A[N,][N,][N;]
what is the memory storage like?

which slice? | |

- Example: char y[2][3][2]—

\ S

which row? which column?

- Assuming row-major order, what is the memory address of
y[1][2][0], if the memory address of y[0][0][0] a"?

L
Memory Storage

Suppose the memory address of a[0][0][0] is «;
the memory address of a[1][0][0] is:

a+i*N,* N,
Therefore, the memory address of a[i][j]1[k] becomes:

The memory address of a[i;]1[i,][1i5]...[1,] IS:

n n
a+2i-a- where, aj=HNk 0<j<n-1
P 7 k=j+1

a, =1

Lower/Upper Triangular Matrix
Band Matrix
Sparse Matrix

Lower Triangular Matrix

Triangular matrix

Upper triangular matrix Lower triangular matrix

Uy Uy Upy - . . Uy, Gy B O oon U

O 4y Uy ; by by U

0 0 u; : hy by I
U=| . : . L=

e T o

Lower Triangular Matrix

- Does the definition of a special data structure for triangular matrix
provide any benefits over a typical matrix in terms of memory and
processing time?

- We can insert the items in a single dimensional array:

a7 [O P OO P I P

o 012 B @4 Bl el [/l 8 [8]

- Number of items in the array becomes: 2| a, 0 0 0
| ao a; 0 0

1+2+...+(n-1)+n="22
d20 dz] dz; 0

Lower Triangular Matrix

- How can we find the position of u[i][j] in the array?

- Answer: i=1, there is one item in the Oth row, 2 items in the 1st row.
- =2, there is one item in the Oth row, 2 items in the 1st row, 3 items in the 2nd row.

- Therefore the address of u[i][j] in the array is calculated as below:

k=i(t)+(j)=(O+1+2+...+i)+(j)

’(’; D4 ()

Lower Triangular Matrix

Lower Triangular Matrix

Upper Triangular Matrix

Triangular matrix

Upper triangular matrix Lower triangular matrix

Uy Uy Upy - . . Uy, Gy B O oon U

O 4y Uy ; by by U

0 0 u; : hy by I
U=| . : . L=

e T o

L
Upper Triangular Matrix

- How can we find the position of u[i][j] in the array?
 Lower = k=g(t)+(j)=(0+1+2+...+i)+(j)

’(’; D, ()

- Upper =>

D
Band Matrix

By B 0 - - 0
By By Do
0 D3y B33 By

By By By 0

. " . 354 Bss Bsa
() 0 865 Bﬁﬁ_

-

Matrix (n, @) : n by n matrix, non-zero entries are confined to a diagonal band,
comprising the main diagonal and zero or more diagonals (a-1) on either
side.

Band Matrix

b
'd/?z 0 0
OO\O\
le dll d12 O

d20 21 22 23

N N\
_0\‘d31 dyy i3
N~

a

4x4

O Q0 5
inum 1
N WPHs

Band Matrix b

'd/?z 0 0
OO\O\

le dll dlz O

dy 2| 2
] O\‘d31 dyy a3 | 4

O Q0 5
inum 1
N WPHs

(01 | [1] (2] |([3]|[4] |[5]][6] (7] |1(8]]1I9]|I[10] | [11]
d20 d31 d10 d21 d32 dOO d11 d22 d33 d01 d12 d23

Band Matrix b
d/?z 0
w0 "‘\ 5
le d dlz O b=2

dy SN
I O\‘d31 dyy di3| s
N~

a

(01 | [1] (2] |([3]|[4] |[5]][6] (7] |1(8]]1I9]|I[10] | [11]
d20 d31 d10 d21 d32 dOO d11 d22 d33 d01 d12 d23

n+ (n - 1) -+ (n - 2) +...+ (n — (a —_— 1)) # of elements below triangle (including diagonal)
(n — 1) + (n — 2) + ...+ (n - (b _ 1)) # of elements above triangle

Band Matrix b
d/_?l 0
N -
le dyy dpp 0 b=2

dy SN
I O\‘d31 dyy ds3 | s
N~

a

(01 | [1] (2] |([3]|[4] |[5]][6] (7] |1(8]]1I9]|I[10] | [11]
d20 d31 d10 d21 d32 dOO d11 d22 d33 d01 d12 d23

n+ (n — 1) -+ (n — 2) +...+ (n — (a — 1)) # of elements on and below the diagonal
(n — 1) + (n — 2) + ...+ (n — (b _ 1)) # of elements above the diagonal

a: (a - 1) _ b- (b - 1) Total # of elements
2 2

n-(a+b-1)—

D
Band Matrix

- What is the number of items in the array?

* Number of items on and below the diagonal:

n+(n-1)+(n-2)+...+ n-(a-1)
- Number of items above the diagonal:
(n-1)+(n-2)+...+n-(b-1)
- Sum of these becomes:

Sim=n+(n-1)+(n-2)+...+n-(a-1)+(n-1)+(n-2)+...+ n—-(b-1)

_ 4y (@a-Da (b-1)b
=n(a+b-1) 5 5

- . dij -> j-i
Band Matrix dy dy 0 0] T
A= dyy dyy dip 0 d2o => d31-> 2
_ _ d20 d21 d22 d23 1 -2: below the main diagonal
n=4

6 . 7\\ a=3 0 d31 d32 d33 [1-3, b'1]
8 N0 .4 _ B -

8 e B b=2 2 1 0
9. 3 T2 v : _ . .

N R e Fetch from Lower triangle: BAND[Ref[j-i+a-1]+j]
2 ¥ ¥ Fetch from Upper triangle: BAND[Ref[j-i+a-1]+i]

D % 3 5 4 B & P & w9 A A

BAND | 9 7| 8 3 6 6 0 2 8 7 4 9

s # PN
Ref
o -2| o
i1
2l 9| 5
Bl 1| o

size: a+b-1

D
Band Matrix

D
Band Matrix

D
Band Matrix

Sparse Matrix

- Most of the elements are zero.
- It wastes space.
Sparsity: the fraction of zero elements.

Basic matrix operations: ol 15 o o 22 o -15
1. Creation 1 0 11 3 0 0 0

2. Addition 2 0O 0 0 -6 0 0

3. Multiplication 3 0O 0 0 0 O 0

4. Transpose 4 91 0 0 O O 0

5 0O 0 28 0 O 0

Sparse Matrix
Data Structure

#define MAX TERMS 101 - a[0].row: row index

typedef struct .

® ini{: el - a[0].col: column index
int row; . .
i RO - a[0].value: number of items in
}term; .

term a[MAX TERMS]; the sparse matrix

‘Rows and columns are in
ascending order!

Sparse Matrix

VT D W N = O

o O w O

3
22 0
0O O
-6 0
0 O
0 O
0 O

Bookkeeping the parameters:
of rows, # of cols, # of elms

A[O]
All]
A[2]
A[3]
Al4]
A[5]

A[8]

Row
6
0
0
0

1
1

Column Value

6 8

0 15
3 22
5 -15
1 11
2 3

2 28

Matrix Transpose

- Replacement of rows and columns in a matrix is called the
transpose of the matrix:

SIS

- The item a[i][j] becomes a[j][i].

Matrix Transpose

Question: What is the complexity of this method?

Matrix Transpose

Question: What is the complexity of this method? O(cols*n)
Question: What is the complexity of this method for a full matrix?

Matrix Transpose

Question: What is the complexity of this method? O(cols*n)
Question: What is the complexity of this method for a full matrix? O(cols2*rows)

Fast Transpose

Fast Transpose

- Execute the fastTranspose method.
- Question: What is the complexity of the method?

- Compare its complexity with the previous transpose
method.

