
BBM 201

DATA STRUCTURES

Lecture 4:

Records/Structs and Lists
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Objectives

• Learn about records (structs)

• Examine various operations on a struct

• Explore ways to manipulate data using a struct

• Learn about the relationship between a struct and 

functions

• Discover how arrays are used in a struct

• Learn how to create an array of struct items

• Learn about Lists ADT

• A simple array implementation
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C++  Data Types

structured

array   struct union   class

address

pointer    reference

simple

integral            enum

char short   int  long  bool

floating

float  double   long double
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C++ Data Types

• There are simple data types that hold only one 

value

• There are structured data types that hold 

multiple values

• The array was the first example of a 

structured data type that can hold multiple 

values

• The structure is the second example
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Structured Data Type       

A structured data type is a type in which each 

value is a collection of component items.

• the entire collection has a single name 

• each component can be accessed 

individually 
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Records

(C++ Structs)
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What to do with records?

• Declaring records

• Accessing records

• Accessing the field of 

a record

• Can records be in 

arrays?
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Records

• Recall that elements of arrays must all be of 

the same type

• In some situations, we wish to group elements 

of different types

scores :        85   79   92   57      68   80   . . . 

employee         R. Jones  123 Elm       6/12/55    $14.75   
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Records

• RECORDS are used to group related 

components of different types

• Components of the record are called fields

• In C++
− record -> struct (structure)

− fields -> members

Employee      R. Jones.    123 Elm    6/12/55      $14.75   
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Records

• C++ struct
− structured data type

− fixed number of components

− elements accessed by name, not by index

− components may be of different types

struct part_struct {

char descrip [31], part_num [11];

float unit_price;

int qty; };
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struct  AnimalType

struct  AnimalType // declares a  struct data type

{ //  does not allocate memory

long             id ;

string           name ;

string           genus ;

string           species ;        

string           country ;                                   

int              age ;           

float            weight ;          

string           health ;

} ;  // NOTE THE SEMICOLON

AnimalType thisAnimal ; // declare  variables of AnimalType

AnimalType anotherAnimal ;
11

struct members
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thisAnimal

5000

.id                    2037581

.name            “giant panda”    

.genus           “Ailuropoda”

.species        “melanoluka”

.country        “China”

.age                 18

.weight            234.6

.health            Good
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anotherAnimal

6000

.id                    5281003

.name            “llama”

.genus           “Lama”

.species        “peruana”

.country        “Peru”

.age                 7

.weight            278.5

.health            “Excellent”
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struct type Declaration

The struct declaration names a type and names 

the members of the struct.

It does not allocate memory for any variables  of 

that type!

You still need to declare your struct variables.
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struct type declarations

If the struct type declaration precedes all functions it will 

be visible throughout the rest of the file.  If it is placed 

within a function, only that function can use it.

It is common to place struct type declarations with 

TypeNames in a (.h) header file and #include that file 

(more on this later).

It is possible for members of different struct types to 

have the same identifiers.  Also a non-struct variable 

may have the same identifier as a structure member.
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Accessing struct Members 

Dot ( period ) is the member selection operator.

After the struct type declaration, the various members can 

be used in your program only when they are preceded 

by a struct variable name and a dot.

EXAMPLES

thisAnimal.weight

anotherAnimal.country
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Valid operations on a struct member     

depend only on its type

thisAnimal.age  =  18;

thisAnimal.id     =  2037581;

cin  >>  thisAnimal.weight;

getline ( cin, thisAnimal.species );

thisAnimal.name = “giant panda”;

thisAnimal.genus[ 0 ] = toupper (thisAnimal.genus[ 0 ] ) ;

thisAnimal.age++;
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Aggregate Operation       

• is an operation on a data structure as a 

whole, as opposed to an operation on an 

individual component of the data 

structure 
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Aggregate Operations with Structures

• Limitations on aggregate operations

− no I/O

− no arithmetic operations

− no comparisons

cout << old_part;

cin >> new_part;

old_part = new_part + old_part;

if (old_part < new_part)

cout << ...;
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Aggregate struct Operations 

I/O, arithmetic, and comparisons of entire struct variables 

are NOT ALLOWED!

Operations valid on an entire struct type variable:

• assignment to another struct variable of same type,

• pass to a function as argument (by value or by 

reference),

• return as value of a function
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Examples of 

aggregate struct operations

anotherAnimal   =   thisAnimal ;  // assignment

WriteOut(thisAnimal); // value parameter

ChangeWeightAndAge(thisAnimal); // reference parameter

thisAnimal = GetAnimalData( );    // return value of function

NOW  WE’LL WRITE   FUNCTIONS  USED  HERE . . . 
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void  WriteOut(  /*  in  */ AnimalType   thisAnimal)

// Prints out values of all members of thisAnimal

// Precondition:      all members of thisAnimal are assigned

// Postcondition:      all members have been written out

{

cout   <<“ID # “<<thisAnimal.id<<thisAnimal.name<< endl ;

cout   <<  thisAnimal.genus   <<  thisAnimal.species << endl ;

cout   <<  thisAnimal.country << endl ;

cout   <<  thisAnimal.age   << “ years “  << endl ;

cout   <<  thisAnimal.weight << “ lbs. “  << endl ;

cout   << “General health : “ ; 

WriteWord ( thisAnimal.health ) ;

}

22
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void   ChangeAge ( /* inout */ AnimalType&   thisAnimal)

// Adds 1 to age

// Precondition:      thisAnimal.age is assigned

// Postcondition:    thisAnimal.age == 

thisAnimal.age@entry + 1

{

thisAnimal.age++ ;

} 

Passing a struct Type by Reference
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AnimalType   GetAnimalData ( void )

// Obtains all information about an animal from keyboard

// Postcondition:

//   Function value == AnimalType members entered at  kbd

{

AnimalType  thisAnimal ; 

char               response ; 

do  {//  have user enter all members until they are correct

.

.

.

}  while (response != ‘Y’ ) ;

return  thisAnimal ;

}
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Hierarchical Structures 

The type of a struct member can be another 

struct type.  This is called nested or 

hierarchical structures. 

Hierarchical structures are very useful when 

there is much detailed information in each 

record.

FOR EXAMPLE . . .
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struct MachineRec

Information about each machine in a shop contains:

an idNumber, 

a written description, 

the purchase date,

the cost,

and a history (including failure rate, number of days 

down, and date of last service).
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struct  DateType

{ int    month ;       //  Assume 1 . . 12

int    day ; //  Assume  1 . . 31

int    year ; //  Assume 1900 . . 2050

};

struct  StatisticsType

{ float failRate ;

DateType lastServiced ; //  DateType is a struct type

int downDays ;

} ;

struct MachineRec

{ int idNumber ;

string description ;

StatisticsType   history ; //  StatisticsType is a struct type

DateType purchaseDate ;

float cost ;

} ;

MachineRec      machine ; 
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struct type variable machine

7000

.idNumber  .description  .history                                         .purchaseDate      .cost

.month .day  .year

5719  “DRILLING…” 3    21  1995   8000.0

.failrate    .lastServiced    .downdays

.02      1     25  1999     4
.month .day  .year

machine.history.lastServiced.year  has value 

1999
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Another Struct Example

• An example of a studentData struct:
struct studentData

{

string firstName;

string lastName;

char courseGrade;

float testScore;

float programmingScore;

float GPA;

}; // NOTE THE SEMICOLON
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Declaring a struct

• After you have defined a struct, you can 

declare variables in your program to be of that 

struct type:

studentData student;

studentData newStudent; 
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Assignment

• You can copy one structure to another if they 

have the same type 

student = newStudent; 

• You can copy individual members:

newStudent.lastName = student.lastName;

• Or into a variable of the correct type:

thisStudentName = student.lastName;
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Comparison (Relational Operators)

• Compare struct variables member-wise (NOT 
THE WHOLE STRUCTURE)

• To compare the values of student and 
newStudent:

if(student.firstName == newStudent.firstName &&
student.lastName == newStudent.lastName)

.

.

.
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Input/Output

• No aggregate input/output operations on a 

struct variable

• Data in a struct variable must be read one 

member at a time

• The contents of a struct variable must be 

written one member at a time
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struct Variables and Functions

• A struct variable can be passed as a 

parameter by value or by reference

• A function can return a value of type 

struct
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Arrays in structs

• Two key items are associated with a list: 
− Values (elements)

− Length of the list

• Define a struct containing both items:

const arraySize = 1000;

struct listType

{

int listElem[arraySize];   //array containing the list

int listLength;               //length of the list

};
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Summary

• Struct: collection of a fixed number of 

components

• Components can be of different types

• struct is a reserved word

• No memory is allocated for a struct; memory 

is allocated for struct variables when declared

• Components of a struct are called members



C++ Programming: From Problem Analysis to Program Design, Second Edition 41

Summary (cont.)

• struct components are accessed by name

• Dot (.) operator is called the member access 

operator

• Members of a struct are accessed using the 

dot (.) operator

• The only built-in operations on a struct are the 

assignment and member access
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Summary (cont.)

• Neither arithmetic nor relational operations are 

allowed on the entire structure 

• structures can be passed by value or 

reference

• A function can return a structure

• A structure can be a member of another 

structure
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List ADT

A general list of size N, of the form: A0, A1, A2, ..., AN−1. 

N=0 -> empty list

For any non-empty list:

Ai follows (or succeeds) Ai−1 (i < N) and 

Ai−1 precedes Ai (i > 0)

We will not define the predecessor of A0 or the successor of AN−1 

The position of element Ai in a list is i 

The first element of the list is A0, and the last element is AN−1 
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List ADT

Set of Operations

• Insert

• Remove

• Find

• Next

• Previous

• Print

• Clear
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List ADT

Set of Operations

Given list: 34, 12, 52, 16, 12 

Find(52) -> returns 2

Insert(25, 2) -> 34, 12, 25, 52, 16, 12

Remove(52) -> 34, 12, 15, 16, 12

Next(2) -> 16  // next of given index

Previous(2) -> 12 // prev of given index

What does Find(8) returns?

The interpretation of what is appropriate for a function is entirely up to the 

programmer, as is the handling of special cases.
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A Simple Array Implementation of 

Lists

Ref: OpenDSA Project

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html
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A Simple Array Implementation of 

Lists

Ref: OpenDSA Project

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html
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A Simple Array Implementation of Lists

Operations

Ref: OpenDSA Project

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html
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A Simple Array Implementation of Lists

Operations

Ref: OpenDSA Project

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html
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A Simple Array Implementation of Lists

Operations

Ref: OpenDSA Project

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html
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A Simple Array Implementation of Lists

Operations

Ref: OpenDSA Project

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html
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A Simple Array Implementation of Lists

Operations

Ref: OpenDSA Project

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html
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A Simple Array Implementation of Lists

Operations

Ref: OpenDSA Project

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html
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A Simple Array Implementation of Lists

Operations

Ref: OpenDSA Project

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html
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A Simple Array Implementation of Lists

Operations

Ref: OpenDSA Project

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html
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Insert

Ref: OpenDSA Project

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html

insert 512 to current position
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Insert

Ref: OpenDSA Project

https://opendsa-

server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html

insert 512 to current position
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Append

Ref: OpenDSA Project

https://opendsa-

server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html

Append 23
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Append

Ref: OpenDSA Project

https://opendsa-

server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html

Append 23



60

Remove

Ref: OpenDSA Project

https://opendsa-

server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html

Remove 12 in position 1
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Remove

Ref: OpenDSA Project

https://opendsa-

server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html

Remove 12 in position 1
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Remove

Ref: OpenDSA Project

https://opendsa-

server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html

Remove 12 in position 1
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Remove

Ref: OpenDSA Project

https://opendsa-

server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html

Remove 12 in position 1
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Computational Times

Printing list -> linear time

Empty list -> constant time

Insert & remove ops -> expensive
• depends on where the insertions and deletions occur 



65

Computational Times

Insertion (worst case)
• Insert at the front of the list

•What is the complexity?

Insertion (best case)
• Insert at the end of the list

•What is the complexity?
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Computational Times

Remove (worst case)
•Deleting the first element of the list

•What is the complexity?

Remove (best case)
•Deleting the last element of the list

•What is the complexity?
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Remarks

There are many situations where the list is built up by insertions 

at the high end, and then only array accesses (i.e., getValue

operations) occur. In such a case, the array is a suitable 

implementation. 

If insertions and deletions occur throughout the list and in 

particular, at the front of the list, then the array is not a good 

option. 


