
BBM 201

DATA STRUCTURES

Lecture 4:

Records/Structs and Lists

2

Objectives

• Learn about records (structs)

• Examine various operations on a struct

• Explore ways to manipulate data using a struct

• Learn about the relationship between a struct and

functions

• Discover how arrays are used in a struct

• Learn how to create an array of struct items

• Learn about Lists ADT

• A simple array implementation

C++ Programming: From Problem Analysis to Program Design, Second Edition 3

C++ Data Types

structured

array struct union class

address

pointer reference

simple

integral enum

char short int long bool

floating

float double long double

C++ Programming: From Problem Analysis to Program Design, Second Edition 4

C++ Data Types

• There are simple data types that hold only one

value

• There are structured data types that hold

multiple values

• The array was the first example of a

structured data type that can hold multiple

values

• The structure is the second example

5

Structured Data Type

A structured data type is a type in which each

value is a collection of component items.

• the entire collection has a single name

• each component can be accessed

individually

6

Records

(C++ Structs)

7

What to do with records?

• Declaring records

• Accessing records

• Accessing the field of

a record

• Can records be in

arrays?

8

Records

• Recall that elements of arrays must all be of

the same type

• In some situations, we wish to group elements

of different types

scores : 85 79 92 57 68 80 . . .

employee R. Jones 123 Elm 6/12/55 $14.75

9

Records

• RECORDS are used to group related

components of different types

• Components of the record are called fields

• In C++
− record -> struct (structure)

− fields -> members

Employee R. Jones. 123 Elm 6/12/55 $14.75

10

Records

• C++ struct
− structured data type

− fixed number of components

− elements accessed by name, not by index

− components may be of different types

struct part_struct {

char descrip [31], part_num [11];

float unit_price;

int qty; };

11

struct AnimalType

struct AnimalType // declares a struct data type

{ // does not allocate memory

long id ;

string name ;

string genus ;

string species ;

string country ;

int age ;

float weight ;

string health ;

} ; // NOTE THE SEMICOLON

AnimalType thisAnimal ; // declare variables of AnimalType

AnimalType anotherAnimal ;
11

struct members

12

thisAnimal

5000

.id 2037581

.name “giant panda”

.genus “Ailuropoda”

.species “melanoluka”

.country “China”

.age 18

.weight 234.6

.health Good

13

anotherAnimal

6000

.id 5281003

.name “llama”

.genus “Lama”

.species “peruana”

.country “Peru”

.age 7

.weight 278.5

.health “Excellent”

14

struct type Declaration

The struct declaration names a type and names

the members of the struct.

It does not allocate memory for any variables of

that type!

You still need to declare your struct variables.

15

struct type declarations

If the struct type declaration precedes all functions it will

be visible throughout the rest of the file. If it is placed

within a function, only that function can use it.

It is common to place struct type declarations with

TypeNames in a (.h) header file and #include that file

(more on this later).

It is possible for members of different struct types to

have the same identifiers. Also a non-struct variable

may have the same identifier as a structure member.

16

Accessing struct Members

Dot (period) is the member selection operator.

After the struct type declaration, the various members can

be used in your program only when they are preceded

by a struct variable name and a dot.

EXAMPLES

thisAnimal.weight

anotherAnimal.country

17

Valid operations on a struct member

depend only on its type

thisAnimal.age = 18;

thisAnimal.id = 2037581;

cin >> thisAnimal.weight;

getline (cin, thisAnimal.species);

thisAnimal.name = “giant panda”;

thisAnimal.genus[0] = toupper (thisAnimal.genus[0]) ;

thisAnimal.age++;

18

Aggregate Operation

• is an operation on a data structure as a

whole, as opposed to an operation on an

individual component of the data

structure

19

Aggregate Operations with Structures

• Limitations on aggregate operations

− no I/O

− no arithmetic operations

− no comparisons

cout << old_part;

cin >> new_part;

old_part = new_part + old_part;

if (old_part < new_part)

cout << ...;

20

Aggregate struct Operations

I/O, arithmetic, and comparisons of entire struct variables

are NOT ALLOWED!

Operations valid on an entire struct type variable:

• assignment to another struct variable of same type,

• pass to a function as argument (by value or by

reference),

• return as value of a function

21

Examples of

aggregate struct operations

anotherAnimal = thisAnimal ; // assignment

WriteOut(thisAnimal); // value parameter

ChangeWeightAndAge(thisAnimal); // reference parameter

thisAnimal = GetAnimalData(); // return value of function

NOW WE’LL WRITE FUNCTIONS USED HERE . . .

22

void WriteOut(/* in */ AnimalType thisAnimal)

// Prints out values of all members of thisAnimal

// Precondition: all members of thisAnimal are assigned

// Postcondition: all members have been written out

{

cout <<“ID # “<<thisAnimal.id<<thisAnimal.name<< endl ;

cout << thisAnimal.genus << thisAnimal.species << endl ;

cout << thisAnimal.country << endl ;

cout << thisAnimal.age << “ years “ << endl ;

cout << thisAnimal.weight << “ lbs. “ << endl ;

cout << “General health : “ ;

WriteWord (thisAnimal.health) ;

}

22

23

void ChangeAge (/* inout */ AnimalType& thisAnimal)

// Adds 1 to age

// Precondition: thisAnimal.age is assigned

// Postcondition: thisAnimal.age ==

thisAnimal.age@entry + 1

{

thisAnimal.age++ ;

}

Passing a struct Type by Reference

24

AnimalType GetAnimalData (void)

// Obtains all information about an animal from keyboard

// Postcondition:

// Function value == AnimalType members entered at kbd

{

AnimalType thisAnimal ;

char response ;

do {// have user enter all members until they are correct

.

.

.

} while (response != ‘Y’) ;

return thisAnimal ;

}

25

Hierarchical Structures

The type of a struct member can be another

struct type. This is called nested or

hierarchical structures.

Hierarchical structures are very useful when

there is much detailed information in each

record.

FOR EXAMPLE . . .

26

struct MachineRec

Information about each machine in a shop contains:

an idNumber,

a written description,

the purchase date,

the cost,

and a history (including failure rate, number of days

down, and date of last service).

27

struct DateType

{ int month ; // Assume 1 . . 12

int day ; // Assume 1 . . 31

int year ; // Assume 1900 . . 2050

};

struct StatisticsType

{ float failRate ;

DateType lastServiced ; // DateType is a struct type

int downDays ;

} ;

struct MachineRec

{ int idNumber ;

string description ;

StatisticsType history ; // StatisticsType is a struct type

DateType purchaseDate ;

float cost ;

} ;

MachineRec machine ;

28

struct type variable machine

7000

.idNumber .description .history .purchaseDate .cost

.month .day .year

5719 “DRILLING…” 3 21 1995 8000.0

.failrate .lastServiced .downdays

.02 1 25 1999 4
.month .day .year

machine.history.lastServiced.year has value

1999

C++ Programming: From Problem Analysis to Program Design, Second Edition 29

Another Struct Example

• An example of a studentData struct:
struct studentData

{

string firstName;

string lastName;

char courseGrade;

float testScore;

float programmingScore;

float GPA;

}; // NOTE THE SEMICOLON

C++ Programming: From Problem Analysis to Program Design, Second Edition 30

Declaring a struct

• After you have defined a struct, you can

declare variables in your program to be of that

struct type:

studentData student;

studentData newStudent;

C++ Programming: From Problem Analysis to Program Design, Second Edition 32

Assignment

• You can copy one structure to another if they

have the same type

student = newStudent;

• You can copy individual members:

newStudent.lastName = student.lastName;

• Or into a variable of the correct type:

thisStudentName = student.lastName;

C++ Programming: From Problem Analysis to Program Design, Second Edition 33

Comparison (Relational Operators)

• Compare struct variables member-wise (NOT
THE WHOLE STRUCTURE)

• To compare the values of student and
newStudent:

if(student.firstName == newStudent.firstName &&
student.lastName == newStudent.lastName)

.

.

.

C++ Programming: From Problem Analysis to Program Design, Second Edition 34

Input/Output

• No aggregate input/output operations on a

struct variable

• Data in a struct variable must be read one

member at a time

• The contents of a struct variable must be

written one member at a time

C++ Programming: From Problem Analysis to Program Design, Second Edition 35

struct Variables and Functions

• A struct variable can be passed as a

parameter by value or by reference

• A function can return a value of type

struct

C++ Programming: From Problem Analysis to Program Design, Second Edition 37

Arrays in structs

• Two key items are associated with a list:
− Values (elements)

− Length of the list

• Define a struct containing both items:

const arraySize = 1000;

struct listType

{

int listElem[arraySize]; //array containing the list

int listLength; //length of the list

};

C++ Programming: From Problem Analysis to Program Design, Second Edition 40

Summary

• Struct: collection of a fixed number of

components

• Components can be of different types

• struct is a reserved word

• No memory is allocated for a struct; memory

is allocated for struct variables when declared

• Components of a struct are called members

C++ Programming: From Problem Analysis to Program Design, Second Edition 41

Summary (cont.)

• struct components are accessed by name

• Dot (.) operator is called the member access

operator

• Members of a struct are accessed using the

dot (.) operator

• The only built-in operations on a struct are the

assignment and member access

C++ Programming: From Problem Analysis to Program Design, Second Edition 42

Summary (cont.)

• Neither arithmetic nor relational operations are

allowed on the entire structure

• structures can be passed by value or

reference

• A function can return a structure

• A structure can be a member of another

structure

43

List ADT

A general list of size N, of the form: A0, A1, A2, ..., AN−1.

N=0 -> empty list

For any non-empty list:

Ai follows (or succeeds) Ai−1 (i < N) and

Ai−1 precedes Ai (i > 0)

We will not define the predecessor of A0 or the successor of AN−1

The position of element Ai in a list is i

The first element of the list is A0, and the last element is AN−1

44

List ADT

Set of Operations

• Insert

• Remove

• Find

• Next

• Previous

• Print

• Clear

45

List ADT

Set of Operations

Given list: 34, 12, 52, 16, 12

Find(52) -> returns 2

Insert(25, 2) -> 34, 12, 25, 52, 16, 12

Remove(52) -> 34, 12, 15, 16, 12

Next(2) -> 16 // next of given index

Previous(2) -> 12 // prev of given index

What does Find(8) returns?

The interpretation of what is appropriate for a function is entirely up to the

programmer, as is the handling of special cases.

46

A Simple Array Implementation of

Lists

Ref: OpenDSA Project

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html

47

A Simple Array Implementation of

Lists

Ref: OpenDSA Project

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html

48

A Simple Array Implementation of Lists

Operations

Ref: OpenDSA Project

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html

49

A Simple Array Implementation of Lists

Operations

Ref: OpenDSA Project

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html

50

A Simple Array Implementation of Lists

Operations

Ref: OpenDSA Project

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html

51

A Simple Array Implementation of Lists

Operations

Ref: OpenDSA Project

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html

52

A Simple Array Implementation of Lists

Operations

Ref: OpenDSA Project

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html

53

A Simple Array Implementation of Lists

Operations

Ref: OpenDSA Project

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html

54

A Simple Array Implementation of Lists

Operations

Ref: OpenDSA Project

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html

55

A Simple Array Implementation of Lists

Operations

Ref: OpenDSA Project

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html

56

Insert

Ref: OpenDSA Project

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html

insert 512 to current position

57

Insert

Ref: OpenDSA Project

https://opendsa-

server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html

insert 512 to current position

58

Append

Ref: OpenDSA Project

https://opendsa-

server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html

Append 23

59

Append

Ref: OpenDSA Project

https://opendsa-

server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html

Append 23

60

Remove

Ref: OpenDSA Project

https://opendsa-

server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html

Remove 12 in position 1

61

Remove

Ref: OpenDSA Project

https://opendsa-

server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html

Remove 12 in position 1

62

Remove

Ref: OpenDSA Project

https://opendsa-

server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html

Remove 12 in position 1

63

Remove

Ref: OpenDSA Project

https://opendsa-

server.cs.vt.edu/ODSA/Books/Everything/html/ListArray.html

Remove 12 in position 1

64

Computational Times

Printing list -> linear time

Empty list -> constant time

Insert & remove ops -> expensive
• depends on where the insertions and deletions occur

65

Computational Times

Insertion (worst case)
• Insert at the front of the list

•What is the complexity?

Insertion (best case)
• Insert at the end of the list

•What is the complexity?

66

Computational Times

Remove (worst case)
•Deleting the first element of the list

•What is the complexity?

Remove (best case)
•Deleting the last element of the list

•What is the complexity?

67

Remarks

There are many situations where the list is built up by insertions

at the high end, and then only array accesses (i.e., getValue

operations) occur. In such a case, the array is a suitable

implementation.

If insertions and deletions occur throughout the list and in

particular, at the front of the list, then the array is not a good

option.

