Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton University.
Balanced Search Trees

- 2-3 search trees
- Red-black BSTs
- B-trees
- Geometric applications of BSTs
Challenge. Guarantee performance.

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Worst-case cost (after N inserts)</th>
<th>Average case (after N random inserts)</th>
<th>Ordered iteration?</th>
<th>Key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
</tr>
<tr>
<td>Sequential search</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N/2</td>
</tr>
<tr>
<td>(unordered list)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary search</td>
<td>lg N</td>
<td>N</td>
<td>N</td>
<td>lg N</td>
</tr>
<tr>
<td>(ordered array)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>1.39 lg N</td>
</tr>
<tr>
<td>Goal</td>
<td>log N</td>
<td>log N</td>
<td>log N</td>
<td>log N</td>
</tr>
</tbody>
</table>
Balanced Search Trees

- 2-3 search trees
- Red-black BSTs
- B-trees
- Geometric applications of BSTs
You can read it as 2 or 3 children tree
Allow 1 or 2 keys per node.
• 2-node: one key, two children.
• 3-node: two keys, three children.
Allow 1 or 2 keys per node.

- 2-node: one key, two children.
- 3-node: two keys, three children.

Our Aim is Perfect balance. Every path from root to null link has same length.
Allow 1 or 2 keys per node.

- 2-node: one key, two children.
- 3-node: two keys, three children.

Perfect balance. Every path from root to null link has same length.

Symmetric order. Inorder traversal yields keys in ascending order.
Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

search for H

H is less than M (go left)
2-3 tree demo

Search.
- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

search for H

H is between E and J
(go middle)
Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

search for H

found H
(search hit)
Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

2-3 tree demo

Search for B

```
E J
A C  H  L
B is less than M
(go left)

M
R
P  S X
```
Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

search for B

B is less than E (go left)
Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

search for B

B is between A and C (go middle)
Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

search for B

B
link is null
(search miss)
Problem with Binary Search Tree: when the tree grows from leaves, it is possible to always insert to same branch. (worst-case)

Instead of growing the tree from bottom, try to grow upwards.
- If there is space in a leaf, simply insert it
- Otherwise push nodes from bottom to top, if done recursively the tree will be balanced as it grows (increasing the height by introducing a new root)

If we keep on inserting to same branch;

BST:

```
  9
 / 
8   8
 /  / 
7  7   7
|  |   |   |
6  |   |   |
```

2 or 3 Tree:

```
  8
/ 
6,7
 |
9
```
Insert into a 2-node at bottom.

- Search for key, as usual.
- Replace 2-node with 3-node.

2-3 Tree Demo

Insert K

- K is less than M (go left)

![Tree Diagram](image-url)
2-3 tree demo

Insert into a 2-node at bottom.
• Search for key, as usual.
• Replace 2-node with 3-node.

insert K

K is greater than J
(go right)
2-3 tree demo

Insert into a 2-node at bottom.

- Search for key, as usual.
- Replace 2-node with 3-node.

insert K

search ends here
Insert into a 2-node at bottom.
• Search for key, as usual.
• Replace 2-node with 3-node.
Insert into a 2-node at bottom.

- Search for key, as usual.
- Replace 2-node with 3-node.

insert K
Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
2-3 tree demo

Insert into a 3-node at bottom.

• Add new key to 3-node to create temporary 4-node.
• Move middle key in 4-node into parent.

insert Z

Z is greater than R (go right)
Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.
• Move middle key in 4-node into parent.

insert Z
2-3 tree demo

Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

insert Z

replace 3-node with temporary 4-node containing Z
2-3 tree demo

Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

insert Z
Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

2-3 tree demo

Insert Z

- split 4-node into two 2-nodes
 (pass middle key to parent)
Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

- insert Z
Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

2-3 tree demo

insert Z
Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

convert 3-node into 4-node
Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

2-3 tree demo

```
S
X
A
C
E
R
H
L
P
H
L
P
S
X
```

insert L
2-3 tree demo

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L
2-3 tree demo

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.
• Move middle key in 4-node into parent.
• Repeat up the tree, as necessary.
• If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L
2-3 tree demo

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.
• Move middle key in 4-node into parent.
• Repeat up the tree, as necessary.
• If you reach the root and it's a 4-node, split it into three 2-nodes.
2-3 tree demo

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

height of tree increases by 1

insert L
2-3 tree demo

Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

```
  L
 / \
E   R
 / \
A C H P S X
```
Search in a 2-3 tree

• Compare search key against keys in node.
• Find interval containing search key.
• Follow associated link (recursively).

H is less than M so look to the left

H is between E and L so look in the middle

found H so return value (search hit)

B is between A and C so look in the middle
link is null so B is not in the tree (search miss)
Case 1. Insert into a 2-node at bottom.

- Search for key, as usual.
- Replace 2-node with 3-node.

Inserting K

Search for K ends here

Replace 2-node with new 3-node containing K
Case 2. Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
Case 2. Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

Insertion in a 2-3 tree

- Inserting D
- Search for D ends at this 3-node
- Add new key D to 3-node to make temporary 4-node
- Add middle key C to 3-node to make temporary 4-node
- Split 4-node into two 2-nodes pass middle key to parent
- Split 4-node into three 2-nodes increasing tree height by 1
- Increases height by 1
Local transformations in a 2-3 tree

Splitting a 4-node is a **local** transformation: constant number of operations.
Global properties in a 2-3 tree

Invariants. Maintains symmetric order and perfect balance.

Pf. Each transformation maintains symmetric order and perfect balance.
2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
• Worst case:
• Best case:
2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

- Worst case: \(\lg N \). [all 2-nodes]
- Best case: \(\log_3 N \approx 0.631 \lg N \). [all 3-nodes]

- Between 12 and 20 for a million nodes.
- Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.
ST implementations: summary

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Worst-case cost (after N inserts)</th>
<th>Average case (after N random inserts)</th>
<th>Ordered iteration?</th>
<th>Key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search (unordered list)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N/2</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>lg N</td>
<td>N</td>
<td>N</td>
<td>lg N</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>1.39 lg N</td>
</tr>
<tr>
<td>2-3 tree</td>
<td>c lg N</td>
<td>c lg N</td>
<td>c lg N</td>
<td>c lg N</td>
</tr>
</tbody>
</table>

Constants depend upon implementation.
Direct implementation is complicated, because:

• Maintaining multiple node types is cumbersome.
• Need multiple compares to move down tree.
• Need to move back up the tree to split 4-nodes.
• Large number of cases for splitting.

Bottom line. Could do it, but there's a better way.
Balanced Search Trees

- 2-3 search trees
- Red-black BSTs
- B-trees
- Geometric applications of BSTs
Multiple Node Types

- In 2-3 Trees, the algorithm automatically balances the tree
- However, we have to keep track of two different node types, complicating the source code.
 - Nodes with one key
 - Nodes with two keys

- Instead of multiple nodes:
 - Multiple edge types; red and black
 - Rotations instead of Split
1. Represent 2–3 tree as a BST.
2. Use "internal" left-leaning links as "glue" for 3–nodes.
An equivalent definition

A BST such that:

- No node has two red links connected to it.
- Every path from root to null link has the same number of black links.
 - We will only allow one red link to simulate 2 keys in node
 - A node with two red links would be the same as having 3 keys
- Red links lean left (correct ordering)

"perfect black balance"
Key property. 1–1 correspondence between 2–3 and LLRB.
Search implementation for red-black BSTs

Observation. Search is the same as for elementary BST (ignore color).

but runs faster because of better balance

```java
public Val get(Key key) {
    Node x = root;
    while (x != null) {
        int cmp = key.compareTo(x.key);
        if (cmp < 0) x = x.left;
        else if (cmp > 0) x = x.right;
        else if (cmp == 0) return x.val;
    }
    return null;
}
```

Remark. Most other ops (e.g., ceiling, selection, iteration) are also identical.
Red-black BST representation

Each node is pointed to by precisely one link (from its parent) \(\Rightarrow \) can encode color of links in nodes.

```java
private static final boolean RED   = true;
private static final boolean BLACK = false;

private class Node
{
    Key key;
    Value val;
    Node left, right;
    boolean color;   // color of parent link
}

private boolean isRed(Node x)
{
    if (x == null) return false;
    return x.color == RED;
}
```

null links are black
Left rotation. Orient a (temporarily) right-leaning red link to lean left.

Invariants. Maintains symmetric order and perfect black balance.

private Node rotateLeft(Node h) {
 assert isRed(h.right);
 Node x = h.right;
 h.right = x.left;
 x.left = h;
 x.color = h.color;
 h.color = RED;
 return x;
}
Left rotation. Orient a (temporarily) right-leaning red link to lean left.

Invariants. Maintains symmetric order and perfect black balance.

private Node rotateLeft(Node h) {
 assert isRed(h.right);
 Node x = h.right;
 h.right = x.left;
 x.left = h;
 x.color = h.color;
 h.color = RED;
 return x;
}
Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

```
private Node rotateRight(Node h) {
    assert isRed(h.left);
    Node x = h.left;
    h.left = x.right;
    x.right = h;
    x.color = h.color;
    h.color = RED;
    return x;
}
```

Invariants. Maintains symmetric order and perfect black balance.
Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

```
private Node rotateRight(Node h)
{
    assert isRed(h.left);
    Node x = h.left;
    h.left = x.right;
    x.right = h;
    x.color = h.color;
    h.color = RED;
    return x;
}
```

Invariants. Maintains symmetric order and perfect black balance.
Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

Invariants. Maintains symmetric order and perfect black balance.

```java
private void flipColors(Node h) {
    assert !isRed(h);
    assert isRed(h.left);
    assert isRed(h.right);
    h.color = RED;
    h.left.color = BLACK;
    h.right.color = BLACK;
}
```
Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

```
private void flipColors(Node h)
{
    assert !isRed(h);
    assert isRed(h.left);
    asset isRed(h.right);
    h.color = RED;
    h.left.color = BLACK;
    h.right.color = BLACK;
}
```

Invariants. Maintains symmetric order and perfect black balance.
Basic strategy. Maintain 1-1 correspondence with 2-3 trees by applying elementary red-black BST operations.

Insertion in a LLRB tree: overview

- **Insert C**
- Add new node here
- Right link red so rotate left

59
Warmup 1. Insert into a tree with exactly 1 node.

Insertion in a LLRB tree

left

root

search ends at this null link

red link to new node containing a
converts 2-node to 3-node

right

root

search ends at this null link

attached new node with red link

rotated left to make a legal 3-node
Case 1. Insert into a 2-node at the bottom.

- Do standard BST insert; color new link red.
- If new red link is a right link, rotate left.
Warmup 2. Insert into a tree with exactly 2 nodes.

Insertion in a LLRB tree

Think of this as a split in 2-3 tree
Case 2. Insert into a 3-node at the bottom.

- Do standard BST insert; color new link red.
- Rotate to balance the 4-node (if needed).
- Flip colors to pass red link up one level.
- Rotate to make lean left (if needed).

As with 2-3 Trees we have to update parents, bottom-to-top if we violate the conditions.
Case 2. Insert into a 3-node at the bottom.
• Do standard BST insert; color new link red.
• Rotate to balance the 4-node (if needed).
• Flip colors to pass red link up one level.
• Rotate to make lean left (if needed).
• Repeat case 1 or case 2 up the tree (if needed).
Red-black BST insertion

insert S
Red-black BST insertion

insert E
Red-black BST insertion

insert A
Red-black BST insertion

insert A

two left reds in a row
(rotate S right)
Red-black BST insertion

both children red
(flip colors)

E

A S
Red-black BST insertion

both children red
(flip colors)
Red-black BST insertion

red–black BST

![Red-black BST Diagram](image)
Red-black BST insertion

red–black BST

[Diagram of a red-black BST with nodes A, E, and S]
Red-black BST insertion

insert R

[Diagram of a red-black tree with nodes E, A, S, and R, where R is inserted as a red node and the tree is shown to maintain the red-black properties.]
Red-black BST insertion

red–black BST
Red-black BST insertion
Red-black BST insertion

insert C
Red-black BST insertion

right link red
(rotate A left)
Red-black BST insertion

red–black BST

A

C

R

S

E
Red-black BST insertion

red-black BST

![Diagram of a red-black BST with nodes A, C, E, S, and R.]
Red-black BST insertion
Red-black BST insertion

insert H
Red-black BST insertion

two left reds in a row
(rotate S right)
Red-black BST insertion

both children red
(flip colors)
Red-black BST insertion

- Both children red (flip colors)
Red-black BST insertion

right link red
(rotate E left)
Red-black BST insertion

red–black BST
Red-black BST insertion

red-black BST

![Red-black BST example]

- A
- C
- E
- H
- R
- S
Red-black BST insertion

red-black BST
Red-black BST insertion

Insert X
Red-black BST insertion

insert X

right link red
(rotate S left)
Red-black BST insertion

red–black BST
Red-black BST insertion
Red-black BST insertion

red–black BST
Red-black BST insertion

insert M
Red-black BST insertion

insert M

right link red (rotate H left)
Red-black BST insertion

red-black BST
Red-black BST insertion

insert P
Red-black BST insertion

insert P

two red children
(flip colors)
Red-black BST insertion

insert P

two red children (flip colors)
Red-black BST insertion

right link red
(rotate E left)
Red-black BST insertion

two left reds in a row
(rotate R right)
Red-black BST insertion

two red children
(flip colors)
Red-black BST insertion

two red children
(flip colors)
Red-black BST insertion

red–black BST
Red-black BST insertion
Red-black BST insertion

red-black BST

```
     M
    / \
   E   R
  / | /|
 C  H P X
 /   |   |
A    S   
```

Red-black BST insertion

insert L

```
      M
     /   \
    E     R
   /  \
  C    H    P
 / \
A   L  X
 \
S
```
Red-black BST insertion

insert L

ight link red
(rotate H left)
Red-black BST insertion

red–black BST

```
M
 /  \
E   R
 /  \
C   L
 / \
A   H
     /  \
     P   S
       /  \
       X
```
LLRB tree insertion trace

Standard indexing client.

insert S

E
A
R
C
H

red–black BST

S

S

E S

E

A S

E

R S

E S

R S

A

C

R

S

E R

A C

H S

corresponding 2–3 tree
LLRB tree insertion trace

Standard indexing client (continued).
Insertion in a LLRB tree: Java implementation

Same code for both cases.

- Right child red, left child black: rotate left.
- Left child, left-left grandchild red: rotate right.
- Both children red: flip colors.

```java
private Node put(Node h, Key key, Value val)
{
    if (h == null) return new Node(key, val, RED);
    int cmp = key.compareTo(h.key);
    if      (cmp  < 0) h.left  = put(h.left,  key, val);
    else if (cmp  > 0) h.right = put(h.right, key, val);
    else if (cmp == 0)
    { // h is the new node
        h.val = val;
    
        if (isRed(h.right) && !isRed(h.left))     h = rotateLeft(h);
        if (isRed(h.left)  && isRed(h.left.left)) h = rotateRight(h);
        if (isRed(h.left)  && isRed(h.right))     flipColors(h);
    }
    return h;
}
```

Although the same code is used, different cases require different actions:

- **Insert at **bottom **(and color red)**
- **Lean left** (if the new node is a red link)
- **Balance 4-node** to maintain balance
- **Split 4-node** to prevent balance issues

Only a few extra lines of code provide near-perfect balance.
Insertion in a LLRB tree: visualization

N = 255
max = 8
avg = 7.0
opt = 7.0

255 insertions in ascending order
Insertion in a LLRB tree: visualization

Remark. Only a few extra lines of code to standard BST insert.

255 insertions in descending order
Remark. Only a few extra lines of code to standard BST insert.
Balance in LLRB trees

Proposition. Height of tree is $\leq 2 \log_2 N$ in the worst case.

Pf.
- Every path from root to null link has same number of black links.
- Never two red links in-a-row.

Property. Height of tree is $\sim 1.00 \log_2 N$ in typical applications.
ST implementations: frequency counter

Costs for java FrequencyCounter 8 < tale.txt using BST

Costs for java FrequencyCounter 8 < tale.txt using RedBlackBST
ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>worst-case cost (after N inserts)</th>
<th>average case (after N random inserts)</th>
<th>ordered iteration?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
<td>insert</td>
</tr>
<tr>
<td>sequential search</td>
<td>N</td>
<td>N</td>
<td>N/2</td>
<td>N</td>
</tr>
<tr>
<td>(unordered list)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>binary search</td>
<td>lg N</td>
<td>N</td>
<td>lg N</td>
<td>N/2</td>
</tr>
<tr>
<td>(ordered array)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>1.39 lg N</td>
<td>1.39 lg N</td>
</tr>
<tr>
<td>2-3 tree</td>
<td>c lg N</td>
<td>c lg N</td>
<td>c lg N</td>
<td>c lg N</td>
</tr>
<tr>
<td>red-black BST</td>
<td>2 lg N</td>
<td>2 lg N</td>
<td>1.00 lg N *</td>
<td>1.00 lg N *</td>
</tr>
</tbody>
</table>

exact value of coefficient unknown but extremely close to 1
Balanced Search Trees

- 2-3 search trees
- Red-black BSTs
- B-trees
- Geometric applications of BSTs
File system model

Page. Contiguous block of data (e.g., a file or 4,096-byte chunk).

Probe. First access to a page (e.g., from disk to memory).

Property. Time required for a probe is much larger than time to access data within a page.

Cost model. Number of probes.

Goal. Access data using minimum number of probes.
B-tree. Generalize 2-3 trees by allowing up to $M - 1$ key-link pairs per node.

- At least 2 key-link pairs at root.
- At least $M/2$ key-link pairs in other nodes.
- External nodes contain client keys.
- Internal nodes contain copies of keys to guide search.

Choose M as large as possible so that M links fit in a page, e.g., $M = 1024$.

Anatomy of a B-tree set ($M = 6$)

- External nodes contain client keys.
- Internal nodes contain copies of keys to guide search.
Searching in a B-tree

- Start at root.
- Find interval for search key and take corresponding link.
- Search terminates in external node.

Searching in a B-tree set ($M = 6$)

- Follow this link because E is between $*$ and K.
- Follow this link because E is between D and H.
- Search for E in this external node.
Insertion in a B-tree

- Search for new key.
- Insert at bottom.
- Split nodes with M key-link pairs on the way up the tree.
Proposition. A search or an insertion in a B-tree of order M with N keys requires between $\log_{M-1} N$ and $\log_{M/2} N$ probes.

Pf. All internal nodes (besides root) have between $M/2$ and $M-1$ links.

In practice. Number of probes is at most 4. $M = 1024; N = 62$ billion $\log_{M/2} N \leq 4$

Optimization. Always keep root page in memory.
Building a large B-tree

Each line shows the result of inserting one key in some page.

White: unoccupied portion of page

Black: occupied portion of page

Full page, about to split

Full page splits into two half-full pages then a new key is added to one of them.
Balanced trees in the wild

Red-black trees are widely used as system symbol tables.

- Java: `java.util.TreeMap`, `java.util.TreeSet`.
- C++ STL: `map`, `multimap`, `multiset`.
- Linux kernel: completely fair scheduler, `linux/rbtree.h`.

B-tree variants. B+ tree, B*tree, B# tree, ...

B-trees (and variants) are widely used for file systems and databases.

- Windows: HPFS.
- Mac: HFS, HFS+.
- Linux: ReiserFS, XFS, Ext3FS, JFS.
- Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.
Balanced Search Trees

- 2-3 search trees
- Red-black BSTs
- B-trees
- Geometric applications of BSTs
GEOMETRIC APPLICATIONS OF BSTs

- kd trees
2-d orthogonal range search

Extension of ordered symbol-table to 2d keys.

- Insert a 2d key.
- Delete a 2d key.
- Search for a 2d key.
- **Range search**: find all keys that lie in a 2d range.
- **Range count**: number of keys that lie in a 2d range.

Geometric interpretation.

- Keys are point in the plane.
- Find/count points in a given $h \times v$ rectangle.

Applications. Networking, circuit design, databases,...
Grid implementation.

- Divide space into M-by-M grid of squares.
- Create list of points contained in each square.
- Use 2d array to directly index relevant square.
- Insert: add (x, y) to list for corresponding square.
- Range search: examine only those squares that intersect 2d range query.
2d orthogonal range search: grid implementation costs

Space-time tradeoff.
- Space: \(M^2 + N \).
- Time: \(1 + \frac{N}{M^2} \) per square examined, on average.

Choose grid square size to tune performance.
- Too small: wastes space.
- Too large: too many points per square.
- Rule of thumb: \(\sqrt{N} \)-by-\(\sqrt{N} \) grid.

Running time. [if points are evenly distributed]
- Initialize data structure: \(N \).
- Insert point: 1.
- Range search: 1 per point in range.
Grid implementation. Fast and simple solution for evenly-distributed points.

Problem. Clustering a well-known phenomenon in geometric data.
• Lists are too long, even though average length is short.
• Need data structure that gracefully adapts to data.
Grid implementation. Fast and simple solution for evenly-distributed points.

Problem. Clustering a well-known phenomenon in geometric data.
Ex. USA map data.
Space-partitioning trees

Use a tree to represent a recursive subdivision of 2d space.

Grid. Divide space uniformly into squares.

2d tree. Recursively divide space into two halfplanes.

Quadtrees. Recursively divide space into four quadrants.

BSP tree. Recursively divide space into two regions.
Space-partitioning trees: applications

Applications.

- Ray tracing.
- 2d range search.
- Flight simulators.
- N-body simulation.
- Collision detection.
- Astronomical databases.
- Nearest neighbor search.
- Adaptive mesh generation.
- Accelerate rendering in Doom.
- Hidden surface removal and shadow casting.

Grid 2d tree Quadtree BSP tree
Kd tree. Recursively partition k-dimensional space into 2 halfspaces.

Implementation. BST, but cycle through dimensions ala 2d trees.

Efficient, simple data structure for processing k-dimensional data.

- Widely used.
- Adapts well to high-dimensional and clustered data.
- Discovered by an undergrad in an algorithms class!
N-body simulation

Goal. Simulate the motion of N particles, mutually affected by gravity.

Brute force. For each pair of particles, compute force.

$F = \frac{G m_1 m_2}{r^2}$
Appel algorithm for N-body simulation

Key idea. Suppose particle is far, far away from cluster of particles.
- Treat cluster of particles as a single aggregate particle.
- Compute force between particle and *center of mass* of aggregate particle.
Appel algorithm for N-body simulation

- Build 3d-tree with N particles as nodes.
- Store center-of-mass of subtree in each node.
- To compute total force acting on a particle, traverse tree, but stop as soon as distance from particle to subdivision is sufficiently large.

Impact. Running time per step is $N \log N$ instead of $N^2 \Rightarrow$ enables new research.