BBM 202 - ALGORITHMS

HACETTEPE UNIVERSITY

DEPT. OF COMPUTER ENGINEERING

TRIES

Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick
and K. Wayne of Princeton University.

» Tries

» R-way tries

» Ternary search tries

» Character-based operations

Review: summary of the performance of symbol-table

implementations
Order of growth of the frequency of operations.

typical case :
ordered operations

implementation :
: operations on keys
search insert delete

red-black BST log N log N log N yes compareTo ()
1
hash table 1t 1t 1t no equals()
hashcode ()

1 under uniform hashing assumption

Q. Can we do better?
A. Yes, if we can avoid examining the entire key, as with string sorting.

String symbol table basic API

String symbol table. Symbol table specialized to string keys.

public class StringST<Value>

StringST () create an empty symbol table
void put(String key, Value val) put key-value pair into the symbol table
Value get(String key) return value paired with given key
void delete(String key) delete key and corresponding value

Goal. Faster than hashing, more flexible than BSTs.

String symbol table implementations cost summary

character accesses (typical case)

: : : space
implementation : insert moby.txt actors.txt
(references)

red-black BST L+clg?N clg?N clg?N 4N 1,4 97,4

hashing
_ _ L L L 4N to 16N 0,76 40,6
(linear probing)

Parameters file size words distinct

o N = number of strings moby.txt 1.2 MB 210 K 32 K

e L = length of string
actors.txt 82 MB 114 M 900 K
e R = radix

Challenge. Efficient performance for string keys.

» R-way tries
» Ternary search tries
» Character-based operations

Tries

Tries. [from retrieval, but pronounced "try"]

e Store characters in nodes (not keys). aIF e e G e
/ draw null links
® Each node has R children, one for each possible character.

® Store values in nodes corresponding to last characters in keys.

link to trie for all keys

root — . that start with s : :
link to trie for all keys

that start with she

key value

sea 6 \ value for she in node
sells 1 (D (D (D

corresponding to last

she 0 key character
shells 3 @ 1 | @ 7

shore 7

the 5

Search in a trie

Follow links corresponding to each character in the key.

e Search hit: node where search ends has a non-null value.

get("shells")

return value associated
with last key character

(return 3)

Search in a trie

Follow links corresponding to each character in the key.

e Search hit: node where search ends has a non-null value.

get("she")

search may terminated
at an intermediate node

(return 0)

Search in a trie

Follow links corresponding to each character in the key.

® Search miss: reach a null link or node where search ends has null value.

get("shell")

\ no value associated

with last key character

(return null)

Search in a trie

Follow links corresponding to each character in the key.

® Search miss: reach a null link or node where search ends has null value.

get("shelter")

ho link to 't'

(return null)

Insertion into a trie

Follow links corresponding to each character in the key.

® Encounter a null link: create new node.

® Encounter the last character of the key: set value in that node.

put("shore", 7)

Trie construction demo

trie

Trie construction demo

put("she", 0)

/7

key is sequence
of characters from

root to value

0

AN

value is in node
corresponding to
last character

Trie construction demo

she

trie

Trie construction demo

she

trie

Trie construction demo

she

put("sells", 1)

Trie construction demo

she
sells

trie

Trie construction demo

she
sells

trie

Trie construction demo

she
sells

put("sea", 2)

20

Trie construction demo

she
sells
sea

trie

21

Trie construction demo

she

sells

sea
put("shells”, 3)

22

Trie construction demo

she
sells
sea

trie

23

Trie construction demo

she

sells

sea
put("by", 4)

24

Trie construction demo

she
sells

sea

trie

25

Trie construction demo

she

sells

sea

by
put("the", 5)

26

Trie construction demo

she
sells

sea

the

trie

27

Trie construction demo

put("sea", 6)

overwrite
old value with

nhew value

28

Trie construction demo

trie

29

Trie construction demo

trie

30

Trie construction demo

she

sells

sea

by

the
put("shore", 7)

31

Trie construction demo

she
sells

seéa

the
shore

trie

32

Trie representation: Java implementation

Node. A value, plus references to R nodes.

private static class Node

{

use Object instead of Value since

private Object wvalue; < _ o
No generic array creation in Java

private Node[] next = new Node[R];

characters are implicitly

defined by link index ® < neither keys nor
' ~. characters are
. explicitly stored

. \ each node has

an array of links

and a value

Trie representation

33

Trie representation: Java implementation

Node. A value, plus references to R nodes.

private static class Node

{

. i A child node for each character in Alphabet.
private Object wvalue;
No need to search for character, but a

private Node[] next = new Node[R];

pointer reserved for each character in

memory

characters are implicitly
defined by link index

Uit eerrreerrreereety APt i errriiertity ottt PrriiPPerlireiqgeyg

(HINEEEEENENEEREEDARRERRERER each node has

an array of links
(NEERNERNEREERENRRENRENEREER and a value

Trie representation (R = 26)

R-way trie: Java implementation

public class TrieST<Value>
{

private static final int R = 256; <«<—— extended ASCII

private Node root;

private static class Node
{ /* see previous slide */ }

public void put(String key, Value val)
{ root = put(root, key, val, 0); }

private Node put(Node x, String key, Value val,

{

if (x == null) x = new Node() ;
if (d == key.length()) { x.val = wval;
char ¢ = key.charAt(d) ;

return x;

x.next[c] = put(x.next[c], key, wval, d+l);

return x;

int d)

}

35

R-way trie: Java implementation (continued)

public boolean contains (String key)
{ return get(key) !'= null; }

public Value get (String key)
{
Node x = get(root, key, 0);
if (x == null) return null;
return (Value) x.val; <«——— (astneeded

private Node get (Node x, String key, int d)
{

if (x == null) return null;

if (d == key.length()) return x;

char ¢ = key.charAt(d) ;

return get(x.next[c], key, d+1l);

36

Trie performance

Search hit. Need to examine all L characters for equality.

Search miss.

® Could have mismatch on first character.
e Typical case: examine only a few characters (sublinear).

Space. R null links at each leaf.

(but sublinear space possible if many short strings share common
prefixes)

Bottom line. Fast search hit and even faster search miss, but wastes
space.

37

Deletion in an R-way trie

To delete a key-value pair:

® Find the node corresponding to key and set value to null.
e |f that node has all null links, remove that node (and recur).

delete("shells")

null value and links <«—— set value to null

(delete node)

38

Deletion in an R-way trie

To delete a key-value pair:

® Find the node corresponding to key and set value to null.
e |f that node has all null links, remove that node (and recur).

delete("shells");
¢ >
(s) O\

@ O
set value O
o to null Q T
/ non-null value non-null link
e 3 T so do not remove node so do not remove node
(return link to node) (return link to node)
null value and links,

so remove node
(return null link)

Deleting a key (and its associated value) from a trie

39

String symbol table implementations cost summary

character accesses (typical case) dedup
search search space
implementation insert moby.txt actors.txt
miss (references)
red-black BST L+clg?N clg?N clg?N 4 7,4
hashing

_ _ L L L 4N to 16N 0,76 40,6

(linear probing)
_ out of
R-way trie L logr N L (R+1) N 1,12
memory

R-way trie.

e Method of choice for small R.

® Too much memory for large R.

Challenge. Use less memory, e.g., 65,536-way trie for Unicode!

Digression: out of memory?

“ 640 K ought to be enough for anybody. ”
— (mis)attributed to Bill Gates, 1981

(commenting on the amount of RAM in personal computers)

“64 MB of RAM may limit performance of some Windows XP
features, therefore, 128 MB or higher is recommended for
best performance.” — Windows XP manual, 2002

“ 64 bit is coming to desktops, there is no doubt about that.
But apart from Photoshop, I can't think of desktop applications
where you would need more than 4GB of physical memory, which

is what you have to have in order to benefit from this technology.
Right now, it is costly.” — Bill Gates, 2003

41

Digression: out of memory?

A short (approximate) history.

address addressable typical actual
machine year cost
bits memory memory

PDP-8

PDP-10

IBM S/360

VAX

Pentium

Xeon

7?

1960s

1970s

1970s

1980s

1990s

2000s

future

18

24

32

32

64

128+

256 KB
4 MB
4 GB
4 GB

enough

enough

256 KB
512 KB
1 MB
1 GB
4 GB

enough

“512-bit words ought to be enough for anybody. ”
— Kevin Wayne, 1995

$16K

$1M

$1M

$1M

$1K

100 $

159

42

» R-way tries
» Ternary search tries
» Character-based operations

Ternary search tries

® Store characters and values in nodes (not keys).

® Each node has three children: smaller (left), equal (middle), larger (right).

Fast Algorithms for Sorting and Searching Strings

Jon L. Bentley*

Abstract

We present theoretical algorithms for sorting and
searching muitikey data, and derive from them practical C
implementations for applications in which keys are charac-
ter strings. The sorting algorithm blends Quicksort and
radix sort; it is competitive with the best known C sort
codes. The searching algorithm blends tries and binary
search trees; it is faster than hashing and other commonly
used search methods. The basic ideas behind the algo-

Robert Sedgewick#

that is competitive with the most efficient string sorting
programs known. The second program is a symbol table
implementation that is faster than hashing, which is com-
monly regarded as the fastest symbol table implementa-
tion. The symbol table implementation is much more
space-efficient than multiway trees, and supports more
advanced searches.

In many application programs, sorts use a Quicksort
implementation based on an abstract compare operation,

44

Ternary search tries

® Store characters and values in nodes (not keys).
® Each node has three children: smaller (left), equal (middle), larger (right).

link to TST for all keys link to TST for all keys

‘ ;I;giga[;éfr)vrghs \ ‘@l‘iaw}rt with s t
M0 o t R
<'"> (¥)4 () (h) u <h> 4 h ghz
(e)n2 (@14 (1) (e)w0 (0) (ro(e)s @12)10 0 . 0@8
o CD G <e> each node has 0 gQ G ;ez
three links \
G (@@ 11§Q ()7 Q}

TST representation of a trie

45

Search in a TST

Follow links corresponding to each character in the key.

o If less, take left link; if greater, take right link.
® |f equal, take the middle link and move to the next key character.

Search hit. Node where search ends has a non-null value.
Search miss. Reach a null link or node where search ends has null value.

get("sea") match: take middle link,
move to next char

mismatch: take left or right link,
do not move to next char

return value
associated with
last key character

46

Search in a TST

get("sea")

/

return value associated

with last key character

6 (2)

47

Search in a TST

get("shelter")

™~

nho link to 't'

(return null)
48

Ternary search trie insertion demo

ternary search trie

49

Ternary search trie insertion demo

put("she", 0)

/ gez O\
key is sequence value is in node
of characters from corresponding to
root to value last character

using middle links

50

Ternary search trie insertion demo

put("she", 0)

51

Ternary search trie insertion demo

put("sells", 1)

52

Ternary search trie insertion demo

ternary search trie

53

Ternary search trie insertion demo

put("sea", 2)

54

Ternary search trie insertion demo

ternary search trie

55

Ternary search trie insertion demo

put("shells"”, 3)

56

Ternary search trie insertion demo

ternary search trie

57

Ternary search trie insertion demo

put("by", 4)

()

58

Ternary search trie insertion demo

ternary search trie

59

Ternary search trie insertion demo

put("the", 5)

60

Ternary search trie insertion demo

ternary search trie

6l

Ternary search trie insertion demo

put("sea", 6)

overwrite
old value with

hew value

62

Ternary search trie insertion demo

ternary search trie

63

Ternary search trie insertion demo

put("shore", 7)

64

Ternary search trie insertion demo

ternary search trie

65

Ternary search trie insertion demo

ternary search trie

26-way trie vs. TST

26-way trie. 26 null links in each leaf.

e = B R o o

©Q@®E @ WOWE @ @D @ © (& © Wak© @ O @
@@OEWEmEP@EWHE@O®MPOYHE®WLOEWE(©QE®®E @ EE

3

26-way trie (1035 null links, not shown)

TST. 3 null links in each leaf.

@
® (© ©
Culi I & 0 oo Pc
A (oS a0 Q@ o @ &g
T B ol gBe— ot et a
© ©® PNI@E DO N @yl (2 ®
OlolalgO &) 'O @ o GG
GRUNORO @
0

TST (155 null links)

now
for
tip
ilk
dim
tag
jot
sob
nob
sky
hut
ace
bet
men
egg
few
jay
owl
joy
rap
gig
wee
was
cab
wad
caw
cue
fee
tap
ago
tar
jam
dug
and

67

TST representation in Java

A TST node is five fields:

e A value. private class Node
e A character c. {
private Value val;
® A reference to a left TST. private char c;
e A reference to a middle TST. private Node left, mid, right;

® A reference to a right TST.

standard array of links (R = 26) ternary search tree (TST)

link for keys

\/ that start withs ———— [

IllyllllxxllIIIIIIIII\I&III %Q/(h)\g?

\ link for keys —

that start with su

Trie node representations

68

TST: Java implementation

public class TST<Value>

{

private Node root;

private class Node
{ /* see previous slide */ }

public void put(String key, Value val)
{ root = put(root, key, val, 0); }

private Node put (Node x, String key, Value wval, int d)

{
char ¢ = key.charAt(d);

if (x == null) { x = new Node(); x.c = c; }

if (c < x.0) x.left = put(x.left, key, val, 4d);
else if (c > x.c) x.right = put(x.right, key, val, d);
else if (d < key.length() - 1) x.mid = put(x.mid, key, val, d+l);

else x.val val;

return x;

69

TST: Java implementation (continued)

public boolean contains (String key)
{ return get(key) '= null; }

public Value get (String key)

{
Node x = get(root, key, 0);

if (x == null) return null;
return x.val;

private Node get(Node x, String key, int d)
{

if (x == null) return null;

char ¢ = key.charAt(d) ;

if (c < x.c) return get(x.left, key, d);
else if (¢ > x.c) return get (x.right, key, d);

else if (d < key.length() - 1) return get(x.mid, key, d+1);
else return x;

70

String symbol table implementation cost summary

character accesses (typical case) dedup
search search space
implementation insert moby.txt actors.txt
miss (references)
red-black BST L+clg?2N clg?N clg?N 4 7,4
hashing

_ _ L L L 4Ntol6N 0,76 40,6

(linear probing)
_ out of
R-way trie L logr N L (R+1)N 1,12
memory

TST L+InN In N L+InN 0,72 38,7

Remark. Can build balanced TSTs via rotations to achieve L + log N

worst-case guarantees.

Bottom line. TST is as fast as hashing (for string keys), space efficient.

71

TST vs. hashing

Hashing.

® Need to examine entire key.

® Search hits and misses cost about the same.

® Performance relies on hash function.

® Does not support ordered symbol table operations.

TSTs.

® Works only for strings (or digital keys).
® Only examines just enough key characters.
® Search miss may involve only a few characters.

® Supports ordered symbol table operations (plus others!).

Bottom line. TSTs are;

® Faster than hashing (especially for search misses).
More flexible than red-black BSTs. [stay tuned]

72

Previously on BBM202..

Tries.
® Store characters in nodes (not keys).
® Each node has R children, one for each possible character.

® Store values in nodes corresponding to last characters in keys.

Ternary Search Trees (TSTs)

e Store characters and values in nodes (not keys).

® Each node has three children: smaller (left), equal (middle), larger (right).

link to TST for all keys -
‘ that staft with / link to TST for all keys

that start with s
a letter before s \
) L

R

ONONORO, eat%hrgeolcliz]?Sas () QQ (s @
) (7 Q) T~

TST representation of a trie
73

» R-way tries
» Ternary search tries
» Character-based operations

String symbol table API

Character-based operations. The string symbol table APl supports

several useful character-based operations.

key value

by 4
sea 6
sells 1
she 0
shells 3
shore 7/
the 5

Prefix match. Keys with preﬁx "sh". "she", "shells", and "shore".
Wildcard match. Keys that match ".ne": "she" and "the-.

Longest prefix. Key that is the longest prefix of "shelisort": "shelis".

75

String symbol table API

public class StringST<Value>

StringST () create a symbol table with string keys
void put(String key, Value val) put key-value pair into the symbol table
Value get(String key) value paired with key

void delete(String key) delete key and corresponding value
Iterable<String> keys() all keys
Iterable<String> keysWithPrefix (String s) keys having s as a prefix
Iterable<String> keysThatMatch (String s) keys that match s (where . is a wildcard)

String longestPrefixOf (String s) longest key that is a prefix of s

Remark. Can also add other ordered ST methods, e.g., £100r () and rank ().

76

Warmup: ordered iteration

To iterate through all keys in sorted order:

® Do inorder traversal of trie; add keys encountered to a queue.
® Maintain sequence of characters on path from root to node.

keysWithPrefix("");

key q
b
by by
S
se
sea sea
sel
sell
sells sells
sh
she
shell
shells
sho
shor
shore shore
t
th
the the

77

Ordered iteration: Java implementation

To iterate through all keys in sorted order:

® Do inorder traversal of trie; add keys encountered to a queue.
® Maintain sequence of characters on path from root to node.

public Iterable<String> keys ()

{
Queue<String> queue = new Queue<String>() ;
collect(root, "", queue);

return queue; sequence of characters

} / on path from root to x

private void collect (Node x, String prefix, Queue<String> q)
{

if (x == null) return;

if (x.val '= null) g.enqueue (prefix)

for (char ¢ = 0; ¢ < R; c++)
collect(x.next[c], prefix + c, q);

78

Prefix matches

Find all keys in symbol table starting with a given prefix.

Ex. Autocomplete in a cell phone, search bar, text editor, or shell.

® User types characters one at a time.
® System reports all matching strings.

why is my comp|

why is my computer so slow

why is my computer slow

why is my computer so slow all of a sudden
why is my computer so loud

why is my computer running so slowly
why is my computer screen so big
why is my computer freezing

why is my computer beeping

why is my computer slowing down
why is my computer so slow lately

Google Search | I'm Feeling Lucky

79

Prefix matches

Find all keys in symbol table starting with a given prefix.

keysWithPrefix("sh");

find subtrie for all //////

keys beginning with "sh"

key q

sh

she she
shel
shell

sho
shor
shore

collect keys
in that subtrie

Prefix match in a trie

public Iterable<String> keysWithPrefix (String prefix)

{

Queue<String> queue = new Queue<String>() ;
Node x = get(root, prefix, 0);
collect (x, prefix, queue);

root of subtrie for all strings
return queue;

beginning with given prefix

shells shells

shore

80

Wildcard matches

Use wildcard . to match any character in alphabet.

Co....er

coalizer
coberger
codifier
cofaster
cofather
cognizer
cohelper
colander

coleader

compiler

composer

computer

cowkeper

.C...C.

acresce
acroach
acuracy
octarch
science
scranch
scratch
scrauch
screich
scrinch
scritch
scrunch
scudick

scutock

8l

Wildcard matches

Search as usual if character is not a period;

go down all R branches if query character is a period.

public Iterable<String> keysThatMatch (String pat)
{
Queue<String> queue = new Queue<String> () ;
collect(root, "", 0, pat, queue);
return queue;

private void collect(Node x, String prefix, String pat, Queue<String> q)
{

if (x == null) return;
int d = prefix.length();
if (d == pat.length() && x.val '= null) gq.enqueue (prefix);
if (d == pat.length()) return;
char next = pat.charAt(d);
for (char ¢ = 0; ¢ < R; c++)

if (next == '.' || next == c)

collect(x.next[c], prefix + ¢, pat, q);

82

Longest prefix

Find longest key in symbol table that is a prefix of query string.

Ex. To send packet toward destination IP address, router chooses IP address
in routing table that is longest prefix match.

represented as 32-bit

"128"

. binary number for IPv4
"128.112" (instead of string)
"128.112.055"

"128.112.055.15"

"128.112.136" longestPrefixOf("128.112.136.11") = "128.112.136"

"128.112.155.11" longestPrefixOf ("128.112.100.16") = "128.112"
longestPrefixOf ("128.166.123.45") = "128"

"128.112.155.13"

"128.222"

"128.222.136"

Note. Not the same as floor: fioor("128.112.100.16") = "128.112.055.15"

Longest prefix

Find longest key in symbol table that is a prefix of query string.

® Search for query string.
o Keep track of longest key encountered.

"she" ‘ "sheﬂ" "shellsort"
@
(s (s) S
h) ()
(o On ik b
\ 0 value 1S nhu e 0
t
sglc;;cézfegisn ;t / lasi;fekz;noz pitth) 0
value is not null o
return she

()

Possibilities for TongestPrefix0f()

search ends at
null link
return shells
(last key on path)

84

Longest prefix: Java implementation

Find longest key in symbol table that is a prefix of query string.

® Search for query string.
o Keep track of longest key encountered.

public String longestPrefixOf (String query)

{
int length = search(root, query, 0, 0);

return query.substring (0, length);

private int search(Node x, String query, int d, int length)

{
if (x == null) return length;
if (x.val '= null) length = d;
if (d == query.length()) return length;
char ¢ = query.charAt(d);
return search(x.next[c], query, d+1, length)

85

T9 texting

Goal. Type text messages on a phone keypad.

Multi-tap input. Enter a letter by repeatedly pressing a key until the
desired letter appears.

/ "a much faster and more fun way to enter text"

T9 text input.

® Find all words that correspond to given sequence of numbers.
® Press 0 to see all completion options.

Ex. nello h O W

Ju tpﬂessmce Just press once Justpressm
® Multi-tap: 4 4 3 3 555555 6 6 6

1 Zabc 3def
® 19: 43556 p— P—
4ghi 5]kl 6mno
Zoar 8tw Qwxyz

www.t9.com

86

Patricia trie

Patricia trie. [Practical Algorithm to Retrieve Information Coded in Alphanumeric]

® Remove one-way branching.

® Each node represents a sequence of characters.
put("shells", 1);

® Implementation: one step beyond this course. put("shel1fish", 2);
standard no one-wa
t trie branchingjy
Q
- - S 1 (fish)2
Applications. ® ©
h
® Database search. ®
® P2P network search. (© b;%e_rvggj
® |P routing tables: find longest prefix match. Q) e
® Compressed quad-tree for N-body simulation. 1
o Efficiently storing and querying XML documents. N
@ g
branching
®
M

Also known as: crit-bit tree, radix tree.

87

Suffix tree

Suffix tree.

® Patricia trie of suffixes of a string.
® |inear-time construction: beyond this course.

suffix tree for BANANAS A
BANANAS;{ A NA S \(D

4 b d O

5D

® Linear-time: longest repeated substring, longest common substring,

Applications.

longest palindromic substring, substring search, tandem repeats,
e Computational biology databases (BLAST, FASTA).

88

String symbol tables summary

A success story in algorithm design and analysis.

Red-black BST.

® Performance guarantee: log N key compares.

® Supports ordered symbol table API.

Hash tables.

® Performance guarantee: constant number of probes.
® Requires good hash function for key type.

Tries. R-way, TST.

® Performance guarantee: log N characters accessed.
® Supports character-based operations.

Bottom line. You can get at anything by examining 50-100 bits (!!!)

89

