BBM 202 - ALGORITHMS DATA COMPRESSION

HACETTEPE UNIVERSITY » Run-length coding
» Huffman compression

DEPT. OF COMPUTER ENGINEERING

DATA COMPRESSION

May. 12, 2016

Acknowledgement: The course slides are adapted from the slides prepared by R.
Sedgewick
and K. Wayne of Princeton University.

Data compression Applications
Compression reduces the size of a file: Generic file compression.
e To save space when storing it. e Files: GZIP,BZIP, 7z.
® To save time when transmitting it. ® Archivers: PKZIP.
® Most files have lots of redundancy. ® File systems: NTFS, HFS+, ZFS.
Who needs compression? Multimedia. .
® Moore's law: # transistors on a chip doubles every 18-24 months. ® Images: GIF JPEG. Eﬁﬁﬁ
e Parkinson's law: data expands to fill space available. e Sound: MP3.
e Text, images, sound, video, ... e Video: MPEG, DivX™, HDTV.

- Communication.
“ Everyday, we create 2.5 quintillion bytes of data—so much that

90% of the data in the world today has been created in the last * ITU-TT4 Group 3 Fax. \
L] i —
two years alone. ” — IBM report on big data (2011) VA42bis modem.
® Skype.

Basic concepts ancient (1950s), best technology recently developed. DaEEses. (Ceegls, FREEEgels . GO gle

Lossless compression and expansion

uses fewer bits (you hope)

Message. Binary data B we want to compress. /
Compress. Generates a "compressed" representation C (B).

Expand. Reconstructs original bitstream B.

Compress Expand

bitstream B compressed version C(B) original bitstream B

EmEm 5

Basic model for data compression

Compression ratio. Bits in C(B) / bits in B.

Ex. 50-75% or better compression ratio for natural language.

Food for thought

Data compression has been omnipresent since antiquity:

® Number systems.
2

oo
¢ Natural languages. w ‘ 3 % - %
n
n=1

e Mathematical notation.

has played a central role in communications technology,

® Grade 2 Braille. b r a i I I

¢ Morse code. TN B

¢ Telephone system. °e ©o °o o0 00 00
p Y but rather a | like like

and is part of modern life.
* MP3.
* MPEG.

Q. What role will it play in the future?

ooe
oeo

oo

every

Data representation: genomic code

Genome. String over the alphabet {A, C,T,G }.

Goal. Encode an N-character genome: ATAGATGCATAG...

Standard ASCII encoding. Two-bit encoding.

® 8 bits per char. ® 2 bits per char.
® 8 N bits. ® 2 N bits.

A 41

01000001 A 00
c 43 01000011 C 01
T 54 01010100 T 10
G 47 01000111 G 11

Fixed-length code. k-bit code supports alphabet of size 2%.
Amazing but true. Initial genomic databases in 1990s used ASCII.

Reading and writing binary data

Binary standard input and standard output. Libraries to read and write
bits from standard input and to standard output.

pubTlic class BinaryStdIn

boolean readBoolean() read 1 bit of data and return as a boolean value
char readChar() read 8 bits of data and return as a char value
char readChar(int r) read r bits of data and return as a char value

[similar methods for byte (8 bits); short (16 bits); int (32 bits); 1ong and double (64 bits)]
boolean isEmpty() is the bitstream empty?

void close() close the bitstream

public class BinaryStdOut

void write(boolean b) write the specified bit
void write(char) write the specified 8-bit char
void write(char c, int r) write the r least significant bits of the specified char

[similar methods for byte (8 bits); short (16 bits); int (32 bits); Tong and double (64 bits)]

void close() close the bitstream

Writing binary data

Date representation. Three different ways to represent 12/31/1999.

A character stream (StdOut)
StdOut.print(month + "/" + day + "/" + year);

‘ 00110001001100100010111100110111001100010010111100110001001110010011100100111001

/ ™~
1 2 / 3 1 1 9 9 9 80 bits

Three ints (BinaryStdOut)
BinaryStdOut.write(month);
BinaryStdOut.write(day);
BinaryStdOut.write(year);

[11 11111 11111001111
™~
12 31 1999 96 bits

A 4-bit field, a 5-bit field, and a 12-bit field (BinaryStdOut)
BinaryStdOut.write(month, 4);
BinaryStdOut.write(day, 5);
BinaryStdOut.write(year, 12);

110011111011111001111

12 31 1999 ~ . .
21 bits (+ 3 bits for byte alignment at close)

Binary dumps

Q. How to examine the contents of a bitstream?

Standard character stream Bitstream represented with hex digits

% more abra.txt % java HexDump 4 < abra.txt
ABRACADABRA! 41 42 52 41

43 41 44 41
Bitstream represented as 0 and 1 characters 42 52 41 21

12 bytes

% java BinaryDump 16 < abra.txt

0100000101000010 Bitstream represented as pixels in a Picture
0101001001000001 . .

0100001101000001 % java PictureDump 16 6 < abra.txt
0100010001000001] 16-5y-6 pixel
0100001001010010 - wmjmv, magnified
0100000100100001

96 bits 96 bits

0 |Nu| LF R

1

2 |sp| ! #]S|%|& a» + -1/
3lofaf2[3]4a]s]e[7]s]o]:[: [<][=]>]7
4le[als|c[p|e[Flc[u]T]a[k][L[m[Nn]o0
SIPIQIR[S|TIU[V|W|X|Y[Z|[|\[]]|A]_
6 [a[b[c[d][e]f[a]n[i[i]k[1]m]n]o
7lplalr|s|t]ulv]w|x|y|z|[{]I]|}]~

Hexadecimal to ASCII conversion table

Universal data compression

US Patent 5,533,051 on "Methods for Data Compression", which is
capable of compression all files.

Slashdot reports of the Zero Space Tuner™ and BinaryAccelerator™.

“ ZeoSync has announced a breakthrough in data compression
that allows for 100:1 lossless compression of random data. If

»

this is true, our bandwidth problems just got a lot smaller....

Physical analog. Perpetual motion machines.

Gravity engine by Bob Schadewald

Universal data compression

Proposition. No algorithm can compress every bitstring.

Pf 1. [by contradiction]

® Suppose you have a universal data compression algorithm U
that can compress every bitstream.

® Given bitstring Bo, compress it to get smaller bitstring B.

e Compress B to get a smaller bitstring B>.

e Continue until reaching bitstring of size 0.

® Implication: all bitstrings can be compressed to 0 bits!

Pf 2. [by counting]

® Suppose your algorithm that can compress all 1,000-bit strings.

® 21000 possible bitstrings with 1,000 bits.

e Only 1 +2+4+ ...+ 298+ 299 can be encoded with < 999 bits.

e Similarly, only 1 in 2#% bitstrings can be encoded with < 500 bits!

I s e -:«H—:ﬂc—:ﬂ

Universal
data compression?

Undecidability Rdenudcany in Enlgsih Inagugae

Q. How much redundancy is in the English language?

... randomising letters in the middle of words [has] little or no
effect on the ability of skilled readers to understand the text. This
is easy to denmtrasote. In a pubiltacion of New Scnieitst you
could ramdinose all the letetrs, keipeng the first two and last two
the same, and reibadailty would hadrly be aftcfeed. My ansaylis

A difficult file to compress: one million (pseudo-) random bits

did not come to much beucase the thoery at the time was for

SRS e R shape and senqgeuce retigcionon. Saberi's work sugsegts we may

{ have some pofrweul palrlael prsooscers at work. The resaon for
l:“blic G TRnel sesm(SEl ey this is suerly that idnetiyfing coentnt by paarllel prseocsing
int x = 11111; speeds up regnicoiton. We only need the first and last two letetrs
s (Hms £ S 0 & S Uy ey to spot chganes in meniang.” — Graham Rawlinson

{
x = x * 314159 + 218281;

BinaryStdOut.write(x > 0);
}
BinaryStdOut.close() ;

b A. Quite a bit

Rdenudcany in Turkish Inagugae DATA COMPRESSION

Q. How much redundancy is in the Turkish language?

» Run-length coding

“ Bir Ignliiz Uvnseritsinede ypalain arsaitramya groe,
kleimleirn hrfalreiinn hnagi sridaa yzalidkilrar 6mneli
dgeliims. Oenlmi oaln brincii ve snonucnu hrfain
yrenide omlsaimys. Ardakai hfraliren srisar kriagk

oslada ouknyuorums. Cniikii kleimlrei hraf hrafdgeil bri

btiin oalark oykuorumusz” —Anonymous

A. Quite a bit

Run-length encoding

Simple type of redundancy in a bitstream. Long runs of repeated bits.

0000000000000001111111000000011111111111

40 bits

Representation. Use 4-bit counts to represent alternating runs of Os and Is:

15 Os, then 7 Is,then 7 Os, then | | Is.
1111011101111011 <«— 16 bits (instead of 40)

15 7 7 11

Q. How many bits to store the counts?
A. We'll use 8 (but 4 in the example above).

Q. What to do when run length exceeds max count?
A. If longer than 255, intersperse runs of length 0.

Applications. JPEG, ITU-T T4 Group 3 Fax, ...

Run-length encoding: Java implementation

public class RunLength

An application: compress a bitmap

71s

Typical black-and-white-scanned image. i 0 BT IR < g 2\
. . 3]
® 300 pixels/inch. R

00000000001111000011111111100000 10 4 4

H 00000000111100000000011111100000 8 4 9
® 8.5-by-11 inches. 0000011100000000000011111000 751
00000011110000000000001111100000 ? : E
- HIA B 00000111100000000000001111100000

e 300 x 85x300x Il =84I5 million bits. 00001111000000000000001111100000 4 414
00001111000000000000001111100000 4 414
00011110000000000000001111100000 3 415
00011110000000000000001111100000 2 515
0011111000000000000 11100000 2 515
0011111000000000000000111110000 2 515
. . . 00111110000000000000001111100000 2 515
Observann B|ts are mostly wh|te 00111110000000000000001111100000 2 515
. * 00111110000000000000001111100000 2 515
00111110000000000000001111100000 2 515
001111100000000000000011111000 2 515
00111110000000000000001111100000 2 515
00111111000000000000001111100000 2 614
001111110000000000000011111000 2 614
00011111100000000000001111100000 3 613
00011111100000000000001111100000 3 13
00001111110000000000001111100000 4 612
00001111111000000000001111100000 4 711
000111111100000000001111100000 5 710
000000111 10000000 1100000 6 8 7

00000001111111111111111111100000 720

00000000011111111111001111100000 9 11

Typical amount of text on a page.

40 lines x 75 chars per line = 3,000 chars.

00000000000000000000001111100000 22
00000000000000000000001111100000 22
00000000000000000000001111100000 22
00000000000000000000011111110000 21

5
5
5
5
5
5
00000000000000000000001111100000 22 5
5
5
7
00000000000000000011111111111100 18 12

111111111111110 14

1536 bits 17 0s

A typical bitmap, with run lengths for each row

{ maximum run-length count
private final static int R = 256; —
private final static int 1gR = 8; <——— number of bits per count
public static void compress()
{ /* see textbook */ }
public static void expand()
{
boolean bit = false;
while (!BinaryStdIn.isEmpty())
{
int run = BinaryStdIn.readInt(1lgR); <«—F— read 8-bit countfrom standard input
for (int i = 0; i < run; i++)
BinaryStdOut.write (bit) ; write 1 bit to standard output
bit = !bit;
}
BinaryStdOut.close() ; <«——f+— pad Os for byte alignment
}
}
8
Black and white bitmap compression: another approach
Fax machine (~1980).
e Slow scanner produces lines in sequential order.
® Compress to save time (reduce number of bits to send).
Electronic documents (~2000).
e High-resolution scanners produce huge files.
® Compress to save space (reduce number of bits to save).
Idea.
® use OCR to get back to ASCII (!)
® use Huffman on ASCII string (!)
Bottom line. Any extra information about file can yield dramatic gains.
20

DATA COMPRESSION

» Run-length coding
» Huffman compression

Variable-length codes

Use different number of bits to encode different chars.

Variable-length codes

Q. How do we avoid ambiguity?

A. Ensure that no codeword is a prefix of another.

Ex |. Fixed-length code.

Ex 2. Append special stop char to each codeword.

Ex 3. General prefix-free code.

Codeword table
key value
1101
0
1111
110
100
1110

mOoON®>

Compressed bitstring

011111110011001000111111100101 <—30 bits

Codeword table
key value
1101
11
00
010
100
011

moN®>

Compressed bitstring

AB RA CA DAB RA !

Compressed bitstring

011111110011001000111111100101 <—30 bits

Compressed bitstring

AB RA CA DAB RA !

Ex. Morsecode: ®® e ——oeeo
Letters Numbers
A e— [—
B —eee 2 LI p—
q g [——e 3 D —
Issue. Ambiguity. D —ee 4 eeee—
sos ? o oves P
V1 2 A [
IAMIE ? 1. 9 ————
J Dt | S ——
EEWNI ? x .o °
L e —eoo
Mo
N —_
In practice. Use a medium gap to A
separate codewords. N
S
T
codeword for S is a prefix : u
of codeword for V &
X
Y
z
22
Prefix-free codes: trie representation
Q. How to represent the prefix-free code?
A. A binary trie!
e Chars in leaves.
® Codeword is path from root to leaf.
Codeword table Trie representation)
Codeword table Trie representation
key - value key value
o101 ! 101
A 0 A 11
B 1111 B 00
¢ 110 C 010
D 100 VA D 100
R 1110 RO} R 011
R (B)

Prefix-free codes: compression and expansion Huffman trie node data type
Comepression.
. . b ol L
Method |: start at leaf; follow path up to the root; print bits in reverse. private static| class Node implements Comparable<Noda>
® Method 2: create ST of key-value pairs. {
private char ch; // Unused for internal nodes.
private int freq; // Unused for expand.
Expansion private final Node left, right;
® Start at root. public Node(char ch, int freq, Node left, Node right)
o Go left if bit is 0; go right if |. o
this.ch = ch;
o If leaf node, print char and return to root. this.freq = freq; initializing constructor
this.left = left;
this.right = right;
Codeword table Trie representation)
Codeword table Trie representation
A‘!"” \1’0/”1‘ k:‘)' '1”[/;{‘ public boolean isLeaf () is Node a leaf?
A0 ,,:\ 11 { return left == null && right == null; }
B 1111 B 00
g i;g oo C o010 public int compareTo (Node that) compare Nodes by frequency
D 100 ;
{ return this.freq - that.freq; } tay tuned
R 1110 “] R 011) q q (stay tuned)
(R) (B)
Compressed bitstring Compressed bitstring
011111110011001000111111100101 ~— 30 bits 11000111101011100110001111101 ~—29 bits
A B RA CA DA B RA I AB RA CA DAB RA !
2
Prefix-free codes: expansion Prefix-free codes: how to transmit

Q. How to write the trie?

public void expand()
{ A. Write preorder traversal of trie; mark leaf and internal nodes with a bit.
Node root = readTrie(); <«<—— read in encoding trie
int N = BinaryStdIn.readInt(); <«<—F+—— read in number of chars
for (int i = 0; i < N; i++)
{
Node x = root; preorder -, () private static void writeTrie (Node x)
while (!x.isLeaf()) <«<—F—— expand codeword for it char {))
{ if (x.isLeaf())
if ('BinaryStdIn.readBoolean()) {
x = x.left; BinaryStdOut.write (true) ;
else BinaryStdOut.write(x.ch, 8);
x = x.right; return;
} }
BinaryStdOut.write (x.ch, 8); leaves BinaryStdOut.write (false);
} 1A b 4! 4 C 4y R 4§ B writeTrie (x.left) ;
01010000010010100010001000010101010000110101010010101000010 5 5 g
BinaryStdOut.close() ; f 1 § § writeTrie (x.right);
) 1 23 s s ~— internal nodes }
Using preorder traversal to encode a trie as a bitstream

Running time. Linear in input size N. Note. If message is long, overhead of transmitting trie is small.

Prefix-free codes: how to transmit

Q. How to read in the trie?

A. Reconstruct from preorder traversal of trie.

preorder

D /()

{

{

}

Node x = readTrie();
) Node y = readTrie();
caves D Lo e \ R | B return new Node('\0', 0, x, y);

01010000010010100010001000010101010000110101010010101000010 }
t tt t t

1 23 4 s <— internal nodes

Using preorder traversal to encode a trie as a bitstream

private static Node readTrie()

if (BinaryStdIn.readBoolean())

char ¢ = BinaryStdIn.readChar(8);
return new Node(c, 0, null, null);

not used for

internal nodes

Shannon-Fano codes
Q. How to find best prefix-free code?

Shannon-Fano algorithm:

® Partition symbols S into two subsets So and S of (roughly) equal frequency.
® Codewords for symbols in Sy start with 0; for symbols in Si start with 1.

® Recurin S and Si.

A 5 0... B 2 1...

1 0... D 1 1...
So = codewords starting with 0 R 2 1...
! 1 1...

S1 = codewords starting with 1
Problem |. How to divide up symbols?
Problem 2. Not optimal!

Huffman algorithm

® Count frequency for each character in input.

input

ABRACADABRA!

char freq encoding
A 5

m o Q0w
B N R RN

Huffman algorithm

e Start with one node corresponding to each character chariireqlillencading|

with weight equal to frequency. A >

WO Q0w
B NBR RN

QR 8 R | R

Huffman algorithm

e Select two tries with min weight.
® Merge into single trie with cumulative weight.

char

A

-% U Q0w

freq encoding
5

RN KHE RN

Q8 A R A R

Huffman algorithm

Huffman algorithm

® Select two tries with min weight.
e Merge into single trie with cumulative weight.

char

A

- % 0 Q0w

freq encoding
5

B N KR BN

e Select two tries with min weight. chargfreqiiiencoding
. . L . . a 5
® Merge into single trie with cumulative weight. B -
@ 1
D 1
R 2
! 1
SR
Huffman algorithm
e Select two tries with min weight. char _freq encoding
. . L . . a 5
e Merge into single trie with cumulative weight. s)
c 1 1
D 1
R 2
! 1 0

Huffman algorithm

o Select two tries with min weight. charifieqiencoding]
. . -) . A 5
® Merge into single trie with cumulative weight. B 2
8 1 1
D 1
R 2
! 1 0

=
JORN OGS ORI C BRI ORI O

Huffman algorithm

Huffman algorithm

® Select two tries with min weight.
. . " . . A 5
e Merge into single trie with cumulative weight.

- WU 0w
B N KR BN

10

char freq encoding

e Select two tries with min weight. chargfreqiiiencoding
. . I . . A 5
® Merge into single trie with cumulative weight. B -
c 1 1
D 1
R 2
! 1 0
.0
0 1
1/ N\ 7/ : /‘ N\
Huffman algorithm
e Select two tries with min weight. chatgilfrcqliliencoding
. A 5
e Merge into single trie with cumulative weight. s)
c 1 11
D 1 0
R 2
! 1 10

Huffman algorithm

o Select two tries with min weight. charifieqiencoding]
. . -) . A 5
® Merge into single trie with cumulative weight. B 2
8 1 11
D 1 0
R 2
! 1 10

R

Huffman algorithm

Huffman algorithm

® Select two tries with min weight.

. . " . . A 5
e Merge into single trie with cumulative weight.

- WU 0w
B N KR BN

char freq encoding

e Select two tries with min weight. chargfreqiiiencoding
. . L . . a 5
® Merge into single trie with cumulative weight. B -
@ 1 11
D 1 0
R 2
! 1 10
SN
Huffman algorithm
e Select two tries with min weight. chatgilfrcqliliencoding
. . L . . a 5
e Merge into single trie with cumulative weight. s) .
c 1 11
D 1 0
R 2 0
! 1 10

Huffman algorithm

e Select two tries with min weight. chariiireqiiencoding
. . -) . A 5

® Merge into single trie with cumulative weight. B 2 a

8 1 11

D 1 0

R 2 0

! 1 10

3/ N
0 1

{ }5\1 SR
JORNB OO 50l

Huffman algorithm

Huffman algorithm

® Select two tries with min weight. char_freq_encoding
e Merge into single trie with cumulative weight. : 2 11
c 1 011
D 1 00
R 2 10
1 1 010

B2

0

jot
Joi

R
X

e Select two tries with min weight. chargfreqiiiencoding
. . — . . A 5
® Merge into single trie with cumulative weight. B - a4
c 1 011
D 1 00
R 2 10
! 1 010
§2 N
0 1
3§/ h
0 1 0 1
0 1
Huffman algorithm
e Select two tries with min weight. chatgilfrcqliliencoding
. A 5
e Merge into single trie with cumulative weight. s) 11
c 1 011
D 1 00
R 2 10
! 1 010

0

jot
joi

R
g0l oy

Huffman algorithm

char freq encoding
A 5 0
B 2 111
(¢} 1 1011
D 1 100
R 2
! 1

e Select two tries with min weight.

® Merge into single trie with cumulative weight.

110
1010

ZR

Huffman algorithm

char freq encoding

A 5 0

B 2 111

@ 1 1011

D 1 100

R 2 110

/O\ ' 1 1010
o o
;

0 1

JOl

a7
N

JORBC

Huffman codes

Q. How to find best prefix-free code?

Huffman algorithm:
® Count frequency freq[i] for each char i in input.
e Start with one node corresponding to each char i (with weight freq[i]).
o Repeat until single trie formed:
- select two tries with min weight freq[i] and freq[j]
- merge into single trie with weight freq[i] + freq[j]

Applications:

(mp3 DIVX *'m

JPEG L]

Constructing a Huffman encoding trie: Java implementation

private static Node buildTrie(int[] freq)

{
MinPQ<Node> pq = new MinPQ<Node>() ;

for (char i = 0; i < R; i++) initialize PQ with
if (freq[i] > 0)
pg.insert (new Node (i, freq[i], null, null));

singleton tries

while (pg.size() > 1)

{ merge two
Node x = pq.delMin(); smallest tries
Node y = pg.delMin();

Node parent = new Node('\0', x.freq + y.freq, x, y);

pPd.insert (parent) ;] ’ ’]
}

return pq.delMin(); notusedfor total frequency two subtries

} internal nodes

Huffman encoding summary

Proposition. [Huffman 1950s] Huffman algorithm produces an optimal
prefix-free code.
Pf See textbook. no prefix-free code uses fewer bits

Implementation.
® Pass |: tabulate char frequencies and build trie.
® Pass 2: encode file by traversing trie or lookup table.

Running time. Using a binary heap = N+ RlogR.

!

input alphabet
size size

Q. Can we do better? [stay tuned]

