BBM 202-ALCORITHMS

Dept. of Computer Engineering

Mergesort

Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton University.

Mergesort

Basic plan.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves.

| input | M | E | R | G | E | S | O | R | T | E | X | A | M | P | L | E |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| sort left half | E | E | G | M | O | R | R | S | T | E | X | A | M | P | L | E |
| sort right half | E | E | G | M | O | R | R | S | A | E | E | L | M | P | T | X |
| merge results | A | E | E | E | E | G | L | M | M | O | P | R | R | S | T | X |

Mergesort - Example

Abstract in-place merge

Goal. Given two sorted subarrays $a[10]$ to $a[m i d]$ and $a[m i d+1]$ to $a[h i]$, replace with sorted subarray a[lo] to a [hi].

Abstract in-place merge

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

a[]	E	E	G	M	R	A	C	E	R	T

copy to auxiliary array
aux[]

Abstract in-place merge

Goal. Given two sorted subarrays $a[10]$ to $a[m i d]$ and $a[m i d+1]$ to $a[h i]$, replace with sorted subarray a[lo] to a[hi].

aux]	E	E	G	M	R	A	C	E	R	T

Abstract in-place merge

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a [hi].

compare minimum in each subarray

Abstract in-place merge

Goal. Given two sorted subarrays arlo] to amid] and a[mid+1] to a[hi], replace with sorted subarray arlo] to a [hi].

compare minimum in each subarray

Abstract in-place merge

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a [hi].

A

k
compare minimum in each subarray

Abstract in-place merge

Goal. Given two sorted subarrays arlo] to amid] and a[mid+1] to a[hi], replace with sorted subarray arlo] to a [hi].

compare minimum in each subarray

Abstract in-place merge

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a [hi].
compare minimum in each subarray

Abstract in-place merge

Goal. Given two sorted subarrays arlo] to amid] and a[mid+1] to a[hi], replace with sorted subarray arlo] to a [hi].

compare minimum in each subarray

Abstract in-place merge

Goal. Given two sorted subarrays $a[10]$ to $a[m i d]$ and $a[m i d+1]$ to $a[h i]$, replace with sorted subarray a[lo] to a [hi].
a[] A C E
compare minimum in each subarray

Abstract in-place merge

Goal. Given two sorted subarrays arlo] to amid] and a[mid+1] to a[hi], replace with sorted subarray arlo] to a [hi].

compare minimum in each subarray

Abstract in-place merge

Goal. Given two sorted subarrays $a[10]$ to $a[m i d]$ and $a[m i d+1]$ to $a[h i]$, replace with sorted subarray a[lo] to a [hi].
a[] A C E E
compare minimum in each subarray

Abstract in-place merge

Goal. Given two sorted subarrays $a[10]$ to $a[m i d]$ and $a[m i d+1]$ to $a[h i]$, replace with sorted subarray arlo] to a [hi].

compare minimum in each subarray

Abstract in-place merge

Goal. Given two sorted subarrays $a[10]$ to $a[m i d]$ and $a[m i d+1]$ to $a[h i]$, replace with sorted subarray a[lo] to a [hi].
al] A C E E E
compare minimum in each subarray

Abstract in-place merge

Goal. Given two sorted subarrays $a[10]$ to $a[m i d]$ and $a[m i d+1]$ to $a[h i]$, replace with sorted subarray arlo] to a [hi].

compare minimum in each subarray

Abstract in-place merge

Goal. Given two sorted subarrays $a[10]$ to $a[m i d]$ and $a[m i d+1]$ to $a[h i]$, replace with sorted subarray a[lo] to a [hi].
compare minimum in each subarray

Abstract in-place merge

Goal. Given two sorted subarrays $a[10]$ to $a[m i d]$ and $a[m i d+1]$ to $a[h i]$, replace with sorted subarray a[lo] to a [hi].

a[]	A	C	E	E	E	G	M	E	R	T

compare minimum in each subarray

Abstract in-place merge

Goal. Given two sorted subarrays $a[10]$ to $a[m i d]$ and $a[m i d+1]$ to $a[h i]$, replace with sorted subarray a[lo] to a [hi].
A C E E E G M
k
compare minimum in each subarray

Abstract in-place merge

Goal. Given two sorted subarrays $a[10]$ to $a[m i d]$ and $a[m i d+1]$ to $a[h i]$, replace with sorted subarray a[lo] to a [hi].

a[]	A	C	E	E	E	G	M	R	R	T

compare minimum in each subarray

Abstract in-place merge

Goal. Given two sorted subarrays $a[10]$ to $a[m i d]$ and $a[m i d+1]$ to $a[h i]$, replace with sorted subarray a[lo] to a [hi].
k
one subarray exhausted, take from other

Abstract in-place merge

Goal. Given two sorted subarrays $a[10]$ to $a[m i d]$ and $a[m i d+1]$ to $a[h i]$, replace with sorted subarray a[lo] to a [hi].

a[]	A	C	E	E	E	G	M	R	R	T

one subarray exhausted, take from other

Abstract in-place merge

Goal. Given two sorted subarrays $a[10]$ to $a[m i d]$ and $a[m i d+1]$ to $a[h i]$, replace with sorted subarray a[lo] to a [hi].
a[] A C E E E E G \quad M \quad R
one subarray exhausted, take from other

Abstract in-place merge

Goal. Given two sorted subarrays $a[10]$ to $a[m i d]$ and $a[m i d+1]$ to $a[h i]$, replace with sorted subarray a[lo] to a [hi].

all	A	C	E	E	E	G	M	R
R	T							

one subarray exhausted, take from other

Abstract in-place merge

Goal. Given two sorted subarrays $a[10]$ to $a[m i d]$ and $a[m i d+1]$ to $a[h i]$, replace with sorted subarray a[lo] to a [hi].
all $A \quad C \quad E \quad E \quad E \quad G \quad M \quad R \quad R \quad T$
both subarrays exhausted, done
aux[]

Abstract in-place merge

Goal. Given two sorted subarrays $a[10]$ to $a[m i d]$ and $a[m i d+1]$ to $a[h i]$, replace with sorted subarray a[lo] to a[hi].
lo hi

$$
\mathrm{a}[]
$$

Merging

Q. How to combine two sorted subarrays into a sorted whole.
A. Use an auxiliary array.

							[]											aux					
	k	0	1	2	3	4	5	6	7	8	9	i	j	0	1	2	3	4	5	6	7	8	9
input		E	E	G	M	R	A	C	E	R	T			-	-	-	-	-	-	-	-	-	-
copy		E	E	G	M	R	A	C	E	R	T			E	E	C	M	R	A	C	E	R	T
												0	5										
	0	A										0	6	E	E	C	M	R	A	C	E	R	T
	1	A	C									0	7	E	E	C	M	R		C	E	R	T
	2	A	C	E								1	7	E	E	C	M	R			E	R	T
	3	A	C	E	E							2	7		E	C	M	R			E	R	T
	4	A	C	E	E	E						2	8			G	M	R			E	R	T
	5	A	C	E	E	E	G					3	8			c	M	R				R	T
	6	A	C	E	E	E	G	M				4	8				M	R				R	T
	7	A	C	E	E	E	G	M	R			5	8					R				R	T
	8	A	C	E	E	E	G	M	R	R		5	9									R	T
	9	A	C	E	E	E	G	M	R	R	T	6	10										T
merged result		A	C	E	E	E	G	M	R	R	T												
							Abstract in-place merge trace																

Merging: Java implementation

```
private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
{
    assert isSorted(a, lo, mid); // precondition: a[lo..mid] sorted
    assert isSorted(a, mid+1, hi); // precondition: a[mid+1..hi] sorted
    for (int k = lo; k <= hi; k++)
        aux[k] = a[k];
    int i = lo, j = mid+1;
    for (int k = lo; k <= hi; k++)
merge
    {
        if (i > mid) a[k] = aux[j++];
        else if (j > hi)
                                a[k] = aux[i++];
        else if (less(aux[j], aux[i])) a[k] = aux[j++];
        else a[k] = aux[i++];
    }
    assert isSorted(a, lo, hi); // postcondition: a[lo..hi] sorted
}
```


a[]	A	G	H	I	L	M

Mergesort: Java implementation

```
public class Merge
{
    private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
    { /* as before */ }
    private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
    {
        if (hi <= lo) return;
        int mid = lo + (hi - lo) / 2;
        sort (a, aux, lo, mid);
        sort (a, aux, mid+1, hi);
        merge(a, aux, lo, mid, hi);
    }
    public static void sort(Comparable[] a)
    {
        aux = new Comparable[a.length];
        sort(a, aux, 0, a.length - 1);
    }
}
```


Mergesort: trace

Trace of merge results for top-down mergesort
result after recursive call

Mergesort: animation

50 random items

A algorithm position
in order
current subarray
http://www.sorting-algorithms.com/merge-sort

Mergesort: animation

50 reverse-sorted items

A algorithm position
in order
current subarray
not in order
http://www.sorting-algorithms.com/merge-sort

Mergesort: empirical analysis

Running time estimates:

- Laptop executes 10^{8} compares/second.
- Supercomputer executes 10^{12} compares/second.

	insertion sort (N2)			mergesort (N log N)		
	thousand	million	billion	thousand	million	billion
home	instant	2.8 hours	317 years	instant	1 second	18 min
super	instant	1 second	1 week	instant	instant	instant

Bottom line. Good algorithms are better than supercomputers.

Mergesort: number of compares and array accesses

Proposition. Mergesort uses at most $N \lg N$ compares and $6 N \lg N$ array accesses to sort any array of size N.

Pf sketch. The number of compares $C(N)$ and array accesses $A(N)$ to mergesort an array of size N satisfy the recurrences:

We solve the recurrence when N is a power of 2 .

$$
D(N)=2 D(N / 2)+N \text {, for } N>1, \text { with } D(1)=0 \text {. }
$$

Merging: Java implementation

```
private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
{
    assert isSorted(a, lo, mid); // precondition: a[lo..mid] sorted
    for (int k = lo; k <= hi; k++)
        copy
        aux[k] = a[k];
        2N
    int i = lo, j = mid+1;
    for (int k = lo; k <= hi; k++)
        merge
    {
        if (i > mid) a[k] = aux[j++];
        else if (j > hi) a[k] = aux[i++];
        a[k] = aux[j++];
                                a[k] = aux[i++];
    }
                2N
    assert isSorted(a, lo, hi); // postcondition: a[lo..hi] sorted
}
```

Proof: Each merge uses at most $6 N$ array accesses ($2 N$ for the copy, $2 N$ for the move back, and at most $2 N$ for compares). The result follows from the same argument as for PROPOSITION F .

Divide-and-conquer recurrence: proof by picture

Proposition. If $D(N)$ satisfies $D(N)=2 D(N / 2)+N$ for $N>1$,
with $D(1)=0$,
then $D(N)=N \lg N$.
Pf I. [assuming N is a power of 2]

Divide-and-conquer recurrence: proof by expansion

Proposition. If $D(N)$ satisfies $D(N)=2 D(N / 2)+N$ for $N>1$, with $D(1)=0$, then $D(N)=N \lg N$.
Pf 2. [assuming N is a power of 2]

$$
\begin{aligned}
& D(N)=2 D(N / 2)+N \\
& D(N) / N=2 D(N / 2) / N+1 \\
&=D(N / 2) /(N / 2)+1 \\
&=D(N / 4) /(N / 4)+1+1 \\
&=D(N / 8) /(N / 8)+1+1+1 \\
& \cdots \\
&=D(N / N) /(N / N)+1+1+\ldots+1 \\
&=\lg N
\end{aligned}
$$

given
divide both sides by N
algebra
apply to first term
apply to first term again
stop applying, $D(1)=0$

Divide-and-conquer recurrence: proof by induction

Proposition. If $D(N)$ satisfies $D(N)=2 D(N / 2)+N$ for $N>1$, with $D(1)=0$, then $D(N)=N \lg N$.
Pf 3. [assuming N is a power of 2]

- Base case: $N=1$.
- Inductive hypothesis: $D(N)=N \lg N$.
- Goal: show that $D(2 N)=(2 N) \lg (2 N)$.

$$
\begin{aligned}
D(2 N) & =2 D(N)+2 N \\
& =2 N \lg N+2 N \\
& =2 N(\lg (2 N)-1)+2 N \\
& =2 N \lg (2 N)
\end{aligned}
$$

```
given
inductive hypothesis
algebra

\section*{Mergesort analysis: memory}

Proposition. Mergesort uses extra space proportional to \(N\).
Pf. The array aux[] needs to be of size \(N\) for the last merge.


Def. A sorting algorithm is in-place if it uses \(\leq c \log N\) extra memory. Ex. Insertion sort, selection sort, shellsort.

Challenge for the bored. In-place merge. [Kronrod, I969]

\section*{Mergesort: practical improvements}

Use insertion sort for small subarrays.
- Mergesort has too much overhead for tiny subarrays.
- Cutoff to insertion sort for \(\approx 7\) items.
```

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
if (hi <= lo + CUTOFF - 1) Insertion.sort(a, lo, hi);
int mid = lo + (hi - lo) / 2;
sort (a, aux, lo, mid);
sort (a, aux, mid+1, hi);
merge(a, aux, lo, mid, hi);
}

```

\section*{Mergesort: practical improvements}

Stop if already sorted.
- Is biggest item in first half \(\leq\) smallest item in second half?
- Helps for partially-ordered arrays.
\begin{tabular}{lllllllllllllllllllll}
\(\mathbf{A}\) & \(\mathbf{B}\) & \(\mathbf{C}\) & \(\mathbf{D}\) & \(\mathbf{E}\) & \(\mathbf{F}\) & \(\mathbf{G}\) & \(\mathbf{H}\) & \(\mathbf{I}\) & \(\mathbf{J}\) & M & \(\mathbf{N}\) & \(\mathbf{O}\) & \(\mathbf{P}\) & \(\mathbf{Q}\) & \(\mathbf{R}\) & \(\mathbf{S}\) & \(\mathbf{T}\) & \(\mathbf{U}\) & \(\mathbf{V}\)
\end{tabular}
\begin{tabular}{llllllllllllllllllll} 
A & \(\mathbf{B}\) & \(\mathbf{C}\) & \(\mathbf{D}\) & \(\mathbf{E}\) & \(\mathbf{F}\) & \(\mathbf{G}\) & \(\mathbf{H}\) & \(\mathbf{I}\) & \(\mathbf{J}\) & \(\mathbf{M}\) & \(\mathbf{N}\) & \(\mathbf{O}\) & \(\mathbf{P}\) & \(\mathbf{Q}\) & \(\mathbf{R}\) & \(\mathbf{S}\) & \(\mathbf{T}\) & \(\mathbf{U}\) & \(\mathbf{V}\)
\end{tabular}
```

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
if (hi <= lo) return;
int mid = lo + (hi - lo) / 2;
sort (a, aux, lo, mid);
sort (a, aux, mid+1, hi);
if (!less(a[mid+1], a[mid])) return;
merge(a, aux, lo, mid, hi);
}

```

\section*{Mergesort: practical improvements}

Eliminate the copy to the auxiliary array. Save time (but not space) by switching the role of the input and auxiliary array in each recursive call.
```

private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
{
int i = lo, j = mid+1;
for (int k = lo; k <= hi; k++)
{
if (i > mid) aux[k] = a[j++];
else if (j > hi) aux[k] = a[i++];
else if (less(a[j], a[i])) aux[k] = a[j++]; « merge from a[] to aux[]
else aux[k] = a[i++];
}
}
private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
if (hi <= lo) return;
int mid = lo + (hi - lo) / 2;
sort (aux, a, lo, mid);
sort (aux, a, mid+1, hi);
merge (aux, a, lo, mid, hi);
}

```
switch roles of aux[] and a[]

\section*{Mergesort: visualization}


\section*{Bottom-up mergesort}

Basic plan.
- Pass through array, merging subarrays of size I.
- Repeat for subarrays of size \(2,4,8,16, \ldots\).


Bottom line. No recursion needed!

\section*{Bottom-up mergesort: Java implementation}
```

public class MergeBU
{
private static Comparable[] aux;
private static void merge(Comparable[] a, int lo, int mid, int hi)
{ /* as before */ }
public static void sort(Comparable[] a)
{
int N = a.length;
aux = new Comparable[N];
for (int sz = 1; sz < N; sz = sz+sz)
for (int lo = 0; lo < N-sz; lo += sz+sz)
merge(a, lo, lo+sz-1, Math.min(lo+sz+sz-1, N-1));
}
}

```

Bottom line. Concise industrial-strength code, if you have the space.

\section*{Bottom-up mergesort: visual trace}


\section*{Bottom-up mergesort: visual trace}







http://bl.ocks.org/mbostock/39566aca95eb03ddd526

\section*{Bottom-up mergesort: visual trace}

http://bl.ocks.org/mbostock/e65d9895da07c57e94bd

\section*{Complexity of sorting}

Computational complexity. Framework to study efficiency of algorithms for solving a particular problem \(X\).

Model of computation. Allowable operations.
Cost model. Operation count(s).
Upper bound. Cost guarantee provided by some algorithm for \(X\).
Lower bound. Proven limit on cost guarantee of all algorithms for \(X\).
Optimal algorithm. Algorithm with best possible cost guarantee for \(X\).

Example: sorting.
lower bound \(\sim\) upper bound
can access information
- Model of computation: decision tree.
only through compares
- Cost model: \# compares.
(e.g., Java Comparable framework)
- Upper bound: \(\sim N \lg N\) from mergesort.
- Lower bound: ?
- Optimal algorithm: ?

\section*{Decision tree (for 3 distinct items a, b, and c)}

(at least) one leaf for each possible ordering

\section*{Compare-based lower bound for sorting}

Proposition. Any compare-based sorting algorithm must use at least \(\lg (N!) \sim N \lg N\) compares in the worst-case.

Pf.
- Assume array consists of \(N\) distinct values \(a_{1}\) through \(a_{N}\).
- Worst case dictated by height \(h\) of decision tree.
- Binary tree of height \(h\) has at most \(2^{h}\) leaves.
- \(N\) ! different orderings \(\Rightarrow\) at least \(N\) ! leaves.


\section*{Compare-based lower bound for sorting}

Proposition. Any compare-based sorting algorithm must use at least \(\lg (N!) \sim N \lg N\) compares in the worst-case.

\section*{Pf.}
- Assume array consists of \(N\) distinct values \(a_{1}\) through \(a_{N}\).
- Worst case dictated by height \(h\) of decision tree.
- Binary tree of height \(h\) has at most \(2^{h}\) leaves.
- \(N\) ! different orderings \(\Rightarrow\) at least \(N\) ! leaves.
\[
\begin{aligned}
& 2^{h} \geq \# \text { leaves } \geq N! \\
& \Rightarrow h \geq \lg (N!) \sim N \lg N \\
& \text { Stirling's formula }
\end{aligned}
\]

\section*{Complexity of sorting}

Model of computation. Allowable operations.
Cost model. Operation count(s).
Upper bound. Cost guarantee provided by some algorithm for \(X\).
Lower bound. Proven limit on cost guarantee of all algorithms for \(X\).
Optimal algorithm. Algorithm with best possible cost guarantee for \(X\).

Example: sorting.
- Model of computation: decision tree.
- Cost model: \# compares.
- Upper bound: \(\sim N \lg N\) from mergesort.
- Lower bound: \(\sim N \lg N\).
- Optimal algorithm = mergesort.

First goal of algorithm design: optimal algorithms.

\section*{Complexity results in context}

Other operations? Mergesort is optimal with respect to number of compares (e.g., but not with respect to number of array accesses).

Space?
- Mergesort is not optimal with respect to space usage.
- Insertion sort, selection sort, and shellsort are space-optimal.

Challenge. Find an algorithm that is both time- and space-optimal. [stay tuned]

Lessons. Use theory as a guide.
Ex. Don't try to design sorting algorithm that guarantees \(1 / 2 N \lg N\) compares.

\section*{Complexity results in context (continued)}

Lower bound may not hold if the algorithm has information about:
- The initial order of the input.
- The distribution of key values.
- The representation of the keys.

Partially-ordered arrays. Depending on the initial order of the input, we may not need \(N \lg N\) compares.
insertion sort requires only N -1
compares if input array is sorted

Duplicate keys. Depending on the input distribution of duplicates, we may not need \(N \lg N\) compares.
stay tuned for 3-way quicksort

Digital properties of keys. We can use digit/character compares instead of key compares for numbers and strings.

\section*{Comparable interface: review}

Comparable interface: sort using a type's natural order.
```

public class Date implements Comparable<Date>
{
private final int month, day, year;
public Date(int m, int d, int y)
{
month = m;
day = d;
year = y;
}
public int compareTo(Date that)

```

```

 {
 if (this.year < that.year) return -1;
 if (this.year > that.year) return +1;
 if (this.month < that.month) return -1;
 if (this.month > that.month) return +1;
 if (this.day < that.day) return -1;
 if (this.day > that.day) return +1;
 return 0;
 }
 }

```

\section*{Comparator interface}

Comparator interface: sort using an alternate order.
```

public interface Comparator<Key>
int compare(Key v, Key w)
compare keys v and w

```

Required property. Must be a total order.

Ex. Sort strings by:
- Natural order.
- Case insensitive.
- Spanish.
- British phone book.
Now is the time
is Now the time
pre-1994 order for
is Now the time digraphs ch and II and rr
café cafetero cuarto churro nube ñoño
McKinley Mackintosh

\section*{Comparator interface: system sort}

To use with Java system sort:
- Create comparator object.
- Pass as second argument to Arrays.sort ().


Bottom line. Decouples the definition of the data type from the definition of what it means to compare two objects of that type.

\section*{Comparator interface: using with our sorting libraries}

To support comparators in our sort implementations:
- Use object instead of Comparable.
- Pass Comparator to sort() and less() and use it in less().
insertion sort using a Comparator
```

public static void sort(Object[] a, Comparator comparator)
{
int N = a.length;
for (int i = 0; i < N; i++)
for (int j = i; j > 0 \&\& less(comparator, a[j], a[j-1]); j--)
exch(a, j, j-1);
}
private static boolean less(Comparator c, Object v, Object w)
{ return c.compare(v, w) < 0; }
private static void exch(Object[] a, int i, int j)
{ Object swap = a[i]; a[i] = a[j]; a[j] = swap; }

```

\section*{Comparator interface: implementing}

To implement a comparator:
- Define a (nested) class that implements the comparator interface.
- Implement the compare() method.
```

public class Student
{
public static final Comparator<Student> BY_NAME = new ByName();
public staticf final Comparator<Student> BY_SECTION = new BySection();
private final string name;
private final ipt section;
one Comparator for the class
private static class ByName implements Comparator<Student>
{
public int compare(Student v, Student w)
{ return v.name.compareTo(w.name); }
}
private static class BySection implements Comparator<Student>
{
public int compare(Student v, Student w)
{ return v.section - w.section; }
}
}

Comparator interface: implementing

To implement a comparator:

- Define a (nested) class that implements the comparator interface.
- Implement the compare() method.

Student. BY_NAME) ;					Arrays.sort (a, Student. BY_SECTION) ;				
Andrews	3	A	664-480-0023	097 Little	Furia	1	A	766-093-9873	101 Brown
Battle	4	C	874-088-1212	121 Whitman	Rohde	2	A	232-343-5555	343 Forbes
Chen	3	A	991-878-4944	308 Blair	Andrews	3	A	664-480-0023	097 Little
Fox	3	A	884-232-5341	11 Dickinson	Chen	3	A	991-878-4944	308 Blair
Furia	1	A	766-093-9873	101 Brown	Fox	3	A	884-232-5341	11 Dickinson
Gazsi	4	B	766-093-9873	101 Brown	Kanaga	3	B	898-122-9643	22 Brown
Kanaga	3	B	898-122-9643	22 Brown	Battle	4	C	874-088-1212	121 Whitman
Rohde	2	A	232-343-5555	343 Forbes	Gazsi	4	B	766-093-9873	101 Brown

Stability

A typical application. First, sort by name; then sort by section.

Student.BY_NAME) ;					Selection.sort(a, Student.BY_SECTION);				
Andrews	3	A	664-480-0023	097 Little	Furia	1	A	766-093-9873	101 Brown
Battle	4	C	874-088-1212	121 Whitman	Rohde	2	A	232-343-5555	343 Forbes
Chen	3	A	991-878-4944	308 Blair	Chen	3	A	991-878-4944	308 Blair
Fox	3	A	884-232-5341	11 Dickinson	Fox	3	A	884-232-5341	11 Dickinson
Furia	1	A	766-093-9873	101 Brown	Andrews	3	A	664-480-0023	097 Little
Gazsi	4	B	766-093-9873	101 Brown	Kanaga	3	B	898-122-9643	22 Brown
Kanaga	3	B	898-122-9643	22 Brown	Gazsi	4	B	766-093-9873	101 Brown
Rohde	2	A	232-343-5555	343 Forbes	Battle	4	C	874-088-1212	121 Whitman

@\#\%\&@! Students in section 3 no longer sorted by name.

A stable sort preserves the relative order of items with equal keys.

Stability

Q. Which sorts are stable?
A. Insertion sort and mergesort (but not selection sort or shellsort).
sorted by time
$\begin{array}{lll}\text { Chicago } & 09: 00: 00 & \text { Chicago 09:25:52 } \\ \text { Phoenix } & 09: 00: 03 & \text { Chicago 09:03:13 } \\ \text { Houston } & 09: 00: 13 & \text { Chicago 09:21:05 } \\ \text { Chicago } & 09: 00: 59 & \text { Chicago 09:19:46 } \\ \text { Houston } & 09: 01: 10 & \text { Chicago 09:19:32 } \\ \text { Chicago } & 09: 03: 13 & \text { Chicago 09:00:00 } \\ \text { Seattle } & 09: 10: 11 & \text { Chicago 09:35:21 } \\ \text { Seattle } & 09: 10: 25 & \text { Chicago 09:00:59 } \\ \text { Phoenix } & 09: 14: 25 & \text { Houston 09:01:10 } \\ \text { Chicago } & 09: 19: 32 & \text { Houston 09:00:13 } \\ \text { Chicago } & 09: 19: 46 & \text { Phoenix 09:37:44 } \\ \text { Chicago } & 09: 21: 05 & \text { Phoenix 09:00:03 } \\ \text { Seattle } & 09: 22: 43 & \text { Phoenix 09:14:25 } \\ \text { Seattle } & 09: 22: 54 & \text { Seattle 09:10 } \\ \text { Sorted } \\ \text { Chicago } & 09: 25: 52 & \text { Seattle 09:36:14 } \\ \text { Chicago } & 09: 35: 21 & \text { Seattle 09:22:43 } \\ \text { Seattle } & 09: 36: 14 & \text { Seattle 09:10:11 } \\ \text { Phoenix } & 09: 37: 44 & \text { Seattle 09:22:54 }\end{array}$
sorted by location (stable)

Note. Need to carefully check code ("less than" vs "less than or equal to").

Stability: insertion sort

Proposition. Insertion sort is stable.

```
public class Insertion
{
    public static void sort(Comparable[] a)
    {
        int N = a.length;
        for (int i = 0; i < N; i++)
            for (int j = i; j > 0 && less(a[j], a[j-1]); j--)
            exch(a, j, j-1);
        }
}
\begin{tabular}{lllllll}
i & j & 0 & 1 & 2 & 3 & 4 \\
\hline 0 & 0 & \(\mathrm{~B}_{1}\) & \(\mathrm{~A}_{1}\) & \(\mathrm{~A}_{2}\) & \(\mathrm{~A}_{3}\) & \(\mathrm{~B}_{2}\) \\
1 & 0 & \(\mathrm{~A}_{1}\) & \(\mathrm{~B}_{1}\) & \(\mathrm{~A}_{2}\) & \(\mathrm{~A}_{3}\) & \(\mathrm{~B}_{2}\) \\
2 & 1 & \(\mathrm{~A}_{1}\) & \(\mathrm{~A}_{2}\) & \(\mathrm{~B}_{1}\) & \(\mathrm{~A}_{3}\) & \(\mathrm{~B}_{2}\) \\
3 & 2 & \(\mathrm{~A}_{1}\) & \(\mathrm{~A}_{2}\) & \(\mathrm{~A}_{3}\) & \(\mathrm{~B}_{1}\) & \(\mathrm{~B}_{2}\) \\
4 & 4 & \(\mathrm{~A}_{1}\) & \(\mathrm{~A}_{2}\) & \(\mathrm{~A}_{3}\) & \(\mathrm{~B}_{1}\) & \(\mathrm{~B}_{2}\) \\
& & \(\mathrm{~A}_{1}\) & \(\mathrm{~A}_{2}\) & \(\mathrm{~A}_{3}\) & \(\mathrm{~B}_{1}\) & \(\mathrm{~B}_{2}\)
\end{tabular}
```

Pf. Equal items never move past each other.

Stability: selection sort

Proposition. Selection sort is not stable.

```
public class Selection
{
    public static void sort(Comparable[] a)
    {
        int N = a.length;
        for (int i = 0; i < N; i++)
        {
            int min = i;
            for (int j = i+1; j < N; j++)
                if (less(a[j], a[min]))
                        min = j;
            exch(a, i, min);
        }
    }
}
```

i	\min	0	1	2
0	2	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	A
1	1	A	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$
2	2	A	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$
		A	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$

Pf by counterexample. Long-distance exchange might move an item past some equal item.

Stability: shellsort

Proposition. Shellsort sort is not stable.

```
public class Shell
{
    public static void sort(Comparable[] a)
    {
        int N = a.length;
        int h = 1;
        while (h < N/3) h = 3*h + 1;
        while (h >= 1)
        {
            for (int i = h; i < N; i++)
            {
            for (int j = i; j > h && less(a[j], a[j-h]); j -= h)
                        exch(a, j, j-h);
            }
            h = h/3;
        }
    }
}
\begin{tabular}{cccccc}
h & 0 & 1 & 2 & 3 & 4 \\
\hline & \(\mathrm{~B}_{1}\) & \(\mathrm{~B}_{2}\) & \(\mathrm{~B}_{3}\) & \(\mathrm{~B}_{4}\) & \(\mathrm{~A}_{1}\) \\
4 & \(\mathrm{~A}_{1}\) & \(\mathrm{~B}_{2}\) & \(\mathrm{~B}_{3}\) & \(\mathrm{~B}_{4}\) & \(\mathrm{~B}_{1}\) \\
1 & \(\mathrm{~A}_{1}\) & \(\mathrm{~B}_{2}\) & \(\mathrm{~B}_{3}\) & \(\mathrm{~B}_{4}\) & \(\mathrm{~B}_{1}\) \\
& \(\mathrm{~A}_{1}\) & \(\mathrm{~B}_{2}\) & \(\mathrm{~B}_{3}\) & \(\mathrm{~B}_{4}\) & \(\mathrm{~B}_{1}\)
\end{tabular}
```

Pf by counterexample. Long-distance exchanges.

Stability: mergesort

Proposition. Mergesort is stable.

```
public class Merge
{
    private static Comparable[] aux;
    private static void merge(Comparable[] a, int lo, int mid, int hi)
    { /* as before */ }
    private static void sort(Comparable[] a, int lo, int hi)
    {
        if (hi <= lo) return;
        int mid = lo + (hi - lo) / 2;
        sort(a, lo, mid);
        sort(a, mid+1, hi);
        merge(a, lo, mid, hi);
    }
    public static void sort(Comparable[] a)
    { /* as before */ }
}
```

Pf. Suffices to verify that merge operation is stable.

Stability: mergesort

Proposition. Merge operation is stable.

```
private static void merge(Comparable[] a, int lo, int mid, int hi)
{
    for (int k = lo; k <= hi; k++)
        aux[k] = a[k];
    int i = lo, j = mid+1;
    for (int k = lo; k <= hi; k++)
    {
        if (i > mid) a[k] = aux[j++];
        else if (j > hi) a[k] = aux[i++];
        else if (less(aux[j], aux[i])) a[k] = aux[j++];
        else a[k] = aux[i++];
    }
}
```

$$
\begin{array}{ccccc}
0 & 1 & 2 & 3 & 4 \\
\hline \mathrm{~A}_{1} & \mathrm{~A}_{2} & \mathrm{~A}_{3} & \mathrm{~B} & \mathrm{D}
\end{array} \quad \begin{array}{cccccc}
5 & 6 & 7 & 8 & 9 & 10 \\
\hline \mathrm{~A}_{4} & \mathrm{~A}_{5} & \mathrm{C} & \mathrm{E} & \mathrm{~F} & \mathrm{G}
\end{array}
$$

Pf. Takes from left subarray if equal keys.

