BBM 202 - ALGORITHMS Quicksort

Basic plan.
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Shuffling Quicksort partitioning
Shuffling Repeat until i and 3 pointers cross.
o Shuffling is the process of rearranging an array of elements randomly. ® Scan i from left to right so long as a[i] < a[lo].
o A good shuffling algorithm is unbiased, where every ordering is equally likely. ® Scan j from right to left so long as a[j1 > a[lo].
e Exchange a[i] with a[j].
o e.g. the Fisher—Yates shuffle (aka. the Knuth shuffle)
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stop i scan because a[i] >= a[lo]




Quicksort partitioning

Repeat until i and j pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].
e Exchange a[i] with a[3].

Quicksort partitioning

Repeat until i and 3 pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].
e Exchange a[i] with a[3].

Quicksort partitioning

Repeat until 1 and j pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].
® Exchange a[i] with a[3j].

stop j scan and exchange a[i] with a[7]

Quicksort partitioning

Repeat until 1 and 5 pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j1 > a[lo].
e Exchange a[i] with a[j].




Quicksort partitioning

Repeat until i and j pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].
e Exchange a[i] with a[3].

Quicksort partitioning

Repeat until i and 3 pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].
e Exchange a[i] with a[3].

stop i scan because a[i] >=a[lo]
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Repeat until i and j pointers cross.
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Quicksort partitioning

Repeat until i and j pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].
e Exchange a[i] with a[3].
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Quicksort partitioning

Repeat until i and j pointers cross.
® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].

e Exchange a[i] with a[3].

stop i scan because a[i] >=a[lo]

Quicksort partitioning

Repeat until i and 3 pointers cross.
® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].

e Exchange a[i] with a[3].

stop j scan because a[j] <= a[lo]

Quicksort partitioning

Repeat until 1 and j pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].
® Exchange a[i] with a[3j].

When pointers cross.
e Exchange a[1o] with a[3].

pointers cross: exchange a[lo] with a[7]

Quicksort partitioning

Repeat until 1 and 5 pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j1 > a[lo].
e Exchange a[i] with a[j].

When pointers cross.
® Exchange a[1o] with a[3j].

partitioned!




Quicksort partitioning

Basic plan.

® Scan i from left for an item that belongs on the right.

® Scan j from right for an item that belongs on the left.

® Exchange a[i] and a[j].
e Repeat until pointers cross.
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Partitioning trace (array contents before and after each exchange)

Quicksort: Java code for partitioning

private static int partition(Comparable[] a, int lo, int hi)

Quicksort: Java implementation

public class Quick

{
private static int partition(Comparable[] a, int lo, int hi)
{ /* see previous slide */ }
public static void sort(Comparable[] a)
{
StdRandom.shuffle(a) ;
sort(a, 0, a.length - 1);
}
private static void sort(Comparable[] a, int lo, int hi)
{
if (hi <= lo) return;
int j = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);
}
}

shuffle needed for
<«<——— performance guarantee

(stay tuned)

{
int i = lo, j = hi+l;
while (true)
{
while (less(a[++i], a[le])) find item on left to swap
if (i == hi) break;
while (less(a[lo], a[--j1)) find item on right to swap
if (j == lo) break;
if (i >= j) break; check if pointers cross
exch(a, i, j); swap
}
exch(a, lo, j); swap with partitioning item
return j; return index of item now known to be in place
}
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Quicksort trace (array contents after each partition)




Quicksort animation

50 random items

Quicksort: implementation details

Partitioning in-place. Using an extra array makes partitioning easier
(and stable), but is not worth the cost.

Terminating the loop. Testing whether the pointers cross is a bit trickier
than it might seem.

Staying in bounds. The (3 == 10) test is redundant (why?),
but the (i == ni) test is not.

Preserving randomness. Shuffling is needed for performance guarantee.

Equal keys. When duplicates are present, it is (counter-intuitively) better
to stop on keys equal to the partitioning item's key.

A algorithm position
i, order
—— current subarray
not in order
http://www.sorting-algorithms.com/quick-sort
29
Quicksort: empirical analysis
Running time estimates:
® Home PC executes 108 compares/second.
e Supercomputer executes 10'2 compares/second.
insertion sort (N2) mergesort (N log N) quicksort (N log N)
mm
home instant 2.8 hours 317 years instant 1 second 18 min instant 0.6 sec 12 min
super instant  1second 1 week instant instant instant instant instant instant

Lesson |. Good algorithms are better than supercomputers.
Lesson 2. Great algorithms are better than good ones.

Quicksort: best-case analysis

Best case. Number of compares is ~ Nlg N.
Each partitioning process splits the array exactly in half.
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Quicksort: worst-case analysis

Worst case. Number of compares is ~ % N2 .

One of the subarrays is empty for every partition.
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Quicksort: summary of performance characteristics

Worst case. Number of compares is quadratic.
e N+(N-1)+(N-2) +...+1 ~ /4AN2
® More likely that your computer is struck by lightning bolt.

Average case. Number of compares is ~ N lg N.
® more compares than mergesort.
® But faster than mergesort in practice because of less data movement.

Random shuffle.
® Probabilistic guarantee against worst case.
® Basis for math model that can be validated with experiments.

Caveat emptor. Many textbook implementations go quadratic if array
® Is sorted or reverse sorted.
® Has many duplicates (even if randomized!)

Quicksort properties

Proposition. Quicksort is an in-place sorting algorithm.

Pf.

e Partitioning: constant extra space.

® Depth of recursion: logarithmic extra space (with high probability).
can guarantee logarithmic depth by

recurring on smaller subarray

before larger subarray

Proposition. Quicksort is not stable.
Pf.

B+ C1 C. A

Quicksort: practical improvements

Insertion sort small subarrays.

e Even quicksort has too much overhead for tiny subarrays.
o Cutoff to insertion sort for = 10 items.

® Note: could delay insertion sort until one pass at end.

private static void sort(Comparable[] a, int lo, int hi)
{
if (hi <= lo + CUTOFF - 1)
{
Insertion.sort(a, lo, hi);
return;
}
int j = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);




Quicksort: practical improvements

Median of sample.

® Best choice of pivot item = median.

e Estimate true median by taking median of sample.
e Median-of-3 (random) items.

N

~ 12/7 N In N compares (slightly fewer)
~ 12/35 N In N exchanges (slightly more)

private static void sort(Comparable[] a, int lo, int hi)

{

if (hi <= lo) return;

int m = medianOf3(a, lo, lo + (hi - lo)/2, hi);
swap(a, lo, m);

int j = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);

Quicksort with median-of-3 and cutoff to insertion sort: visualization

input .|III|-||||||-.I.I.| I"||.I|||||||.||||.||-|||.I "||||I|"|| .II.I||.||||.-| I||.I|..I.|I.-|"I

result of
first partition

an i
oty o
s
A
i
[
bothsubarys I

partially

result ..............mmuuuuuuum||||IIIIIIIIIIIIIIIIIII||||||||||||||||||||||||||

Selection

Goal. Given an array of N items, find the k" largest.
Ex. Min (k= 0), max (k=N - 1), median (k= N/2).

Applications.
® Order statistics.
® Find the "top £."

Use theory as a guide.

® Easy Nlog N upper bound. How?

e Easy N upper bound for k=1, 2, 3. How?
e Easy N lower bound. Why?

Which is true?
*N log N lower bound? <“— s selection as hard as sorting?

*N upper bound? <«— s there a linear-time algorithm for each k?

Quick-select

Partition array so that:

e Entry a[3] is in place.

® No larger entry to the left of j.

e No smaller entry to the right of j.

Repeat in one subarray, depending on 5; finished when j equals .

public static Comparable select(Comparable[] a, int k)
{

if a[k] is here
StdRandom.shuffle (a) ;

int lo = 0, hi = a.length - 1; sethitoj-1
while (hi > lo)
{
int j = partition(a, lo, hi);
) . . =v v
if (3 <k) lo=3 + 1; T
else if (j > k) hi = j - 1; RA !
else return alk];

if a[k] is here

set 1o to 5+1

=V

}

return a[k];




Quick-select: mathematical analysis
Proposition. Quick-select takes linear time on average.

Pf sketch.

® Intuitively, each partitioning step splits array approximately in half:
N+N/2+N/4+...+1 ~ 2N compares.
e Formal analysis similar to quicksort analysis yields:

Cy = 2N +kIn(N/k) +(N—k) In (N / (N - k)

N

(2+2In2) N to find the median

Remark. Quick-select uses ~ % N2 compares in the worst case, but
(as with quicksort) the random shuffle provides a probabilistic guarantee.

Duplicate keys

Often, purpose of sort is to bring items with equal keys together.
e Sort population by age.

Find collinear points.
e Remove duplicates from mailing list.
e Sort job applicants by college attended.

q o . . hi :25:52
Typical characteristics of such applications. M et
Chicago 09:21:05
® Huge array. Chicago 09:19:46
Chi 09:19:32
e Small number of key values. Ch:E:gﬁ 09:00:00

Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54
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key

Duplicate keys

Mergesort with duplicate keys.
Always between > N1g N and N 1g N compares.

Quicksort with duplicate keys.
e Algorithm goes quadratic unless partitioning stops on equal keys!
® 1990s C user found this defect in gsort().

\ several textbook and system
implementation also have this defect

STOPONEQUALIKEYS

1 (I

swap if we don't stop R SEpan
on equal keys
equal keys

Duplicate keys: the problem

Mistake. Put all items equal to the partitioning item on one side.
Consequence. ~ % N? compares when all keys equal.

BAABABBBCCC AAAAAAAAAANA

Recommended. Stop scans on items equal to the partitioning item.
Consequence. ~ N 1g N compares when all keys equal.

BAABABCCBCB AAAAAAAAAADA

Desirable. Put all items equal to the partitioning item in place.
AAABBBBBCCC AAAAAAAAAAA




3-way partitioning

Goal. Partition array into 3 parts so that:

e Entries between 1t and gt equal to partition item v.
® No larger entries to left of 1t.

e No smaller entries to right of gt.

before IV[ [ l

Dutch national flag problem. [Edsger Dijkstra]

e Conventional wisdom until mid 1990s: not worth doing.

e New approach discovered when fixing mistake in C library gsort ().
e Now incorporated into gsort () and Java system sort.

Dijkstra 3-way partitioning

® Let v be partitioning item a[1o].

® Scan i from left to right.
- (a[i] < wv): exchange a[1t] with a[i] and increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i] and decrement gt

Dijkstra 3-way partitioning

e Let v be partitioning item a[lo].
e Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i] and increment both 1t and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i
It i gt
v v Il

invariant

[ T=] > ]

- (a[i] == v): increment i
It i gt
125 v
P A B X w P P \ P D P C z
t t
lo hi

invariant
[ T=] [ ]
t t t
1t i gt
46
Dijkstra 3-way partitioning
e Let v be partitioning item a[lo].
e Scan i from left to right.

- (a[i] < wv): exchange a[1t] with a[i] and increment both 1t and i

- (a[i] > wv): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i

It i gt
' ' ¥

A P B X w P P \ P D P C z




Dijkstra 3-way partitioning

® Let v be partitioning item a[lo].

e Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i] and increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i] and decrement gt
- (a[i] == v): increment i

Dijkstra 3-way partitioning

® Let v be partitioning item a[1o].

e Scan i from left to right.
- (a[i] < wv): exchange a[1t] with a[i] and increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i] and decrement gt
- (a[i] == v): increment i

invariant

[<v [=v] >v

Dijkstra 3-way partitioning

e Let v be partitioning item a[lo].

e Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i] and increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i

invariant

[ <v

Dijkstra 3-way partitioning

e Let v be partitioning item a[lo].

e Scan i from left to right.
< v): exchange a[1t] with a[i] and increment both 1t and i

- (a[i]
- (a[i] > wv): exchange a[gt] with a[i] and decrement gt
- (a[i] == v): increment i

invariant

[ <v




Dijkstra 3-way partitioning

® Let v be partitioning item a[lo].
e Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i] and increment both 1t and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i
It i gt
oo V

Dijkstra 3-way partitioning

® Let v be partitioning item a[1o].

e Scan i from left to right.
- (a[i] < wv): exchange a[1t] with a[i] and increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i] and decrement gt
- (a[i] == v): increment i

invariant
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Dijkstra 3-way partitioning

e Let v be partitioning item a[lo].
e Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i] and increment both 1t and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i
It i ot
' ¥ 0

invariant
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Dijkstra 3-way partitioning

e Let v be partitioning item a[lo].
e Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i] and increment both 1t and i

- (a[i] > wv): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i
It i ot
¥ ¥ v

invariant
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Dijkstra 3-way partitioning

® Let v be partitioning item a[lo].

e Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i] and increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i] and decrement gt
- (a[i] == v): increment i

1t i gt

Dijkstra 3-way partitioning

e Let v be partitioning item a[lo].

e Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i] and increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i
It i gt
v W

invariant
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Dijkstra 3-way partitioning

® Let v be partitioning item a[1o].

e Scan i from left to right.
- (a[i] < wv): exchange a[1t] with a[i] and increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i] and decrement gt
- (a[i] == v): increment i

It i gt

=V ‘ >V

Dijkstra 3-way partitioning

e Let v be partitioning item a[lo].

e Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i] and increment both 1t and i
- (a[i] > wv): exchange a[gt] with a[i] and decrement gt
- (a[i] == v): increment i

invariant

[<v J=v] >v




Dijkstra 3-way partitioning algorithm

3-way partitioning.

e Let v be partitioning item a[1o].

® Scan i from left to right.
- a[i] less than v:exchange a[1t] with a[i] and increment both 1t and i
- a[i] greater than v: exchange a[gt] with a[i] and decrement gt

- a[i] equal to v:increment i

before M [ l

Most of the right properties. . N

e In-place. duing [ v [=v ] [ >v ]
e Not much code. K '
1 9

e Linear time if keys are all equal. after l Py [ my [ v l

t t 1 t

To 1t gt hi

Dijkstra's 3-way partitioning: trace

v al]
t i gt \0 1 23456 7 8 91011
0 0 11 R B W R W B R R W B R
0 1 11 R.B R
1 2 11 R W R
1 2 10 R R B
1 3 10 R W B
1 3 9 R B W
2 4 9 R R W
2 5 9 R W W
2 5 8 R W R
2 5 7 R R R
2 6 7 R B R
3 7 7 R R
3 8 7 R R W
3 8 7 B B B RRIRRRWWWW
3-way partitioning trace (array contents after each loop iteration)

3-way quicksort: Java implementation

private static void sort(Comparable[] a, int lo, int hi)
{

if (hi <= lo) return;

int 1t = lo, gt = hi;

Comparable v = a[lo];

int i = lo;

while (i <= gt)

{
int cmp = a[i].compareTo(v) ;
if (cmp < 0) exch(a, lt++, i++);
else if (cmp > 0) exch(a, i, gt--);
else alsmr g
}
before [v] []
sort(a, lo, 1t - 1); B t
sort(a, gt + 1, hi); lo "
) duing [<v [=v ] [ >v ]
1 [ [
1t gt
after ‘ <V ‘ =V ‘ >V ‘
t t t t

3-way quicksort: visual trace

equal to partitioning element <




Sorting summary

inplace? | stable? average best remarks
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N exchanges

use for small N or partially ordered

tight code, subquadratic

Nlog N guarantee, stable

Nlog N probabilistic guarantee
fastest in practice
improves quicksort in presence
of duplicate keys

holy sorting grail




