
BBM 202 - ALGORITHMS

QUICKSORT

 
DEPT. OF COMPUTER ENGINEERING

Acknowledgement: The course slides are adapted from the slides prepared by R.
Sedgewick  
and K. Wayne of Princeton University. 2

Quicksort

Basic plan.
• Shuffle the array.

• Partition so that, for some j
- entry a[j] is in place

- no larger entry to the left of j

- no smaller entry to the right of j

• Sort each piece recursively. Sir Charles Antony Richard Hoare 
1980 Turing Award

Q U I C K S O R T E X A M P L E

K R A T E L E P U I M Q C X O S

E C A I E K L P U T M Q R X O S

A C E E I K L P U T M Q R X O S

A C E E I K L M O P Q R S T U X

A C E E I K L M O P Q R S T U X

not greater not less

partitioning item

input

shuffle

partition

sort left

sort right

result

Quicksort overview

Shuffling

Shuffling
• Shuffling is the process of rearranging an array of elements randomly.

• A good shuffling algorithm is unbiased, where every ordering is equally likely.

• e.g. the Fisher–Yates shuffle (aka. the Knuth shuffle)

3

http://bl.ocks.org/mbostock/39566aca95eb03ddd526

4

Quicksort partitioning

Repeat until i and j pointers cross.
• Scan i from left to right so long as a[i] < a[lo].

• Scan j from right to left so long as a[j] > a[lo].

• Exchange a[i] with a[j].

lo

K R A T E L E P U I M Q C X O S

i j

stop i scan because a[i] >= a[lo]

5

Quicksort partitioning

Repeat until i and j pointers cross.
• Scan i from left to right so long as a[i] < a[lo].

• Scan j from right to left so long as a[j] > a[lo].

• Exchange a[i] with a[j].

lo

K R A T E L E P U I M Q C X O S

i j

6

Quicksort partitioning

Repeat until i and j pointers cross.
• Scan i from left to right so long as a[i] < a[lo].

• Scan j from right to left so long as a[j] > a[lo].

• Exchange a[i] with a[j].

lo

K R A T E L E P U I M Q C X O S

i j

7

Quicksort partitioning

Repeat until i and j pointers cross.
• Scan i from left to right so long as a[i] < a[lo].

• Scan j from right to left so long as a[j] > a[lo].

• Exchange a[i] with a[j].

lo

K R A T E L E P U I M Q C X O S

i j

stop j scan and exchange a[i] with a[j]
8

Quicksort partitioning

Repeat until i and j pointers cross.
• Scan i from left to right so long as a[i] < a[lo].

• Scan j from right to left so long as a[j] > a[lo].

• Exchange a[i] with a[j].

lo

K C A T E L E P U I M Q R X O S

i j

9

Quicksort partitioning

Repeat until i and j pointers cross.
• Scan i from left to right so long as a[i] < a[lo].

• Scan j from right to left so long as a[j] > a[lo].

• Exchange a[i] with a[j].

lo

K C A T E L E P U I M Q R X O S

i j

10

Quicksort partitioning

Repeat until i and j pointers cross.
• Scan i from left to right so long as a[i] < a[lo].

• Scan j from right to left so long as a[j] > a[lo].

• Exchange a[i] with a[j].

lo

K C A T E L E P U I M Q R X O S

i j

stop i scan because a[i] >= a[lo]

11

Quicksort partitioning

Repeat until i and j pointers cross.
• Scan i from left to right so long as a[i] < a[lo].

• Scan j from right to left so long as a[j] > a[lo].

• Exchange a[i] with a[j].

lo

K C A T E L E P U I M Q R X O S

i j

12

Quicksort partitioning

Repeat until i and j pointers cross.
• Scan i from left to right so long as a[i] < a[lo].

• Scan j from right to left so long as a[j] > a[lo].

• Exchange a[i] with a[j].

lo

K C A T E L E P U I M Q R X O S

i j

13

Quicksort partitioning

Repeat until i and j pointers cross.
• Scan i from left to right so long as a[i] < a[lo].

• Scan j from right to left so long as a[j] > a[lo].

• Exchange a[i] with a[j].

lo

K C A T E L E P U I M Q R X O S

i j

stop j scan and exchange a[i] with a[j]
14

Quicksort partitioning

Repeat until i and j pointers cross.
• Scan i from left to right so long as a[i] < a[lo].

• Scan j from right to left so long as a[j] > a[lo].

• Exchange a[i] with a[j].

lo

K C A I E L E P U T M Q R X O S

i j

15

Quicksort partitioning

Repeat until i and j pointers cross.
• Scan i from left to right so long as a[i] < a[lo].

• Scan j from right to left so long as a[j] > a[lo].

• Exchange a[i] with a[j].

lo

K C A I E L E P U T M Q R X O S

i j

16

Quicksort partitioning

Repeat until i and j pointers cross.
• Scan i from left to right so long as a[i] < a[lo].

• Scan j from right to left so long as a[j] > a[lo].

• Exchange a[i] with a[j].

lo

K C A I E L E P U T M Q R X O S

i j

stop i scan because a[i] >= a[lo]

17

Quicksort partitioning

Repeat until i and j pointers cross.
• Scan i from left to right so long as a[i] < a[lo].

• Scan j from right to left so long as a[j] > a[lo].

• Exchange a[i] with a[j].

lo

K C A I E L E P U T M Q R X O S

i j

18

Quicksort partitioning

Repeat until i and j pointers cross.
• Scan i from left to right so long as a[i] < a[lo].

• Scan j from right to left so long as a[j] > a[lo].

• Exchange a[i] with a[j].

lo

K C A I E L E P U T M Q R X O S

i j

19

Quicksort partitioning

Repeat until i and j pointers cross.
• Scan i from left to right so long as a[i] < a[lo].

• Scan j from right to left so long as a[j] > a[lo].

• Exchange a[i] with a[j].

lo

K C A I E L E P U T M Q R X O S

i j

stop j scan and exchange a[i] with a[j]
20

Quicksort partitioning

Repeat until i and j pointers cross.
• Scan i from left to right so long as a[i] < a[lo].

• Scan j from right to left so long as a[j] > a[lo].

• Exchange a[i] with a[j].

lo

K C A I E E L P U T M Q R X O S

i j

21

Quicksort partitioning

Repeat until i and j pointers cross.
• Scan i from left to right so long as a[i] < a[lo].

• Scan j from right to left so long as a[j] > a[lo].

• Exchange a[i] with a[j].

lo

K C A I E E L P U T M Q R X O S

i

stop i scan because a[i] >= a[lo]

j

22

Quicksort partitioning

Repeat until i and j pointers cross.
• Scan i from left to right so long as a[i] < a[lo].

• Scan j from right to left so long as a[j] > a[lo].

• Exchange a[i] with a[j].

lo

K C A I E E L P U T M Q R X O S

ij

stop j scan because a[j] <= a[lo]

23

Quicksort partitioning

Repeat until i and j pointers cross.
• Scan i from left to right so long as a[i] < a[lo].

• Scan j from right to left so long as a[j] > a[lo].

• Exchange a[i] with a[j].

When pointers cross.
• Exchange a[lo] with a[j].

lo

K C A I E E L P U T M Q R X O S

ij

pointers cross: exchange a[lo] with a[j]
24

Quicksort partitioning

Repeat until i and j pointers cross.
• Scan i from left to right so long as a[i] < a[lo].

• Scan j from right to left so long as a[j] > a[lo].

• Exchange a[i] with a[j].

When pointers cross.
• Exchange a[lo] with a[j].

lo

E C A I E K L P U T M Q R X O S

hij

partitioned!

Quicksort partitioning

Basic plan.
• Scan i from left for an item that belongs on the right.

• Scan j from right for an item that belongs on the left.

• Exchange a[i] and a[j].

• Repeat until pointers cross.

25

 a[i]
 i j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 0 16 K R A T E L E P U I M Q C X O S

 1 12 K R A T E L E P U I M Q C X O S

 1 12 K C A T E L E P U I M Q R X O S

 3 9 K C A T E L E P U I M Q R X O S

 3 9 K C A I E L E P U T M Q R X O S

 5 6 K C A I E L E P U T M Q R X O S

 5 6 K C A I E E L P U T M Q R X O S

 6 5 K C A I E E L P U T M Q R X O S

 6 5 E C A I E K L P U T M Q R X O S

 6 5 E C A I E K L P U T M Q R X O S

Partitioning trace (array contents before and after each exchange)

initial values

scan left, scan right

exchange

scan left, scan right

exchange

scan left, scan right

exchange

scan left, scan right

final exchange

result

v

26

Quicksort: Java code for partitioning

private static int partition(Comparable[] a, int lo, int hi)
{
 int i = lo, j = hi+1;
 while (true)
 {
 while (less(a[++i], a[lo]))
 if (i == hi) break;

 while (less(a[lo], a[--j]))
 if (j == lo) break;

 if (i >= j) break;
 exch(a, i, j);
 }

 exch(a, lo, j);
 return j;
}

swap with partitioning item

check if pointers cross

find item on right to swap

find item on left to swap

swap

return index of item now known to be in place

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

27

Quicksort: Java implementation

public class Quick
{
 private static int partition(Comparable[] a, int lo, int hi)
 { /* see previous slide */ }

 public static void sort(Comparable[] a)
 {
 StdRandom.shuffle(a);
 sort(a, 0, a.length - 1);
 }

 private static void sort(Comparable[] a, int lo, int hi)
 {
 if (hi <= lo) return;
 int j = partition(a, lo, hi);
 sort(a, lo, j-1);
 sort(a, j+1, hi);
 }
}

shuffle needed for

performance guarantee
(stay tuned)

Quicksort trace

28

 lo j hi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 Q U I C K S O R T E X A M P L E
 K R A T E L E P U I M Q C X O S
 0 5 15 E C A I E K L P U T M Q R X O S
 0 3 4 E C A E I K L P U T M Q R X O S
 0 2 2 A C E E I K L P U T M Q R X O S
 0 0 1 A C E E I K L P U T M Q R X O S
 1 1 A C E E I K L P U T M Q R X O S
 4 4 A C E E I K L P U T M Q R X O S
 6 6 15 A C E E I K L P U T M Q R X O S
 7 9 15 A C E E I K L M O P T Q R X U S
 7 7 8 A C E E I K L M O P T Q R X U S
 8 8 A C E E I K L M O P T Q R X U S
 10 13 15 A C E E I K L M O P S Q R T U X
 10 12 12 A C E E I K L M O P R Q S T U X
 10 11 11 A C E E I K L M O P Q R S T U X
 10 10 A C E E I K L M O P Q R S T U X
 14 14 15 A C E E I K L M O P Q R S T U X
 15 15 A C E E I K L M O P Q R S T U X

 A C E E I K L M O P Q R S T U X

no partition
 for subarrays

 of size 1

initial values

random shuffle

result

Quicksort trace (array contents after each partition)

Quicksort animation

29

http://www.sorting-algorithms.com/quick-sort

50 random items

in order
current subarray

algorithm position

not in order

30

Quicksort: implementation details

Partitioning in-place. Using an extra array makes partitioning easier 
(and stable), but is not worth the cost.

Terminating the loop. Testing whether the pointers cross is a bit trickier
than it might seem.

Staying in bounds. The (j == lo) test is redundant (why?),  
but the (i == hi) test is not.

Preserving randomness. Shuffling is needed for performance guarantee.

Equal keys. When duplicates are present, it is (counter-intuitively) better  
to stop on keys equal to the partitioning item's key.

31

Quicksort: empirical analysis

Running time estimates:
• Home PC executes 108 compares/second.

• Supercomputer executes 1012 compares/second.

Lesson 1. Good algorithms are better than supercomputers.
Lesson 2. Great algorithms are better than good ones.

insertion sort (N2) mergesort (N log N) quicksort (N log N)

computer thousand million billion thousand million billion thousand million billion

home instant 2.8 hours 317 years instant 1 second 18 min instant 0.6 sec 12 min

super instant 1 second 1 week instant instant instant instant instant instant

32

Quicksort: best-case analysis

Best case. Number of compares is ~ N lg N.

random shuffle

initial values

Each partitioning process splits the array exactly in half.

Worst case. Number of compares is ~ ½ N 2 .

33

Quicksort: worst-case analysis

random shuffle

initial values

One of the subarrays is empty for every partition.

34

Quicksort: summary of performance characteristics

Worst case. Number of compares is quadratic.
• N + (N - 1) + (N - 2) + … + 1 ~ ½ N 2.

• More likely that your computer is struck by lightning bolt.

Average case. Number of compares is ~ N lg N.
• more compares than mergesort.

• But faster than mergesort in practice because of less data movement.

Random shuffle.
• Probabilistic guarantee against worst case.

• Basis for math model that can be validated with experiments.

Caveat emptor. Many textbook implementations go quadratic if array
• Is sorted or reverse sorted.

• Has many duplicates (even if randomized!)

Proposition. Quicksort is an in-place sorting algorithm.
Pf.

• Partitioning: constant extra space.

• Depth of recursion: logarithmic extra space (with high probability).

Proposition. Quicksort is not stable.
Pf.

35

Quicksort properties

i j 0 1 2 3

B1 C1 C2 A1

1 3 B1 C1 C2 A1

1 3 B1 A1 C2 C1

0 1 A1 B1 C2 C1

can guarantee logarithmic depth by

recurring on smaller subarray

before larger subarray

Insertion sort small subarrays.
• Even quicksort has too much overhead for tiny subarrays.

• Cutoff to insertion sort for ≈ 10 items.

• Note: could delay insertion sort until one pass at end.

 private static void sort(Comparable[] a, int lo, int hi)
 {
 if (hi <= lo + CUTOFF - 1)
 {
 Insertion.sort(a, lo, hi);
 return;
 }
 int j = partition(a, lo, hi);
 sort(a, lo, j-1);
 sort(a, j+1, hi);
 }

36

Quicksort: practical improvements

37

Quicksort: practical improvements

Median of sample.
• Best choice of pivot item = median.

• Estimate true median by taking median of sample.

• Median-of-3 (random) items.

 private static void sort(Comparable[] a, int lo, int hi)
 {
 if (hi <= lo) return;

 int m = medianOf3(a, lo, lo + (hi - lo)/2, hi);
 swap(a, lo, m);

 int j = partition(a, lo, hi);
 sort(a, lo, j-1);
 sort(a, j+1, hi);
 }

~ 12/7 N ln N compares (slightly fewer)
~ 12/35 N ln N exchanges (slightly more)

Quicksort with median-of-3 and cutoff to insertion sort: visualization

38

partitioning element

Quicksort with median-of-3 partitioning and cutoff for small subarrays

input

result

result of
first partition

left subarray
partially sorted

both subarrays
partially sorted

39

Selection

Goal. Given an array of N items, find the kth largest.
Ex. Min (k = 0), max (k = N - 1), median (k = N / 2).

Applications.
• Order statistics.

• Find the "top k."

Use theory as a guide.
• Easy N log N upper bound. How?

• Easy N upper bound for k = 1, 2, 3. How?

• Easy N lower bound. Why?

Which is true?
• N log N lower bound?
• N upper bound?

is selection as hard as sorting?

is there a linear-time algorithm for each k?

Partition array so that:
• Entry a[j] is in place.

• No larger entry to the left of j.

• No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

public static Comparable select(Comparable[] a, int k)
{
 StdRandom.shuffle(a);
 int lo = 0, hi = a.length - 1;
 while (hi > lo)  
 {
 int j = partition(a, lo, hi);
 if (j < k) lo = j + 1;
 else if (j > k) hi = j - 1;
 else return a[k];
 }
 return a[k];
}

40

Quick-select

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

if a[k] is here

set hi to j-1

if a[k] is here

set lo to j+1

41

Quick-select: mathematical analysis

Proposition. Quick-select takes linear time on average.

Pf sketch.
• Intuitively, each partitioning step splits array approximately in half:  

N + N / 2 + N / 4 + … + 1 ~ 2N compares.

• Formal analysis similar to quicksort analysis yields:

Remark. Quick-select uses ~ ½ N 2 compares in the worst case, but  
(as with quicksort) the random shuffle provides a probabilistic guarantee.

CN = 2 N + k ln (N / k) + (N – k) ln (N / (N – k))

(2 + 2 ln 2) N to find the median

42

Duplicate keys

Often, purpose of sort is to bring items with equal keys together.
• Sort population by age.

• Find collinear points.

• Remove duplicates from mailing list.

• Sort job applicants by college attended.

 Typical characteristics of such applications.

• Huge array.

• Small number of key values.

Chicago 09:00:00
Phoenix 09:00:03
Houston 09:00:13
Chicago 09:00:59
Houston 09:01:10
Chicago 09:03:13
Seattle 09:10:11
Seattle 09:10:25
Phoenix 09:14:25
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Seattle 09:22:43
Seattle 09:22:54
Chicago 09:25:52
Chicago 09:35:21
Seattle 09:36:14
Phoenix 09:37:44

Chicago 09:00:00
Chicago 09:00:59
Chicago 09:03:13
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Chicago 09:25:52
Chicago 09:35:21
Houston 09:00:13
Houston 09:01:10
Phoenix 09:00:03
Phoenix 09:14:25
Phoenix 09:37:44
Seattle 09:10:11
Seattle 09:10:25
Seattle 09:22:43
Seattle 09:22:54
Seattle 09:36:14

Chicago 09:25:52
Chicago 09:03:13
Chicago 09:21:05
Chicago 09:19:46
Chicago 09:19:32
Chicago 09:00:00
Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54

Stability when sorting on a second key

sorted

sorted by time sorted by city (unstable) sorted by city (stable)

NOT
sorted

key

43

Duplicate keys

Mergesort with duplicate keys.  
Always between ½ N lg N and N lg N compares.

Quicksort with duplicate keys.
• Algorithm goes quadratic unless partitioning stops on equal keys!

• 1990s C user found this defect in qsort().

several textbook and system
implementation also have this defect

S T O P O N E Q U A L K E Y S

swap if we don't stop
on equal keys

if we stop on

equal keys

Duplicate keys: the problem

Mistake. Put all items equal to the partitioning item on one side.
Consequence. ~ ½ N 2 compares when all keys equal.

Recommended. Stop scans on items equal to the partitioning item.
Consequence. ~ N lg N compares when all keys equal.

Desirable. Put all items equal to the partitioning item in place.

44

B A A B A B B B C C C A A A A A A A A A A A

B A A B A B C C B C B A A A A A A A A A A A

A A A B B B B B C C C A A A A A A A A A A A

Goal. Partition array into 3 parts so that:
• Entries between lt and gt equal to partition item v.

• No larger entries to left of lt.

• No smaller entries to right of gt.

Dutch national flag problem. [Edsger Dijkstra]
• Conventional wisdom until mid 1990s: not worth doing.

• New approach discovered when fixing mistake in C library qsort().

• Now incorporated into qsort() and Java system sort.

45

3-way partitioning

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

• Let v be partitioning item a[lo].

• Scan i from left to right.
- (a[i] < v): exchange a[lt] with a[i] and increment both lt and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt
- (a[i] == v): increment i

46

Dijkstra 3-way partitioning

lo

P A B X W P P V P D P C Y Z

hi

lt gt

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

i

invariant

• Let v be partitioning item a[lo].

• Scan i from left to right.
- (a[i] < v): exchange a[lt] with a[i] and increment both lt and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt
- (a[i] == v): increment i

47

Dijkstra 3-way partitioning

P A B X W P P V P D P C Y Z

lt gt

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

i

invariant

• Let v be partitioning item a[lo].

• Scan i from left to right.
- (a[i] < v): exchange a[lt] with a[i] and increment both lt and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt
- (a[i] == v): increment i

48

Dijkstra 3-way partitioning

A P B X W P P V P D P C Y Z

lt gt

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

i

invariant

• Let v be partitioning item a[lo].

• Scan i from left to right.
- (a[i] < v): exchange a[lt] with a[i] and increment both lt and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt
- (a[i] == v): increment i

49

Dijkstra 3-way partitioning

A B P X W P P V P D P C Y Z

lt gt

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

invariant

i

• Let v be partitioning item a[lo].

• Scan i from left to right.
- (a[i] < v): exchange a[lt] with a[i] and increment both lt and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt
- (a[i] == v): increment i

50

Dijkstra 3-way partitioning

A B P Z W P P V P D P C Y X

lt gt

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

i

invariant

• Let v be partitioning item a[lo].

• Scan i from left to right.
- (a[i] < v): exchange a[lt] with a[i] and increment both lt and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt
- (a[i] == v): increment i

51

Dijkstra 3-way partitioning

A B P Y W P P V P D P C Z X

lt gt

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

i

invariant

• Let v be partitioning item a[lo].

• Scan i from left to right.
- (a[i] < v): exchange a[lt] with a[i] and increment both lt and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt
- (a[i] == v): increment i

52

Dijkstra 3-way partitioning

A B P C W P P V P D P Y Z X

lt gt

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

i

invariant

• Let v be partitioning item a[lo].

• Scan i from left to right.
- (a[i] < v): exchange a[lt] with a[i] and increment both lt and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt
- (a[i] == v): increment i

53

Dijkstra 3-way partitioning

A B C P W P P V P D P Y Z X

lt gt

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

i

invariant

• Let v be partitioning item a[lo].

• Scan i from left to right.
- (a[i] < v): exchange a[lt] with a[i] and increment both lt and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt
- (a[i] == v): increment i

54

Dijkstra 3-way partitioning

A B C P P P P V P D W Y Z X

lt gt

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

i

invariant

• Let v be partitioning item a[lo].

• Scan i from left to right.
- (a[i] < v): exchange a[lt] with a[i] and increment both lt and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt
- (a[i] == v): increment i

55

Dijkstra 3-way partitioning

A B C P P P P V P D W Y Z X

lt gt

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

i

invariant

• Let v be partitioning item a[lo].

• Scan i from left to right.
- (a[i] < v): exchange a[lt] with a[i] and increment both lt and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt
- (a[i] == v): increment i

56

Dijkstra 3-way partitioning

A B C P P P P V P D W Y Z X

lt gt

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

i

invariant

• Let v be partitioning item a[lo].

• Scan i from left to right.
- (a[i] < v): exchange a[lt] with a[i] and increment both lt and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt
- (a[i] == v): increment i

57

Dijkstra 3-way partitioning

A B C P P P P V P D W Y Z X

lt gt

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

i

invariant

• Let v be partitioning item a[lo].

• Scan i from left to right.
- (a[i] < v): exchange a[lt] with a[i] and increment both lt and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt
- (a[i] == v): increment i

58

Dijkstra 3-way partitioning

A B C P P P P D P V W Y Z X

lt gt

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

i

invariant

• Let v be partitioning item a[lo].

• Scan i from left to right.
- (a[i] < v): exchange a[lt] with a[i] and increment both lt and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt
- (a[i] == v): increment i

59

Dijkstra 3-way partitioning

A B C D P P P P P V W Y Z X

lt gt

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

i

invariant

• Let v be partitioning item a[lo].

• Scan i from left to right.
- (a[i] < v): exchange a[lt] with a[i] and increment both lt and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt
- (a[i] == v): increment i

60

Dijkstra 3-way partitioning

lo

A B C D P P P P P V W Y Z X

hi

lt gt

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

invariant

61

Dijkstra 3-way partitioning algorithm

3-way partitioning.
• Let v be partitioning item a[lo].

• Scan i from left to right.
- a[i] less than v: exchange a[lt] with a[i] and increment both lt and i

- a[i] greater than v: exchange a[gt] with a[i] and decrement gt

- a[i] equal to v: increment i

Most of the right properties.
• In-place.

• Not much code.

• Linear time if keys are all equal.
lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

62

Dijkstra's 3-way partitioning: trace

 a[]
lt i gt 0 1 2 3 4 5 6 7 8 9 10 11
 0 0 11 R B W W R W B R R W B R
 0 1 11 R B W W R W B R R W B R
 1 2 11 B R W W R W B R R W B R
 1 2 10 B R R W R W B R R W B W
 1 3 10 B R R W R W B R R W B W
 1 3 9 B R R B R W B R R W W W
 2 4 9 B B R R R W B R R W W W
 2 5 9 B B R R R W B R R W W W
 2 5 8 B B R R R W B R R W W W
 2 5 7 B B R R R R B R W W W W
 2 6 7 B B R R R R B R W W W W
 3 7 7 B B B R R R R R W W W W
 3 8 7 B B B R R R R R W W W W
 3 8 7 B B B R R R R R W W W W

v

3-way partitioning trace (array contents after each loop iteration)

private static void sort(Comparable[] a, int lo, int hi)
{
 if (hi <= lo) return;
 int lt = lo, gt = hi;
 Comparable v = a[lo];
 int i = lo;
 while (i <= gt)
 {
 int cmp = a[i].compareTo(v);
 if (cmp < 0) exch(a, lt++, i++);
 else if (cmp > 0) exch(a, i, gt--);
 else i++;
 }

 sort(a, lo, lt - 1);
 sort(a, gt + 1, hi);
}

63

3-way quicksort: Java implementation

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning
64

3-way quicksort: visual trace

equal to partitioning element

Visual trace of quicksort with 3-way partitioning

65

Sorting summary

inplace? stable? worst average best remarks

selection ✔ N 2 / 2 N 2 / 2 N 2 / 2 N exchanges

insertion ✔ ✔ N 2 / 2 N 2 / 4 N use for small N or partially ordered

shell ✔ ? ? N tight code, subquadratic

merge ✔ N lg N N lg N N lg N N log N guarantee, stable

quick ✔ N 2 / 2 N lg N N lg N
N log N probabilistic guarantee  

fastest in practice

3-way quick ✔ N 2 / 2 N lg N N
improves quicksort in presence  

of duplicate keys

??? ✔ ✔ N lg N N lg N N lg N holy sorting grail

