
BBM 202 - ALGORITHMS

ELEMENTARY SEARCH ALGORITHMS

 
DEPT. OF COMPUTER ENGINEERING

Acknowledgement: The course slides are adapted from the slides prepared by R.
Sedgewick  
and K. Wayne of Princeton University.

TODAY

‣ Symbol Tables
‣ API
‣ Elementary implementations
‣ Ordered operations

SYMBOL TABLES

‣ API
‣ Elementary implementations
‣ Ordered operations  

4

Symbol tables

Key-value pair abstraction.
• Insert a value with specified key.

• Given a key, search for the corresponding value.

Ex. DNS lookup.
• Insert URL with specified IP address.

• Given URL, find corresponding IP address.

key

URL IP address

www.cs.princeton.edu 128.112.136.11

www.princeton.edu 128.112.128.15

www.yale.edu 130.132.143.21

www.harvard.edu 128.103.060.55

www.simpsons.com 209.052.165.60

value

5

Symbol table applications

application purpose of search key value

dictionary find definition word definition

book index find relevant pages term list of page numbers

file share find song to download name of song computer ID

financial account process transactions account number transaction details

web search find relevant web pages keyword list of page names

compiler find properties of variables variable name type and value

routing table route Internet packets destination best route

DNS find IP address given URL URL IP address

reverse DNS find URL given IP address IP address URL

genomics find markers DNA string known positions

file system find file on disk filename location on disk

Associative array abstraction. Associate one value with each key.
API The symbol table is a prototypical abstract data type (see Chapter 1): it repre-
sents a well-defined set of values and operations on those values, enabling us to develop
clients and implementations separately. As usual, we precisely define the operations
by specifying an applications programming interface (API) that provides the contract
between client and implementation:

 public class ST<Key, Value>

ST() create a symbol table

void put(Key key, Value val)
put key-value pair into the table
(remove key from table if value is null)

Value get(Key key)
value paired with key
(null if key is absent)

void delete(Key key) remove key (and its value) from table
boolean contains(Key key) is there a value paired with key?
boolean isEmpty() is the table empty?

int size() number of key-value pairs in the table
Iterable<Key> keys() all the keys in the table

API for a generic basic symbol table

Before examining client code, we consider several design choices for our implementa-
tions to make our code consistent, compact, and useful.

Generics. As we did with sorting, we will consider the methods without specifying the
types of the items being processed, using generics. For symbol tables, we emphasize the
separate roles played by keys and values in search by specifying the key and value types
explicitly instead of viewing keys as implicit in items as we did for priority queues in
Section 2.4. After we have considered some of the characteristics of this basic API (for
example, note that there is no mention of order among the keys), we will consider an
extension for the typical case when keys are Comparable, which enables numerous ad-
ditional methods.

Duplicate keys. We adopt the following conventions in all of our implementations:
�� Only one value is associated with each key (no duplicate keys in a table).
�� When a client puts a key-value pair into a table already containing that key (and

an associated value), the new value replaces the old one.
These conventions define the associative array abstraction, where you can think of a
symbol table as being just like an array, where keys are indices and values are array

3633.1 � Symbol Tables

6

Basic symbol table API

a[key] = val;

a[key]

7

Conventions

• Values are not null.

• Method get() returns null if key not present.

• Method put() overwrites old value with new value.

Intended consequences.
• Easy to implement contains().  
 
 
 

• Can implement lazy version of delete().

 public boolean contains(Key key)
 { return get(key) != null; }

 public void delete(Key key)
 { put(key, null); }

8

Keys and values

Value type. Any generic type.  
 

Key type: several natural assumptions.
• Assume keys are Comparable, use compareTo().

• Assume keys are any generic type, use equals() to test equality.

• Assume keys are any generic type, use equals() to test equality;  
use hashCode() to scramble key.

 
 
 
 
Best practices. Use immutable types for symbol table keys.

• Immutable in Java: String, Integer, Double, java.io.File, …

• Mutable in Java: StringBuilder, java.net.URL, arrays, ...

specify Comparable in API.

built-in to Java
(stay tuned)

9

Equality test

All Java classes inherit a method equals().
 
 
 
Java requirements. For any references x, y and z:
• Reflexive: x.equals(x) is true.

• Symmetric: x.equals(y) iff y.equals(x).

• Transitive: if x.equals(y) and y.equals(z), then x.equals(z).

• Non-null: x.equals(null) is false.

 
 
 
Default implementation. (x == y)  
Customized implementations. Integer, Double, String, File, URL, … 
User-defined implementations. Some care needed.

do x and y refer to

the same object?

equivalence  
relation

Seems easy.

public class Date implements Comparable<Date>
{
 private final int month;
 private final int day;
 private final int year;
 ...

 public boolean equals(Date that)
 {

 if (this.day != that.day) return false;
 if (this.month != that.month) return false;
 if (this.year != that.year) return false;
 return true;
 }
}

Implementing equals for user-defined types

10

check that all significant 
fields are the same

Seems easy, but requires some care.

public final class Date implements Comparable<Date>
{
 private final int month;
 private final int day;
 private final int year;
 ...

 public boolean equals(Object y)
 {
 if (y == this) return true;

 if (y == null) return false;

 if (y.getClass() != this.getClass())
 return false;

 Date that = (Date) y;
 if (this.day != that.day) return false;
 if (this.month != that.month) return false;
 if (this.year != that.year) return false;
 return true;
 }
}

Implementing equals for user-defined types

11

check for null

optimize for true object equality

Safer to use equals() with inheritance

if fields in extending class contribute to
equals() the symmetry violated

must be Object.

objects must be in the same class 

check that all significant 
fields are the same

cast is guaranteed to succeed

12

Equals design

"Standard" recipe for user-defined types.
• Optimization for reference equality.

• Check against null.

• Check that two objects are of the same type and cast.

• Compare each significant field:
- if field is a primitive type, use ==

- if field is an object, use equals()

- if field is an array, apply to each entry

 
Best practices.
• No need to use calculated fields that depend on other fields.

• Compare fields mostly likely to differ first.

• Only use necessary fields, e.g. a webpage is best defined by URL, not number of
views.

• Make compareTo() consistent with equals().

apply rule recursively

alternatively, use Arrays.equals(a, b) or

Arrays.deepEquals(a, b),

but not a.equals(b)

x.equals(y) if and only if (x.compareTo(y) == 0)

ST test client for traces

Build ST by associating value i with ith string from standard input.

13

public static void main(String[] args)
{
 ST<String, Integer> st = new ST<String, Integer>();
 for (int i = 0; !StdIn.isEmpty(); i++)
 {
 String key = StdIn.readString();
 st.put(key, i);
 }
 for (String s : st.keys())
 StdOut.println(s + " " + st.get(s));
}

output

keys

values

S E A R C H E X A M P L E

0 1 2 3 4 5 6 7 8 9 10 11 12

output for
basic symbol table

(one possibility)

L 11
P 10
M 9
X 7
H 5
C 4
R 3
A 8
E 12
S 0

output for
ordered

symbol table

A 8
C 4
E 12
H 5
L 11
M 9
P 10
R 3
S 0
X 7

Keys, values, and output for test client

keys

values

S E A R C H E X A M P L E

0 1 2 3 4 5 6 7 8 9 10 11 12

output for
basic symbol table

(one possibility)

L 11
P 10
M 9
X 7
H 5
C 4
R 3
A 8
E 12
S 0

output for
ordered

symbol table

A 8
C 4
E 12
H 5
L 11
M 9
P 10
R 3
S 0
X 7

Keys, values, and output for test client

The order of output
depends on the
underlying data
structure!

ST test client for analysis

Frequency counter. Read a sequence of strings from standard input 
and print out one that occurs with highest frequency.

14

% more tinyTale.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness
it was the epoch of belief
it was the epoch of incredulity
it was the season of light
it was the season of darkness
it was the spring of hope
it was the winter of despair

% java FrequencyCounter 1 < tinyTale.txt
it 10

% java FrequencyCounter 8 < tale.txt
business 122

% java FrequencyCounter 10 < leipzig1M.txt
government 24763

tiny example  
(60 words, 20 distinct)

real example  
(135,635 words, 10,769 distinct)

real example
(21,191,455 words, 534,580 distinct)

public class FrequencyCounter  
{  
 public static void main(String[] args) 
 {  
 int minlen = Integer.parseInt(args[0]);
 ST<String, Integer> st = new ST<String, Integer>();
 while (!StdIn.isEmpty())  
 {
 String word = StdIn.readString(); 
 if (word.length() < minlen) continue; 
 if (!st.contains(word)) st.put(word, 1); 
 else st.put(word, st.get(word) + 1);
 }
 String max = "";
 st.put(max, 0);  
 for (String word : st.keys())  
 if (st.get(word) > st.get(max)) 
 max = word;  
 StdOut.println(max + " " + st.get(max));
 }  
}

15

Frequency counter implementation

read string and  
update frequency

print a string
with max freq

create ST

ignore short strings

SYMBOL TABLES

‣ API
‣ Elementary implementations
‣ Ordered operations  

Data structure. Maintain an (unordered) linked list of key-value pairs.

Search. Scan through all keys until find a match.
Insert. Scan through all keys until find a match; if no match add to front.

17

Sequential search in a linked list

Trace of linked-list ST implementation for standard indexing client

red nodes
are new

black nodes
are accessed

in search

first

S 0

S 0E 1

S 0E 1A 2

S 0E 1A 2R 3

S 0E 1A 2R 3C 4

S 0E 1A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 8R 3C 4H 5

X 7

X 7

M 9

P 10

L 11

L 11

circled entries are
changed values

gray nodes
are untouched

S 0E 6A 8R 3C 4H 5X 7

M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 12A 8R 3C 4H 5X 7

key value

S 0

E 1

A 2

R 3

C 4

H 5

E 6

X 7

A 8

M 9

P 10

L 11

E 12

Challenge. Efficient implementations of both search and insert.
18

Elementary ST implementations: summary

ST implementation

worst-case cost

(after N inserts)
average case

(after N random inserts) ordered
iteration?

key
interface

search insert search hit insert

sequential search
(unordered list) N N N / 2 N no equals()

Must search first
to avoid duplicates

Challenge. Efficient implementations of both search and insert.
19

Elementary ST implementations: summary

ST implementation
worst case average case

ordered
iteration?

operations
on keys

search insert search hit insert

sequential search
(unordered list) N N N / 2 N no equals()

Costs for java FrequencyCounter 8 < tale.txt using SequentialSearchST

5737

0

0 14350
operations

co
m

pa
re

s

2246

Grey data points are observed costs for ith operation, reds are their averages

20

Binary search

Data structure. Maintain an ordered array of key-value pairs.

Rank helper function. How many keys < k ?

loop exits with lo > hi: return 7

entries in black
are a[lo..hi]

entry in red is a[m]

successful search for P

loop exits with keys[m] = P: return 6

lo hi m

unsuccessful search for Q

lo hi m

 keys[]
 0 1 2 3 4 5 6 7 8 9

0 9 4 A C E H L M P R S X
5 9 7 A C E H L M P R S X
5 6 5 A C E H L M P R S X
6 6 6 A C E H L M P R S X

0 9 4 A C E H L M P R S X
5 9 7 A C E H L M P R S X
5 6 5 A C E H L M P R S X
7 6 6 A C E H L M P R S X

Trace of binary search for rank in an ordered array

21

Binary search: Java implementation

 public Value get(Key key)
 {
 if (isEmpty()) return null;
 int i = rank(key);
 if (i < N && keys[i].compareTo(key) == 0) return vals[i];
 else return null;
 }

 private int rank(Key key)
 {
 int lo = 0, hi = N-1;
 while (lo <= hi)
 {
 int mid = lo + (hi - lo) / 2;
 int cmp = key.compareTo(keys[mid]);
 if (cmp < 0) hi = mid - 1;
 else if (cmp > 0) lo = mid + 1;
 else if (cmp == 0) return mid;
 }
 return lo;
 }

number of keys < key

22

Binary search: mathematical analysis

Proposition. Binary search uses ~ lg N compares to search any array of
size N.

Pf. T(N) ≡ number of compares to binary search in a sorted array of

size N.

 ≤ T(⎣N / 2⎦) + 1

Recall lecture 2.

left or right half

Problem. To insert, need to shift all greater keys over.

23

Binary search: trace of standard indexing client

Trace of ordered-array ST implementation for standard indexing client

 keys[] vals[]
 0 1 2 3 4 5 6 7 8 9 N 0 1 2 3 4 5 6 7 8 9

 S 0 S 1 0
 E 1 E S 2 1 0
 A 2 A E S 3 2 1 0
 R 3 A E R S 4 2 1 3 0
 C 4 A C E R S 5 2 4 1 3 0
 H 5 A C E H R S 6 2 4 1 5 3 0
 E 6 A C E H R S 6 2 4 6 5 3 0
 X 7 A C E H R S X 7 2 4 6 5 3 0 7
 A 8 A C E H R S X 7 8 4 6 5 3 0 7
 M 9 A C E H M R S X 8 8 4 6 5 9 3 0 7
 P 10 A C E H M P R S X 9 8 4 6 5 9 10 3 0 7
 L 11 A C E H L M P R S X 10 8 4 6 5 11 9 10 3 0 7
 E 12 A C E H L M P R S X 10 8 4 12 5 11 9 10 3 0 7

 A C E H L M P R S X 8 4 12 5 11 9 10 3 0 7

entries in gray
did not move circled entries are

changed values

entries in black
moved to the rightentries in red

were inserted

key value

24

Elementary ST implementations: frequency counter

Costs for java FrequencyCounter 8 < tale.txt using BinarySearchST

5737

0

0 14350
operations

co
st

484

Costs for java FrequencyCounter 8 < tale.txt using SequentialSearchST

5737

0

0 14350
operations

co
m

pa
re

s

2246

25

Elementary ST implementations: summary

Challenge. Efficient implementations of both search and insert.

ST implementation

worst-case cost

(after N inserts)
average case

(after N random inserts) ordered
iteration?

key
interface

search insert search hit insert

sequential search
(unordered list) N N N / 2 N no equals()

binary search
(ordered array) log N N log N N / 2 yes compareTo()

SYMBOL TABLES

‣ API
‣ Elementary implementations
‣ Ordered operations  

27

Ordered symbol table API (Example Operations)

09:00:00 Chicago
09:00:03 Phoenix
09:00:13 Houston
09:00:59 Chicago
09:01:10 Houston
09:03:13 Chicago
09:10:11 Seattle
09:10:25 Seattle
09:14:25 Phoenix
09:19:32 Chicago
09:19:46 Chicago
09:21:05 Chicago
09:22:43 Seattle
09:22:54 Seattle
09:25:52 Chicago
09:35:21 Chicago
09:36:14 Seattle
09:37:44 Phoenix

keys values

get(09:00:13)

ceiling(09:30:00)

keys(09:15:00, 09:25:00)

size(09:15:00, 09:25:00) is 5
rank(09:10:25) is 7

floor(09:05:00)

min()

select(7)

max()

Examples of ordered symbol-table operations

Ordered symbol tables In typical applications, keys are Comparable objects, so
the option exists of using the code a.compareTo(b) to compare two keys a and b.
Several symbol-table implementations take advantage of order among the keys that is
implied by Comparable to provide efficient implementations of the put() and get()
operations. More important, in such implementations, we can think of the symbol ta-
ble as keeping the keys in order and consider a significantly expanded API that defines
numerous natural and useful operations involving relative key order. For example, sup-
pose that your keys are times of the day. You might be interested in knowing the earliest
or the latest time, the set of keys that fall between two given times, and so forth. In most
cases, such operations are not difficult to implement with the same data structures and
methods underlying the put() and get() implementations. Specifically, for applica-
tions where keys are Comparable, we implement in this chapter the following API:

 public class ST<Key extends Comparable<Key>, Value>

ST() create an ordered symbol table

void put(Key key, Value val)
put key-value pair into the table
(remove key from table if value is null)

Value get(Key key)
value paired with key
(null if key is absent)

void delete(Key key) remove key (and its value) from table
boolean contains(Key key) is there a value paired with key?
boolean isEmpty() is the table empty?

int size() number of key-value pairs
Key min() smallest key
Key max() largest key
Key floor(Key key) largest key less than or equal to key
Key ceiling(Key key) smallest key greater than or equal to key
int rank(Key key) number of keys less than key
Key select(int k) key of rank k
void deleteMin() delete smallest key
void deleteMax() delete largest key
int size(Key lo, Key hi) number of keys in [lo..hi]

Iterable<Key> keys(Key lo, Key hi) keys in [lo..hi], in sorted order
Iterable<Key> keys() all keys in the table, in sorted order

API for a generic ordered symbol table

366 CHAPTER 3 � Searching

28

Ordered symbol table API

29

Binary search: ordered symbol table operations summary

sequential

search

binary 
search

search N lg N

insert N N

min / max N 1

floor / ceiling N lg N

rank N lg N

select N 1

ordered iteration N log N N

order of growth of the running time for ordered symbol table operations

The Problem:
Insert Operation

