# **BBM 202 - ALGORITHMS**

HACETTEPE UNIVERSITY

**DEPT. OF COMPUTER ENGINEERING** 

# **BINARY SEARCH TREES**

Acknowledgement: The course slides are adapted from the slides prepared by R. Sedaewick and K. Wayne of Princeton University.

### **Binary Search Tree (BST)**

- Last lecture, we talked about binary search & linear search
  - One had high cost for reorganisation,
  - The other had high cost for searching
- In this lecture we will use Binary Trees, for searching
- Plan in a nutshell:
  - Assert a more strict property compared to the Heap-Property (in priority-queues), Remember what that was?
  - Know exactly which subtree to look for at each node

# TODAY

#### ▶ BSTs

- Ordered operations
- Deletion

**Binary search trees** Definition. A BST is a binary tree in symmetric order. A binary tree is either: • Empty. • Two disjoint binary trees (left and right). Anatomy of a binary tree

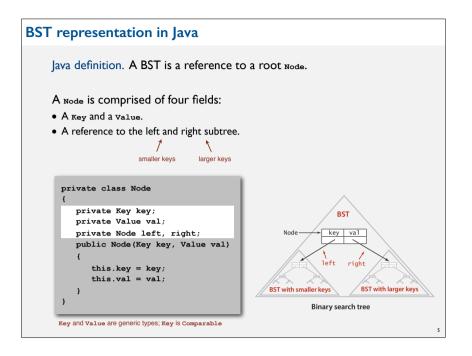
Symmetric order. Each node has a key, and every node's key is:

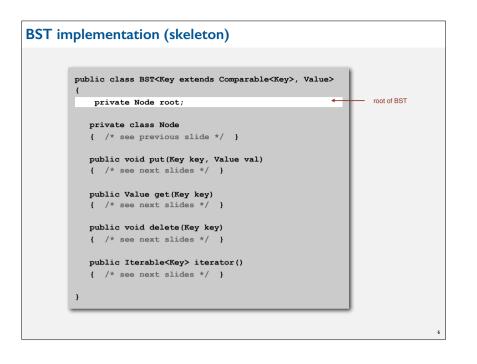
- Larger than all keys in its left subtree.
- Smaller than all keys in its right subtree.

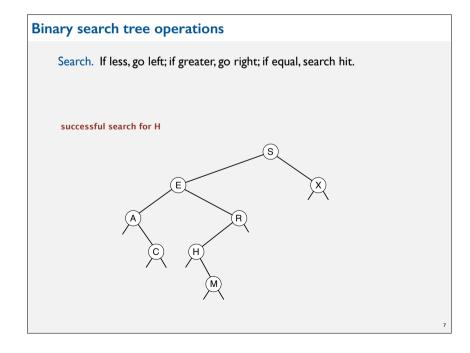


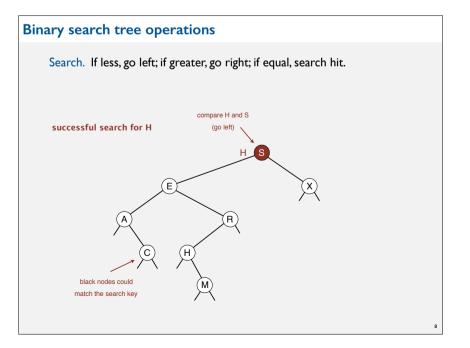
keys smaller than E Anatomy of a binary search tree

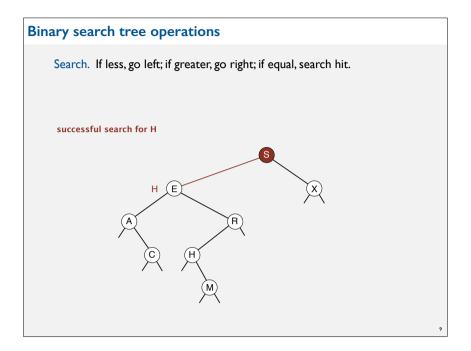
keys larger than

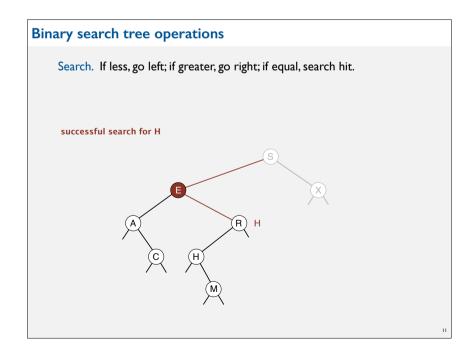


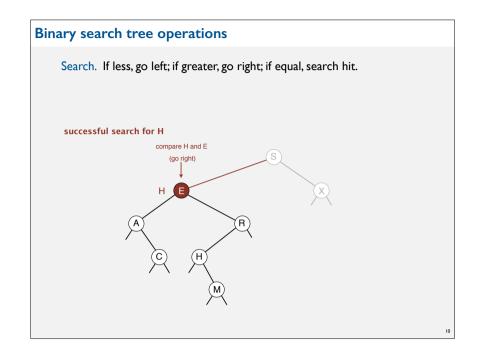


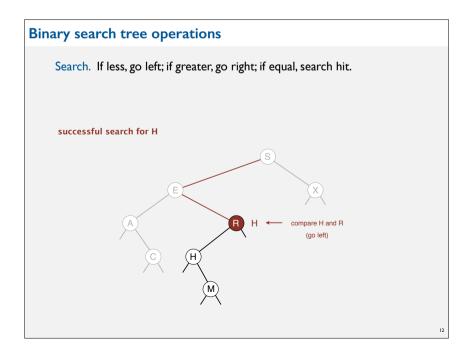


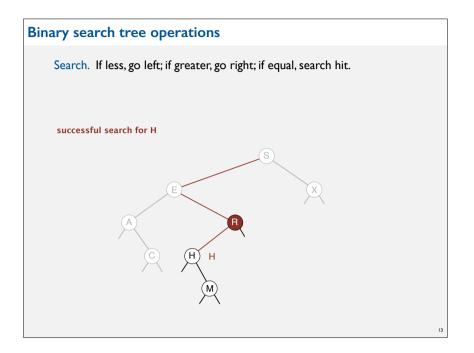


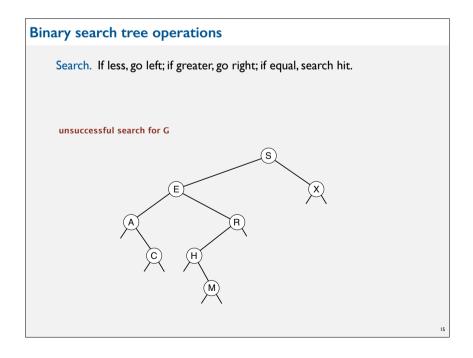


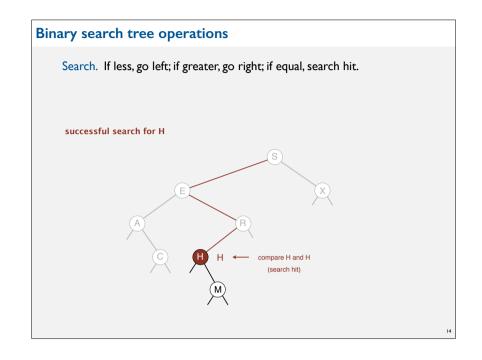


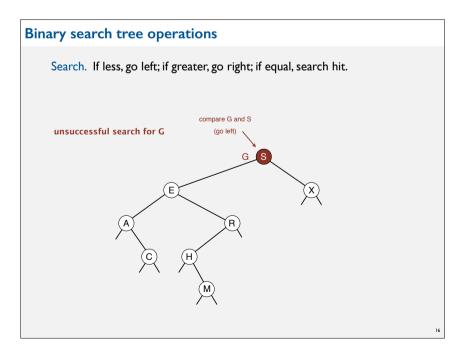


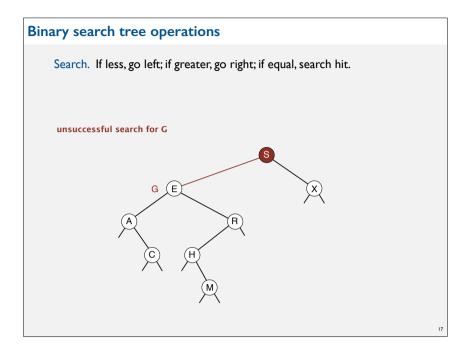


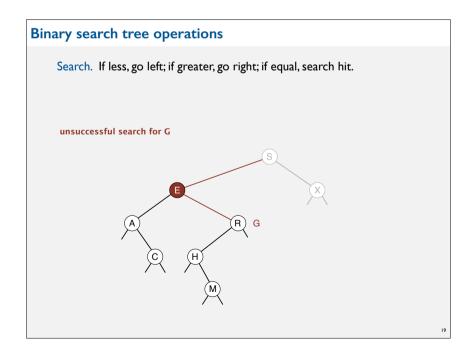


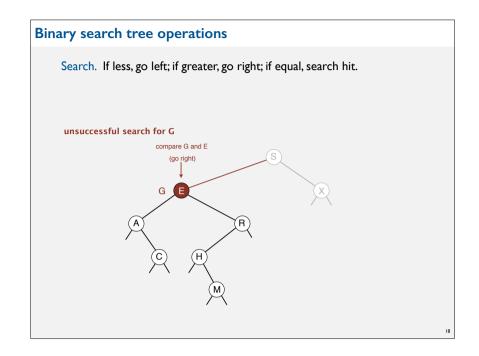


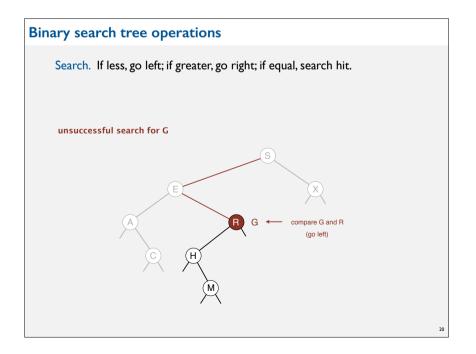


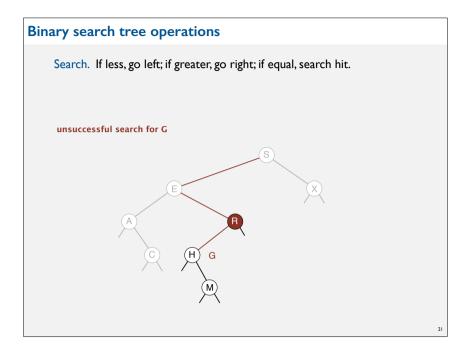


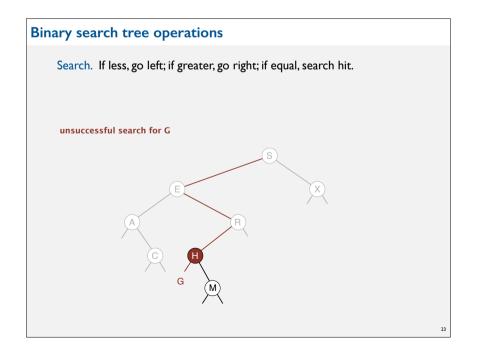


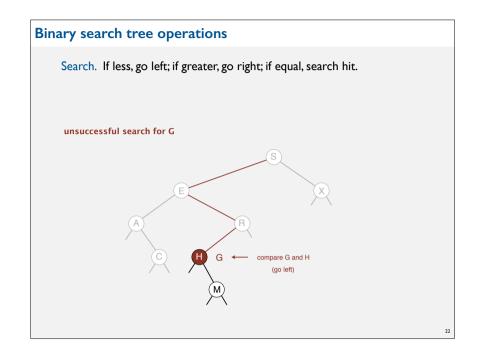


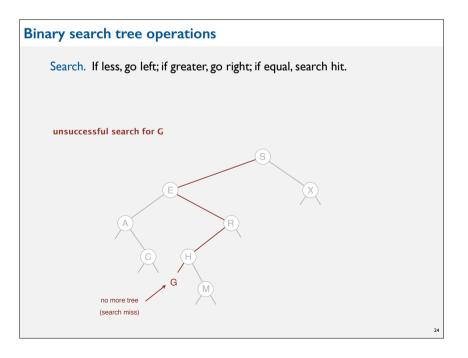


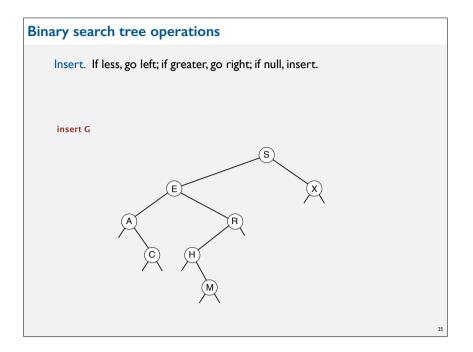


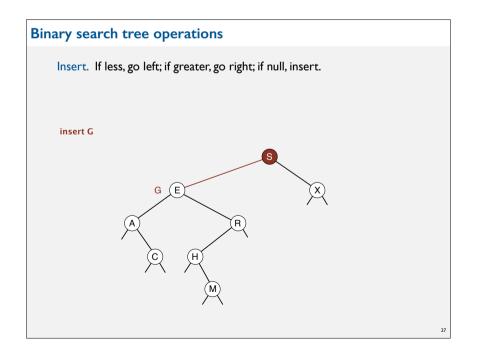


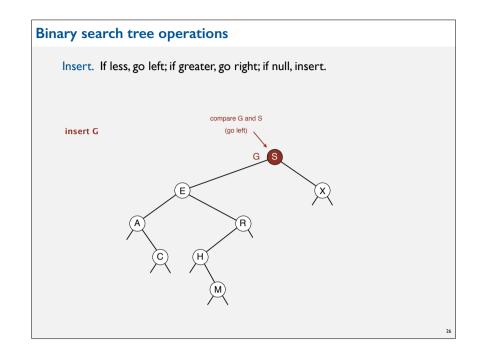


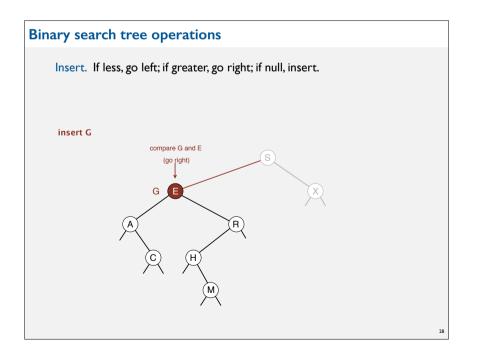


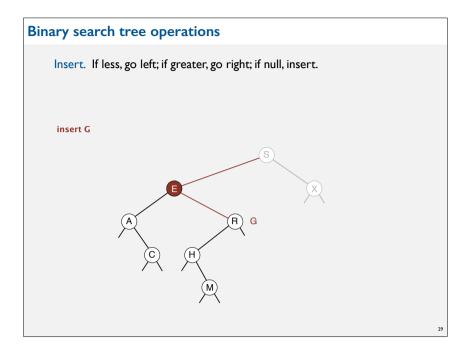


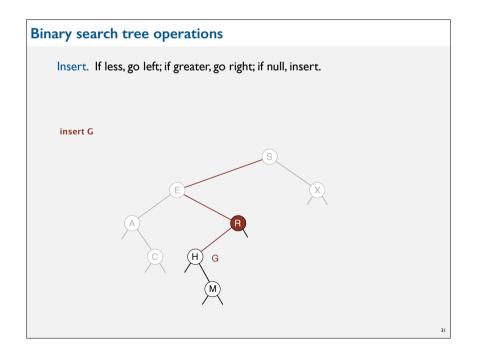


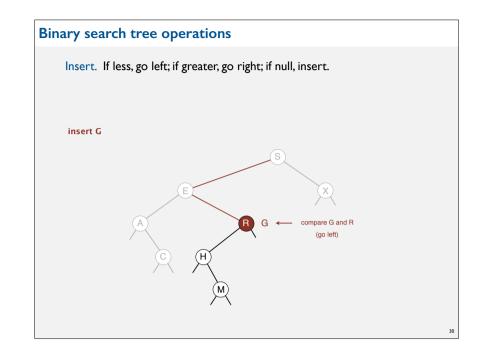


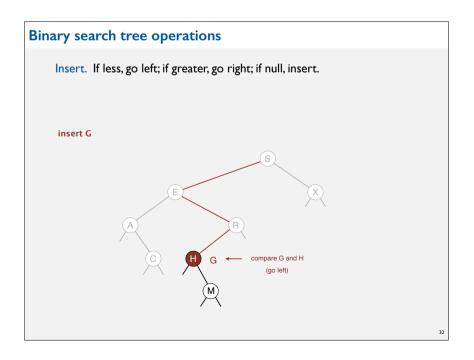


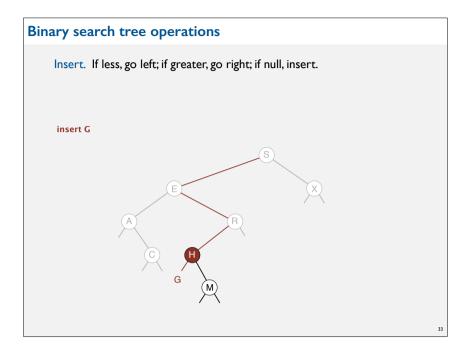


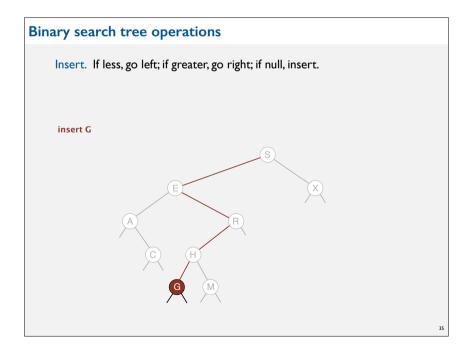


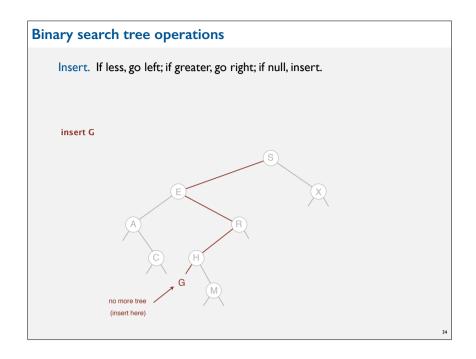


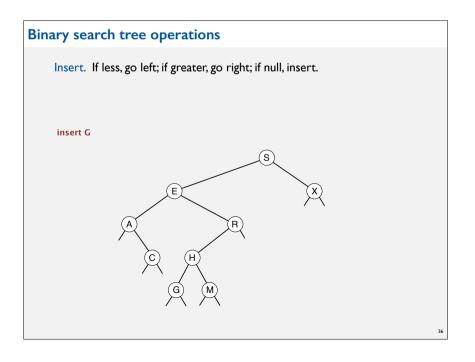


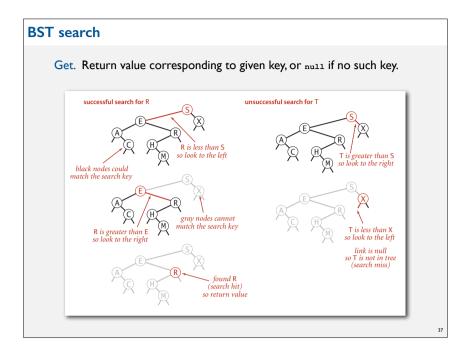




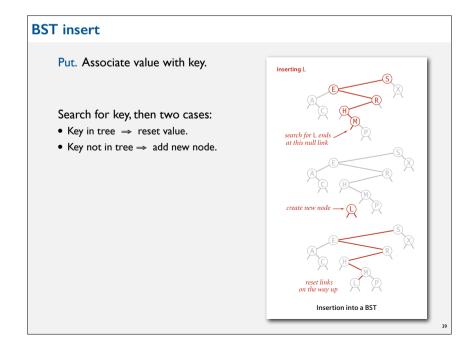


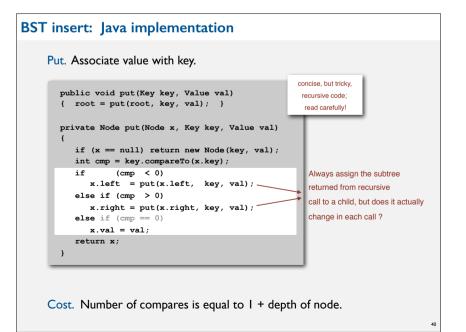


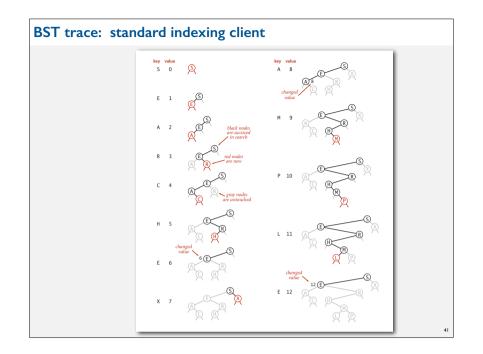




## 

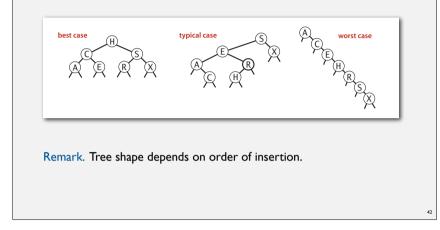


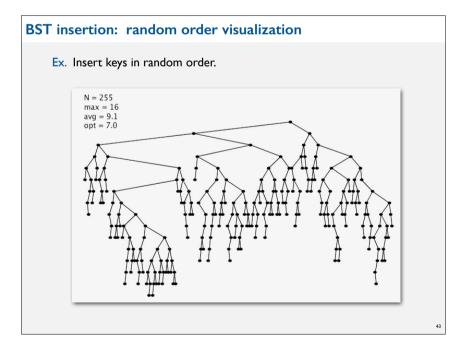


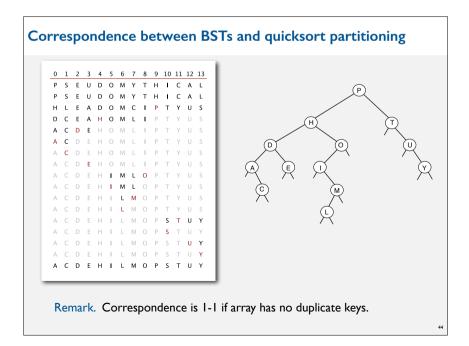


## Tree shape

- Many BSTs correspond to same set of keys.
- Number of compares for search/insert is equal to I + depth of node.





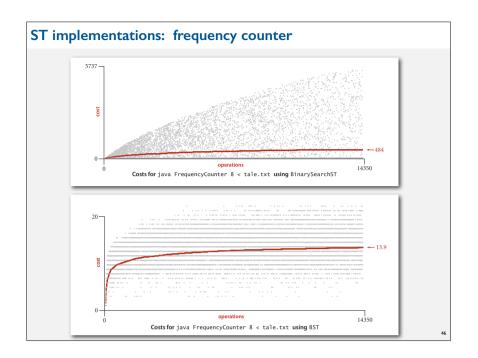


## BSTs: mathematical analysis

Proposition. If N distinct keys are inserted into a BST in random order, the expected number of compares for a search/insert is  $O(\log N)$ . Pf. 1-1 correspondence with quicksort partitioning.

But... Worst-case height is N. (exponentially small chance when keys are inserted in random order)

| ST in | nplementat                            | ions:     | summ   | ary          |        |            |             |
|-------|---------------------------------------|-----------|--------|--------------|--------|------------|-------------|
|       |                                       |           |        |              |        |            |             |
|       |                                       |           |        |              |        |            |             |
|       | implementation ·                      | guarantee |        | average case |        | ordered    | operations  |
|       |                                       | search    | insert | search hit   | insert | ops?       | on keys     |
|       | sequential search<br>(unordered list) | N         | Ν      | N/2          | Ν      | no         | equals()    |
|       | binary search<br>(ordered array)      | lg N      | Ν      | lg N         | N/2    | yes        | compareTo() |
|       | BST                                   | N         | Ν      | lg N         | lg N   | stay tuned | compareTo() |
|       |                                       |           |        |              |        |            |             |
|       |                                       |           |        |              |        |            |             |
|       |                                       |           |        |              |        |            |             |



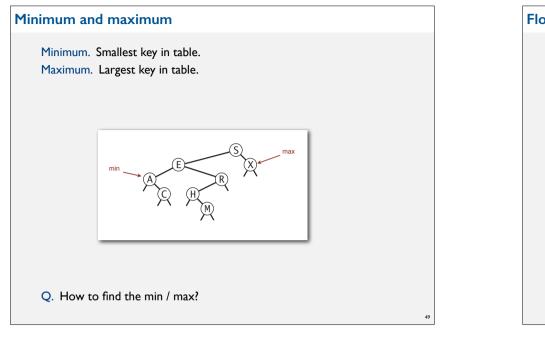
# **BINARY SEARCH TREES**

▶ BSTs

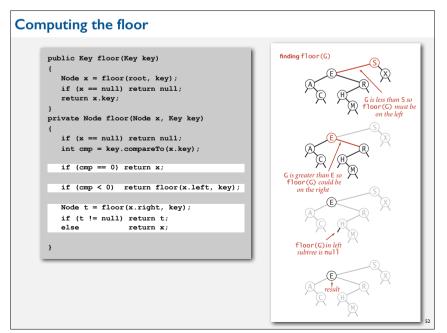
45

47

- Ordered operations
- Deletion



# <section-header><section-header><section-header><section-header><text><text><equation-block><text>

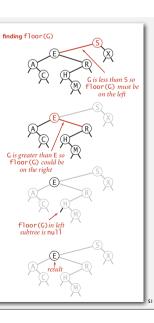


Computing the floor

Case I. [k equals the key at root] The floor of k is k.

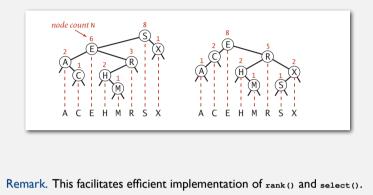
Case 2. [k is less than the key at root] The floor of k is in the left subtree.

**Case 3.** [k is greater than the key at root] The floor of k is in the right subtree (if there is any key  $\leq k$  in right subtree); otherwise it is the key in the root.

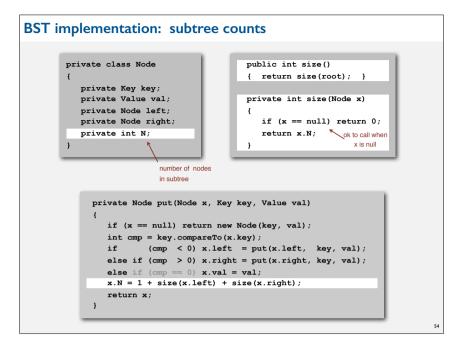


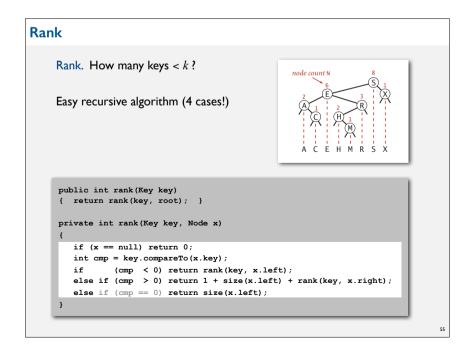
### Subtree counts

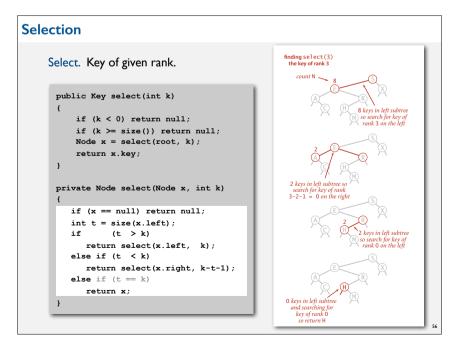
In each node, we store the number of nodes in the subtree rooted at that node; to implement size(), return the count at the root.

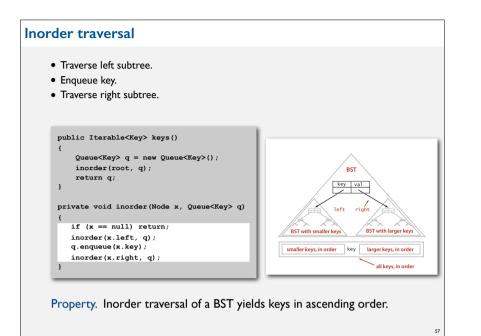


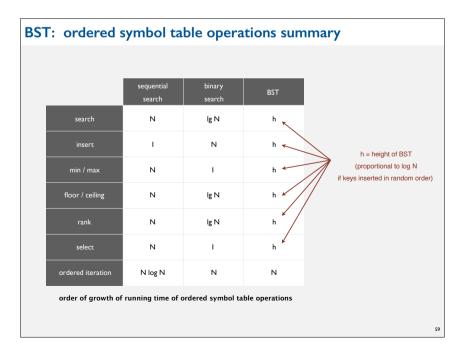
53

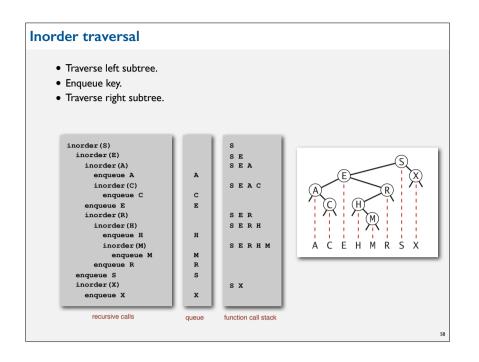












# **BINARY SEARCH TREES**

- BSTs
- Ordered operations
- Deletion

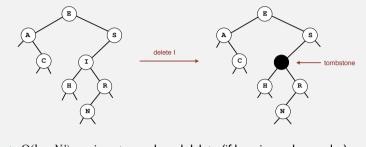
| implementation                    | guarantee |        |        | average case |        |        | ordered    | operations  |
|-----------------------------------|-----------|--------|--------|--------------|--------|--------|------------|-------------|
|                                   | search    | insert | delete | search hit   | insert | delete | iteration? | on keys     |
| equential search<br>(linked list) | Ν         | Ν      | Ν      | N/2          | Ν      | N/2    | no         | equals()    |
| binary search<br>(ordered array)  | lg N      | Ν      | Ν      | lg N         | N/2    | N/2    | yes        | compareTo() |
| BST                               | Ν         | Ν      | Ν      | lg N         | lg N   |        | yes        | compareTo() |
|                                   |           |        |        |              |        |        |            |             |

### **Deleting the minimum** To delete the minimum key: • Go left until finding a node with a null left link. go left until reaching null • Replace that node by its right link. • Update subtree counts. return that node's right lin public void deleteMin() available for { root = deleteMin(root); } garbage collection update links and node counts private Node deleteMin(Node x) after recursive call { if (x.left == null) return x.right; x.left = deleteMin(x.left); x.N = 1 + size(x.left) + size(x.right); return x; }

## BST deletion: lazy approach

### To remove a node with a given key:

- Set its value to null.
- Leave key in tree to guide searches (but don't consider it equal to search key).



Cost.  $O(\log N')$  per insert, search, and delete (if keys in random order), where N' is the number of key-value pairs ever inserted in the BST.

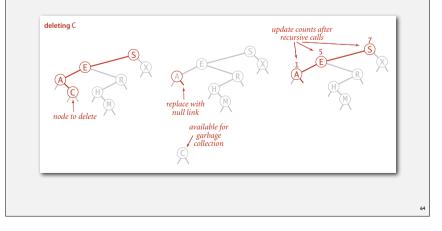
62

Unsatisfactory solution. Tombstone (memory) overload.

## **Hibbard deletion**

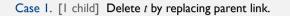
To delete a node with key *k*: search for node *t* containing key *k*.

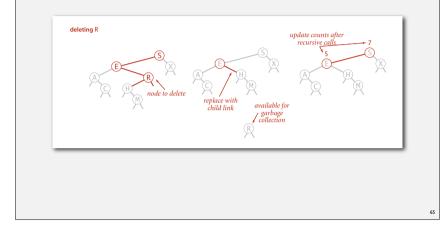
Case 0. [0 children] Delete t by setting parent link to null.

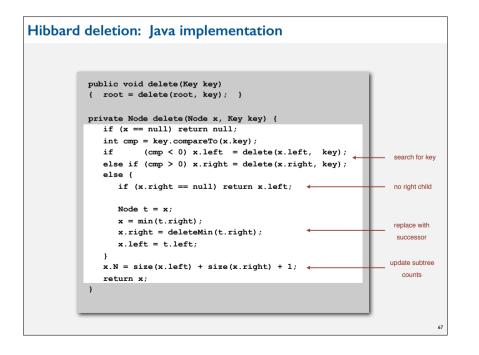


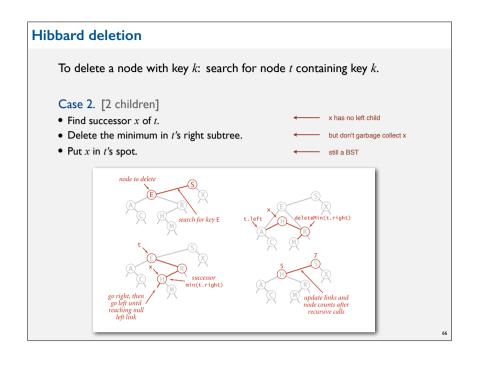
## **Hibbard deletion**

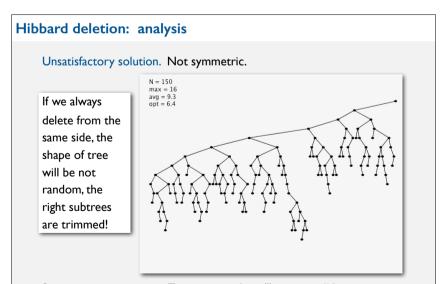
To delete a node with key *k*: search for node *t* containing key *k*.











Surprising consequence. Trees not random (!)  $\Rightarrow$  sqrt (*N*) per op. Longstanding open problem. Simple and efficient delete for BSTs.

|                                    | guarantee |        |        | average case |        |                               | ordered                 | operations  |
|------------------------------------|-----------|--------|--------|--------------|--------|-------------------------------|-------------------------|-------------|
| implementation                     | search    | insert | delete | search hit   | insert | delete                        | iteration?              | on keys     |
| sequential search<br>(linked list) | N         | N      | N      | N/2          | Ν      | N/2                           | no                      | equals()    |
| binary search<br>(ordered array)   | lg N      | N      | N      | lg N         | N/2    | N/2                           | yes                     | compareTo() |
| BST                                | Ν         | N      | Ν      | lg N         | lg N   | √N                            | yes                     | compareTo() |
|                                    |           |        |        |              | other  | operations al<br>if deletions | so become √N<br>allowed |             |