BBM 202 - ALGORITHMS

. HACETTEPE UNIVERSITY

DEPT. OF COMPUTER ENGINEERING

BINARY SEARCH TREES

Acknowledgement: The course slides are adapted from the slides prepared by R.

Sedgewick
and K. Wayne of Princeton University.

TODAY

» BSTs

Binary Search Tree (BST)

e Last lecture, we talked about binary search & linear search
® One had high cost for reorganisation,
® The other had high cost for searching

e In this lecture we will use Binary Trees, for searching
e Plan in a nutshell:
e Assert a more strict property compared to the Heap-Property (in
priority-queues), Remember what that was?
e Know exactly which subtree to look for at each node

Binary search trees

Definition. A BST is a binary tree in symmetric order.

root

a left link
\

a subtree

A binary tree is either:

® Empty. QQ
® Two disjoint binary trees (left and right).

Anatomy of a binary tree

right child
of root

null links

. parent of A and R -
Symmetric order. Each node has a key, lei link 2
and every node’s key is: e 0

9
. . value
® Larger than all keys in its left subtree. (H seociated
withR

® Smaller than all keys in its right subtree. X

/
keys smaller than € keys larger than E

Anatomy of a binary search tree

BST representation in Java

Java definition. A BST is a reference to a root node.

A Node is comprised of four fields:
o A Key and a value.
o A reference to the left and right subtree.

/ \

smaller keys larger keys

private class Node
{
private Key key; BST
private Value val;
private Node left, right;
public Node (Key key, Value val) Lo 1T~
{ A -/
this.key = key; left right
this.val = val;
} BST with smaller keys BST with larger keys
} Binary search tree

Key and Value are generic types; Key is Comparable

BST implementation (skeleton)

public class BST<Key extends Comparable<Key>, Value>
{

private Node root; “~

private class Node
{ /* see previous slide */ '}

public void put(Key key, Value val)
{ /* see next slides */ }

public Value get(Key key)
{ /* see next slides */ '}

public void delete (Key key)
{ /* see next slides */ }

public Iterable<Key> iterator ()
{ /* see next slides */ }

—— root of BST

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

compare H and S

successful search for H (go left) \

black nodes could

match the search key

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

compare H and E
(go right)

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

/

H <«— compareHandR

(go left)

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

/

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

a

H <«— compareHandH

(search hit)

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

compare G and S

unsuccessful search for G (go left) \

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G
compare G and E
(go right)

G 3

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

/

G <«— compare GandR

(go left)

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

/

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

a

G <«— compare Gand H

(go left)

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

a

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

/
S
e

G

no more tree /

(search miss)

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

insert G

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

compare G and S

insert G (go left) \

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

insert G

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

insert G
compare G and E
(go right)

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

insert G

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

insert G

/

G <«— compare G andR

(go left)

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

insert G

/

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

insert G

a

G <«— compare Gand H

(go left)

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

insert G

a

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

insert G

/
S
e

G

no more tree /

(insert here)

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

insert G

\/\

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

insert G

BST search

Get. Return value corresponding to given key, or nu11 if no such key.

successful search for R

R is less than S
so look to the left

black nodes could
match the search key

gray nodes cannot

. match the search key
R is greater than E

so look to the right

®\ found R

(search hit)
so return value

unsuccessful search for T

T is greater than S
50 look to the right

X
\

T is less than X
s0 look to the left

link is null
so T is not in tree
(search miss)

BST search: Java implementation

Get. Return value corresponding to given key, or nu11 if no such key.

public Value get(Key key)
{

Node x = root;

while (x !'= null)

{
int cmp = key.compareTo (x.key) ;
if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else if (cmp == 0) return x.val;
}

return null;

Cost. Number of compares is equal to | + depth of node.

BST insert
Put. Associate value with key.
Search for key, then two cases:

® Key in tree = reset value.

® Key not in tree = add new node.

inserting L

search for L ends "

at this null link

create new node — @
N~
/7

reset links
on the way up

Insertion into a BST

BST insert: Java implementation

Put. Associate value with key.

public void put(Key key, Value val)

{

private Node put(Node x, Key key, Value val)

{

root

if (x == null) return new Node (key, val);
int cmp = key.compareTo (x.key) ;
if (cmp < 0)
x.left = put(x.left, key, val);
else if (cmp > 0) T
x.right = put(x.right, key, val); —
else if (cmp == 0)
x.val = val;

return x;

concise, but tricky,

re
= put(root, key, val); }

cursive code;

read carefully!

Always assign the subtree
returned from recursive
call to a child, but does it actually

change in each call ?

Cost. Number of compares is equal to | + depth of node.

BST trace: standard indexing client

key value key value

s 0o (9 A 8 ®

(Are

changed /
valie

O -

are untouched

gray
O]
7H ® L 11

3
changed
value N ®/®
6
E 6
Y]
X 7 X

@)

41

Tree shape

® Many BSTs correspond to same set of keys.
e Number of compares for search/insert is equal to | + depth of node.

worst case

best case m typical case

(Q O
OO

Remark. Tree shape depends on order of insertion.

BST insertion: random order visualization

Ex. Insert keys in random order.

N =255
max = 16
avg =9.1
opt=7.0
A
1 /
|l
\ /| ‘
I l\

43

Correspondence between BSTs and quicksort partitioning

0 1 2 3 4 5 6 7 8 9 1011 12 13
P SEUDOMYTHI CAL
P SEUDOMYTHI CAL
HLEADOMCI PTYUS
D CEAHOMLI
A C D E
A C
C
E
I M L O
I M L
L M
L
S T UY
S
u 'y
Y
A CDEHI LMOPSTUY

Remark. Correspondence is |-I if array has no duplicate keys.

BSTs: mathematical analysis

Proposition. If N distinct keys are inserted into a BST in random order,
the expected number of compares for a search/insert is O(log N).

Pf. 1-1 correspondence with quicksort partitioning.

But... Worst-case height is N.
(exponentially small chance when keys are inserted in random order)

45

ST implementations: frequency counter

57377

cost

484

o operations
Costs for java FrequencyCounter 8 < tale.txt using BinarySearchST

!
14350

20—

-—139

cost

operations
0 P

Costs for java FrequencyCounter 8 < tale.txt using BST

14350

ST implementations: summary

guarantee average case
. . ordered operations
implementation N
ops? on keys

sequential sea_rch N N N2 N no equals ()

(unordered list)

binary search

IgN N IgN N/2 yes compareTo ()

(ordered array)

BST N N IgN IgN stay tuned compareTo ()

47

BINARY SEARCH TREES

» BSTs
» Ordered operations
» Deletion

Minimum and maximum

Minimum. Smallest key in table.
Maximum. Largest key in table.

Q. How to find the min / max?

49

Floor and ceiling

Floor. Largest key < to a given key.

Ceiling. Smallest key = to a given key.

floor(G)

Q. How to find the floor /ceiling?

Computing the floor

Case |. [k equals the key at root]
The floor of k is k.

Case 2. [k is less than the key at root]
The floor of £ is in the left subtree.

Case 3. [k is greater than the key at root]

The floor of k is in the right subtree
(if there is any key < k in right subtree);

otherwise it is the key in the root.

finding f1oor (G)

G is less than S so
m floor(G) must be
on the left

G is greater than E so
floor (G) could be
on the right

®

/
P
floor(G)in left
subtree isnu11

®

4
result

Computing the floor

public Key floor (Key key)
{
Node x = floor (root, key);
if (x == null) return null;
return x.key;
}
private Node floor (Node x, Key key)
{
if (x == null) return null;
int cmp = key.compareTo (x.key) ;

if (cmp == 0) return x;
if (cmp < 0) return floor(x.left, key);
Node t = floor(x.right, key);

if (t !'= null) return t;
else return x;

finding f1oor (G)

G is greater than E so
floor (G) could be
on the right

®

/
P
floor(G)in left
subtree isnu11

®

4
result

G is less than S so
m floor(G) must be

on the left

Subtree counts BST implementation: subtree counts

In each node, we store the number of nodes in the subtree rooted at that

private class Node public int size()
node; to implement size (), return the count at the root. { { return size(root); }
private Key key;
private Value val; private int size (Node x)
private Node left; {
private Node right; if (x == null) return O0;
node count N 8 private int N; return x.N; ™\ ok o call when
e } \ } x is null

\
number of nodes
in subtree

private Node put(Node x, Key key, Value val)
{

if (x == null) return new Node (key, val);

int cmp = key.compareTo (x.key) ;

if (cmp < 0) x.left = put(x.left, key, val);
else if (cmp > 0) x.right = put(x.right, key, val);
else it (cmp == 0) x.val = val;

x.N =1 + size(x.left) + size(x.right);

Remark. This facilitates efficient implementation of rank () and select().
return x;

Rank Selection

finding select (3)

Select. Key of given rank. the key of rankc 3

8
ount N
9 co — 6/0
!

Rank. How many keys < k?

node count N

public Key select(int k)
{

Easy recursive algorithm (4 cases!)

if (k < 0) return null;
if (k >= size()) return null;
Node x = select(root, k);

return x.key; 2
) /

2 keys in left subtree so

public int rank (Key key) private Node select(Node x, int k) search for key of rank
{ return rank(key, root); } { 3-2-1 = 0on the right

if (x == null) return null;
private int rank(Key key, Node x) int t = size(x.left); (Z]/O
¢ if (t >k ™2 keys in left subtree

- so search for key of
if (x == null) return 0; return select(x.left, k); (IAHL)‘/\”(SEHE’I/IUIU}I
int cmp = key.compareTo (x.key) ; else if (t < k)
if (cmp < 0) return rank(key, x.left); return select(x.right, k-t-1);
else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right); else if (t == k)
else if (cmp == 0) return size(x.left); return x; /@

} } 0 keys in left subtree

ching for
.y of rank 0
so return H

Inorder traversal

® Traverse left subtree.
e Enqueue key.
e Traverse right subtree.

public Iterable<Key> keys ()

{
Queue<Key> q = new Queue<Key>() ;

inorder (root, q); BST
return q;
}
[z N
private void inorder (Node x, Queue<Key> q) Teft right
{
if (x == null) return; BST with smaller keys BST with larger keys
inorder (x.left, q);
q.enqueue (x.key) ; smaller keys, inorder | key | larger keys, in order
inorder (x.right, q); ~~
} all keys, in order

Property. Inorder traversal of a BST yields keys in ascending order.

Inorder traversal

® Traverse left subtree.
e Enqueue key.
e Traverse right subtree.

T --—--
=- -
Mommmm -

1
I
1
1
|
|
|
E

A----

inorder(S) S
inorder (E) S E
inorder (&) S EA
enqueue A A
inorder (C) SEAC
enqueue C (¢}
enqueue E E
inorder (R) S ER
inorder (H) SERH
enqueue H H
inorder (M) SERHM
enqueue M M
enqueue R R
enqueue S s
inorder (X) S X
enqueue X X
recursive calls queue function call stack

BST: ordered symbol table operations summary

search search
~ h
floor / ceilin, N IgN h
~ h

order of growth of running time of ordered symbol table operations

h = height of BST
(proportional to log N
if keys inserted in random order)

BINARY SEARCH TREES

» BSTs
» Ordered operations
» Deletion

ST implementations: summary

guarantee average case .
ordered operations
implementation

sequential search

(linked list)

N N/2

binary search
N IgN
(ordered array)

EEEES
N N
N
N

BST N N IgN

Next. Deletion in BSTs.

N/2

- iteration? on keys

N/2 no equals ()

N/2 yes compareTo ()

yes compareTo ()

BST deletion: lazy approach
To remove a node with a given key:

e Set its value to null.
o Leave key in tree to guide searches (but don't consider it equal to search key).

delete |

Cost. O(log N’) per insert, search, and delete (if keys in random order),
where N'is the number of key-value pairs ever inserted in the BST.

Unsatisfactory solution. Tombstone (memory) overload.

Deleting the minimum

To delete the minimum key:

® Go left until finding a node with a null left link.
® Replace that node by its right link.
® Update subtree counts.

public void deleteMin ()
{ root = deleteMin(root); }

private Node deleteMin (Node x)

{
if (x.left == null) return x.right;
x.left = deleteMin (x.left);
x.N = 1 + size(x.left) + size(x.right);
return x;

go left until
reaching null
left link

\

return that
node’s right link

available for
garbage collection

update links and node counts
after recursive calls

i

Hibbard deletion

To delete a node with key k: search for node ¢ containing key k.

Case 0. [0 children] Delete ¢ by setting parent link to null.

deleting C update counts after

recursive calls 7
el

R

replace with
null link

node to delete

available for
garbage
collection

Hibbard deletion

To delete a node with key k: search for node ¢ containing key .

Case |. [I child] Delete ¢ by replacing parent link.

deleting R
update counts after

m’m’xw%mlls/—- 7
CSD/O

replace with .
Hg])y;;;;]}::k ! available for

garbage

/m/lﬂ[tiun

node to delete

Hibbard deletion

To delete a node with key k: search for node ¢ containing key .

Case 2. [2 children]
® Find successor x of t. <«—— xhas no left child
® Delete the minimum in #'s right subtree. <—— butdon't garbage collect x

® Put x in #'s spot. <«—— siilaBST

node to delete

X

X

search for key E t.left deleteMin(t.right)
: N ¥
t

N 7

~ (5)/0
' successor \

min(t.right)

go right, then / update links and
go left until node counts after
reaching null recursive calls

left link

Hibbard deletion: Java implementation

public void delete (Key key)
{ root = delete(root, key); }

private Node delete(Node x, Key key) {
if (x == null) return null;
int cmp = key.compareTo (x.key) ;
if (cmp < 0) x.left = delete(x.left, key);
else if (cmp > 0) x.right = delete(x.right, key);
else {

if (x.right == null) return x.left; <«———+—

Node t = x;
x = min(t.right);
x.right = deleteMin(t.right); AEEEE——,
x.left = t.left;
}
x.N = size(x.left) + size(x.right) + 1; «——m——+——
return x;

search for key

no right child

replace with

successor

update subtree

counts

Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.
N =150
max = 16

=93
If we always opt=64

delete from the
same side, the
shape of tree
will be not
random, the
right subtrees
are trimmed!

Surprising consequence. Trees not random (!) = sqrt (V) per op.

Longstanding open problem. Simple and efficient delete for BSTs.

ST implementations: summary

guarantee average case
ordered

implementation
iteration?
search insert delete search hit insert delete

sequential search

(linked list)

N N N N/2 N N/2 no

binary search
IgN N N IgN N/2 N/2 yes
(ordered array)

BST N N N igN igN @ yes

other operations also become VN

if deletions allowed

operations

on keys

equals ()

compareTo ()

compareTo ()

Red-black BST. Guarantee logarithmic performance for all operations.

