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TODAY

‣ BSTs 
‣ Ordered operations
‣ Deletion



Binary Search Tree (BST)

• Last lecture, we talked about binary search & linear search
• One had high cost for reorganisation, 
• The other had high cost for searching

• In this lecture we will use Binary Trees, for searching
• Plan in a nutshell: 

• Assert a more strict property compared to the Heap-Property (in 
priority-queues), Remember what that was?

• Know exactly which subtree to look for at each node
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Definition.  A BST is a binary tree in symmetric order.
 
 
A binary tree is either:
• Empty.

• Two disjoint binary trees (left and right).

 
 
 
Symmetric order.  Each node has a key,  
and every node’s key is:
• Larger than all keys in its left subtree.

• Smaller than all keys in its right subtree.

4

Binary search trees

right child
of root

a left link

a subtree

root

null links

Anatomy of a binary tree

value
associated

with R

parent of A and R

left link
of E

keys smaller than E keys larger than E

key

A
C

E

H
R

S
X

9

Anatomy of a binary search tree



Java definition.  A BST is a reference to a root Node.

A Node is comprised of four fields:
• A Key and a Value.

• A reference to the left and right subtree.
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BST representation in Java

smaller keys larger keys

private class Node 
{ 
   private Key key; 
   private Value val; 
   private Node left, right; 
   public Node(Key key, Value val) 
   { 
      this.key = key; 
      this.val = val; 
   } 
}

Key and Value are generic types; Key is Comparable

Binary search tree

BST with smaller keys BST with larger keys

key

left right

val

BST

Node



public class BST<Key extends Comparable<Key>, Value> 
{ 
    private Node root; 

   private class Node 
   {  /* see previous slide */  } 
  
   public void put(Key key, Value val)  
   {  /* see next slides */  } 

   public Value get(Key key) 
   {  /* see next slides */  } 

   public void delete(Key key) 
   {  /* see next slides */  } 

   public Iterable<Key> iterator() 
   {  /* see next slides */  } 

}
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BST implementation (skeleton)

root of BST



Search.  If less, go left; if greater, go right; if equal, search hit.

7

Binary search tree operations
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Search.  If less, go left; if greater, go right; if equal, search hit.
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Binary search tree operations
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Search.  If less, go left; if greater, go right; if equal, search hit.
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Binary search tree operations
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Search.  If less, go left; if greater, go right; if equal, search hit.
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Binary search tree operations
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Search.  If less, go left; if greater, go right; if equal, search hit.
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Binary search tree operations
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Search.  If less, go left; if greater, go right; if equal, search hit.

12

Binary search tree operations
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Search.  If less, go left; if greater, go right; if equal, search hit.
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Binary search tree operations
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Search.  If less, go left; if greater, go right; if equal, search hit.
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Binary search tree operations
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Search.  If less, go left; if greater, go right; if equal, search hit.
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Binary search tree operations
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Search.  If less, go left; if greater, go right; if equal, search hit.
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Binary search tree operations
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Search.  If less, go left; if greater, go right; if equal, search hit.
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Binary search tree operations
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Search.  If less, go left; if greater, go right; if equal, search hit.
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Binary search tree operations
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Search.  If less, go left; if greater, go right; if equal, search hit.
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Binary search tree operations
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Search.  If less, go left; if greater, go right; if equal, search hit.
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Binary search tree operations
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Search.  If less, go left; if greater, go right; if equal, search hit.
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Binary search tree operations
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Search.  If less, go left; if greater, go right; if equal, search hit.
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Binary search tree operations

X

RA

C H

E

S

M

G compare G and H
(go left)

unsuccessful search for G



Search.  If less, go left; if greater, go right; if equal, search hit.
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Binary search tree operations
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Search.  If less, go left; if greater, go right; if equal, search hit.

24

Binary search tree operations
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Insert.  If less, go left; if greater, go right; if null, insert.
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Binary search tree operations
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Insert.  If less, go left; if greater, go right; if null, insert.
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Binary search tree operations
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Insert.  If less, go left; if greater, go right; if null, insert.
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Binary search tree operations
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Insert.  If less, go left; if greater, go right; if null, insert.
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Binary search tree operations
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Insert.  If less, go left; if greater, go right; if null, insert.
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Binary search tree operations
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Insert.  If less, go left; if greater, go right; if null, insert.
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Binary search tree operations
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Insert.  If less, go left; if greater, go right; if null, insert.
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Binary search tree operations
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Insert.  If less, go left; if greater, go right; if null, insert.
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Binary search tree operations
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Insert.  If less, go left; if greater, go right; if null, insert.
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Binary search tree operations
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Insert.  If less, go left; if greater, go right; if null, insert.
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Binary search tree operations
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Insert.  If less, go left; if greater, go right; if null, insert.
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Insert.  If less, go left; if greater, go right; if null, insert.
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Get.  Return value corresponding to given key, or null if no such key.
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BST search
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Get.  Return value corresponding to given key, or null if no such key.
 
 
 
 
 
 
 
 
 
 
 
 
 
Cost.  Number of compares is equal to 1 + depth of node.
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BST search:  Java implementation

 public Value get(Key key) 
 { 
    Node x = root; 
    while (x != null) 
    { 
       int cmp = key.compareTo(x.key); 
       if      (cmp  < 0) x = x.left; 
       else if (cmp  > 0) x = x.right; 
       else if (cmp == 0) return x.val; 
    } 
    return null; 
 }



Put.  Associate value with key.

Search for key, then two cases:

• Key in tree  ⇒  reset value.

• Key not in tree ⇒  add new node.
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BST insert
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Put.  Associate value with key. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Cost.  Number of compares is equal to 1 + depth of node.
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BST insert:  Java implementation

 public void put(Key key, Value val) 
 {  root = put(root, key, val);  } 

 private Node put(Node x, Key key, Value val) 
 { 
    if (x == null) return new Node(key, val); 
    int cmp = key.compareTo(x.key); 
    if      (cmp  < 0)  
       x.left  = put(x.left,  key, val); 
    else if (cmp  > 0)  
       x.right = put(x.right, key, val); 
    else if (cmp == 0)  
       x.val = val; 
    return x; 
 }

concise, but tricky, 
recursive code; 

read carefully!

Always assign the subtree 

returned from recursive
call to a child, but does it actually 

change in each call ?
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BST trace:  standard indexing client
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• Many BSTs correspond to same set of keys. 

• Number of compares for search/insert is equal to 1 + depth of node.

Remark.  Tree shape depends on order of insertion.
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Tree shape
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BST insertion:  random order visualization

Ex.  Insert keys in random order.



Remark.  Correspondence is 1-1 if array has no duplicate keys.
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Correspondence between BSTs and quicksort partitioning
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Proposition.  If N distinct keys are inserted into a BST in random order,  
the expected number of compares for a search/insert is O(log N).
Pf.  1-1 correspondence with quicksort partitioning.
 
 
But…   Worst-case height is N.  
(exponentially small chance when keys are inserted in random order)
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BSTs:  mathematical analysis
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ST implementations:  frequency counter

Costs for java FrequencyCounter 8 < tale.txt using BinarySearchST

5737
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ST implementations:  summary

implementation

guarantee average case
ordered

ops?
operations

on keys
search insert search hit insert

sequential search
(unordered list)

N N N/2 N no equals()

binary search
(ordered array)

lg N N lg N N/2 yes compareTo()

BST N N lg N lg N stay tuned compareTo()



BINARY SEARCH TREES

‣ BSTs 
‣ Ordered operations
‣ Deletion



Minimum.  Smallest key in table.
Maximum.  Largest key in table.

Q.  How to find the min / max?  

Minimum and maximum
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Examples of BST order queries
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Floor.  Largest key ≤ to a given key.

Ceiling.  Smallest key ≥ to a given key.

Q.  How to find the floor /ceiling?

Floor and ceiling
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Examples of BST order queries
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Case 1.  [k equals the key at root]  
The floor of k is k.

 
Case 2.  [k is less than the key at root]  
The floor of k is in the left subtree.
 
Case 3.  [k is greater than the key at root] 
The floor of k is in the right subtree  
(if there is any key ≤ k in right subtree);  
otherwise it is the key in the root.

Computing the floor
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Computing the floor
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public Key floor(Key key)  
{   
   Node x = floor(root, key);  
   if (x == null) return null;  
   return x.key;  
} 
private Node floor(Node x, Key key)  
{   
   if (x == null) return null;  
   int cmp = key.compareTo(x.key); 

   if (cmp == 0) return x; 

   if (cmp < 0)  return floor(x.left, key); 

   Node t = floor(x.right, key);  
   if (t != null) return t;  
   else           return x; 

} floor(G)in left
subtree is null

result

finding floor(G)

G is greater than E so 
floor(G) could be

on the right 

G is less than S so 
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In each node, we store the number of nodes in the subtree rooted at that 
node; to implement size(), return the count at the root.

Remark.  This facilitates efficient implementation of rank() and select().
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Subtree counts
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  public int size() 
  {  return size(root);  } 

  private int size(Node x) 
  { 
     if (x == null) return 0; 
     return x.N; 
  }
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BST implementation:  subtree counts

private class Node 
{ 
   private Key key; 
   private Value val; 
   private Node left; 
   private Node right; 
   private int N; 
}

 private Node put(Node x, Key key, Value val) 
 { 
    if (x == null) return new Node(key, val); 
    int cmp = key.compareTo(x.key); 
    if      (cmp  < 0) x.left  = put(x.left,  key, val); 
    else if (cmp  > 0) x.right = put(x.right, key, val); 
    else if (cmp == 0) x.val = val; 
    x.N = 1 + size(x.left) + size(x.right); 
    return x; 
 }

number of  nodes 
in subtree

ok to call when 
x is null
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Rank

Rank.  How many keys < k ?

Easy recursive algorithm (4 cases!)

public int rank(Key key)  
{  return rank(key, root);  }  

private int rank(Key key, Node x)  
{  
   if (x == null) return 0;  
   int cmp = key.compareTo(x.key); 
   if      (cmp  < 0) return rank(key, x.left);  
   else if (cmp  > 0) return 1 + size(x.left) + rank(key, x.right);  
   else if (cmp == 0) return size(x.left);  
} 
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Select.  Key of given rank.

Selection
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public Key select(int k) 
{    
    if (k < 0) return null; 
    if (k >= size()) return null; 
    Node x = select(root, k); 
    return x.key; 
}  

private Node select(Node x, int k)  
{ 
   if (x == null) return null;  
   int t = size(x.left);  
   if      (t  > k) 
      return select(x.left,  k); 
   else if (t  < k) 
      return select(x.right, k-t-1); 
   else if (t == k)  
      return x;  
} 

8 keys in left subtree 
so search for key of
rank 3 on the left

count N
8

2 keys in left subtree so 
search for key of rank

3-2-1 = 0 on the right

2

0 keys in left subtree 
and searching for

key of rank 0
so return H

2 keys in left subtree
so search for key of 
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Selection in a BST



• Traverse left subtree.

• Enqueue key.

• Traverse right subtree.

 
 
 
 
 
 
 
 
 
 
 
Property.  Inorder traversal of a BST yields keys in ascending order.

key

key

val

BST with smaller keys

smaller keys, in order larger keys, in order

all keys, in order

BST with larger keys

left right

BST

Inorder traversal
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public Iterable<Key> keys()  
{  
    Queue<Key> q = new Queue<Key>();  
    inorder(root, q);  
    return q; 
} 

private void inorder(Node x, Queue<Key> q)  
{  
   if (x == null) return;  
   inorder(x.left, q);  
   q.enqueue(x.key);  
   inorder(x.right, q);  
} 



• Traverse left subtree.

• Enqueue key.

• Traverse right subtree.

Inorder traversal
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function call stack

inorder(S) 
  inorder(E) 
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BST:  ordered symbol table operations summary

sequential  
search

binary 
search

BST

search N lg N h

insert 1 N h

min / max N 1 h

floor / ceiling N lg N h

rank N lg N h

select N 1 h

ordered iteration N log N N N

h = height of BST 
(proportional to log N  

if keys inserted in random order)

order of growth of running time of ordered symbol table operations



BINARY SEARCH TREES

‣ BSTs 
‣ Ordered operations
‣ Deletion
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ST implementations:  summary

Next.  Deletion in BSTs.

implementation

guarantee average case
ordered

iteration?

operations

on keys
search insert delete search hit insert delete

sequential search 
(linked list)

N N N N/2 N N/2 no equals()

binary search 
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N lg N lg N ? ? ? yes compareTo()



To remove a node with a given key:
• Set its value to null.

• Leave key in tree to guide searches (but don't consider it equal to search key).

 
 
 
 
 
 
 
 
 
Cost.  O(log N’) per insert, search, and delete (if keys in random order),  
where N' is the number of key-value pairs ever inserted in the BST.
 

Unsatisfactory solution.  Tombstone (memory) overload.
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BST deletion:  lazy approach
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To delete the minimum key:
• Go left until finding a node with a null left link.

• Replace that node by its right link.

• Update subtree counts.

63

Deleting the minimum

 public void deleteMin() 
 {  root = deleteMin(root);  } 

 private Node deleteMin(Node x) 
 { 
    if (x.left == null) return x.right; 
    x.left = deleteMin(x.left); 
    x.N = 1 + size(x.left) + size(x.right); 
    return x; 
 }

go left until
reaching null

left link

return that
node’s right link

available for
garbage collection

5
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update links and node counts
after recursive calls
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node to delete

replace with
null link

available for
garbage

collection

update counts after
recursive calls
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deleting C

To delete a node with key k:  search for node t containing key k.

Case 0.  [0 children]  Delete t by setting parent link to null.
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Hibbard deletion



To delete a node with key k:  search for node t containing key k.

Case 1.  [1 child]  Delete t by replacing parent link.
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Hibbard deletion
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To delete a node with key k:  search for node t containing key k.

Case 2.  [2 children]
• Find successor x of t.
• Delete the minimum in t's right subtree.

• Put x in t's spot.
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Hibbard deletion
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Hibbard deletion:  Java implementation

 public void delete(Key key) 
 {  root = delete(root, key);  } 

 private Node delete(Node x, Key key) { 
    if (x == null) return null; 
    int cmp = key.compareTo(x.key); 
    if      (cmp < 0) x.left  = delete(x.left,  key); 
    else if (cmp > 0) x.right = delete(x.right, key); 
    else {  
       if (x.right == null) return x.left; 

       Node t = x; 
       x = min(t.right); 
       x.right = deleteMin(t.right); 
       x.left = t.left; 
    }  
    x.N = size(x.left) + size(x.right) + 1; 
    return x; 
 }  

no right child

replace with 
successor

search for key

update subtree 
counts
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Hibbard deletion:  analysis

Unsatisfactory solution.  Not symmetric.
 
 
 
 
 
 
 
 
 
 
 
 
Surprising consequence.  Trees not random (!)  ⇒  sqrt (N) per op.

Longstanding open problem.  Simple and efficient delete for BSTs.

If we always 
delete from the 
same side, the 
shape of tree 
will be not 
random, the 
right subtrees 
are trimmed!



Red-black BST.   Guarantee logarithmic performance for all operations.
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ST implementations:  summary

implementation

guarantee average case
ordered

iteration?

operations

on keys
search insert delete search hit insert delete

sequential search 
(linked list)

N N N N/2 N N/2 no equals()

binary search 
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N lg N lg N √N yes compareTo()

other operations also become √N
if deletions allowed


