BBM 202 - ALGORITHMS

HACETTEPE UNIVERSITY

DEPT. OF COMPUTER ENGINEERING

BINARY SEARCH TREES

Acknowledgement: The course slides are adapted from the slides prepared by R.
Sedgewick
and K. Wayne of Princeton University.

TODAY

» BSTs

Binary Search Tree (BST)

o |Last lecture, we talked about binary search & linear search

e One had high cost for reorganisation,
e The other had high cost for searching

e In this lecture we will use Binary Trees, for searching

e Plan in a nutshell:
e Assert a more strict property compared to the Heap-Property (in
priority-queues), Remember what that was?
e Know exactly which subtree to look for at each node

Binary search trees

Definition. A BST is a binary tree in symmetric order.

A binary tree is either:
® Empty.

® Two disjoint binary trees (left and right).

Symmetric order. Each node has a key,

and every node’s key is:

® Larger than all keys in its left subtree.
® Smaller than all keys in its right subtree.

root

a left link /
N

a subtree

N

% right child
“/ of root

null links

Anatomy of a binary tree

parent of A and R

key
left link
of E \
Q @ 9 ~_ value
@ m associated
with R

/ \

keys smaller than E keys larger than E

Anatomy of a binary search tree

BST representation in Java

Java definition. A BST is a reference to a root node.

A Node is comprised of four fields:

® A Key and a value.

® A reference to the left and right subtree.

/ \

smaller keys larger keys

private class Node
{
private Key key;
private Value val;
private Node left, right;
public Node (Key key, Value val)
{
this.key = key;
this.val = val;

Key and Value are generic types; Key is Comparable

BST

Node———| key | val

p ~.
*///<< /
lTeft right

BST with smaller keys

BST with larger keys

Binary search tree

BST implementation (skeleton)

public class BST<Key extends Comparable<Key>, Value>
{

private Node root; <

private class Node
{ /* see previous slide */ }

public void put (Key key, Value val)
{ /* see next slides */ }

public Value get (Key key)
{ /* see next slides */ }

public void delete (Key key)
{ /* see next slides */ }

public Iterable<Key> iterator ()
{ /* see next slides */ }

root of BST

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

compare H and S

successful search for H (go left) \

black nodes could

match the search key

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

compare Hand E

(go right)

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

/

H <«— compareHandR

(go left)

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

/

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

a

H <— compareHandH

(search hit)

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

compare G and S

unsuccessful search for G (go left) \

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

compare G and E

(go right)

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

/

(G <«<— compare GandR

(go left)

20

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

/

21

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

a

(G <«<— compare GandH

(go left)

22

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

a

23

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

/
I
e

G

no more tree /

(search miss)

24

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

insert G

25

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

compare G and S

insert G (go left) \

26

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

insert G

27

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

insert G

compare G and E

(go right)

28

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

insert G

29

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

insert G

/

(G <«<— compare GandR

(go left)

30

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

insert G

/

31

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

insert G

a

(G <«<— compare GandH

(go left)

32

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

insert G

a

33

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

insert G

/
I
e

G

no more tree /

(insert here)

34

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

insert G

/
I
e

35

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

insert G

36

BST search

Get. Return value corresponding to given key, or nu11 if no such key.

successful search for R unsuccessful search for T

R is less than S

so look to the left T is greater than S

black nodes could so look to the right

match the search key

® X

gray nodes cannot \

R is greater than E match the search key T is less than X
so look to the right so look to the left
link is null

so T is not in tree
(search miss)

®\ found R
(search hit)

so return value

BST search: Java implementation

Get. Return value corresponding to given key, or nu11 if no such key.

public Value get (Key key)
{
Node x = root;
while (x '= null)
{
int cmp = key.compareTo (x.key) ;
if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else return x.val;

}

return null;

Cost. Number of compares is equal to | + depth of node.

BST insert

Put. Associate value with key.

Search for key, then two cases:
e Key in tree = reset value.

e Key not in tree = add new node.

inserting L

search for L ends e

at this null link

create new node — @
N
7/

reset links
on the way up

Insertion into a BST

39

BST insert: Java implementation

Put. Associate value with key.

concise, but tricky,

public void put (Key key, Value val)

{

root = put(root, key, val); }

ﬁ

private Node put (Node x, Key key, Value val)

{

if (x == null) return new Node (key, val);
int cmp = key.compareTo (x.key) ;

if (cmp < 0)
x.left = put(x.left, key, val);-\\“§§*
else if (cmp > 0) —”””,,

x.right = put(x.right, key, val);
else

x.val = val;
return x;

recursive code;

read carefully!

Always assign the subtree
returned from recursive
call to a child, but does it actually

change in each call ?

Cost. Number of compares is equal to | + depth of node.

BST trace: standard indexing client

key value

s 0 (9

o @F
Q are accessed

(S)
A2 (E)
/ in search
(S)
R 3 red nodes
@ —_ arenew
()

black nodes

(™)

(S
(A)

™. gray nodes
are untouched

key value

A8 O
G,
(AY8
changed /
value
M 9
P 10

changed

value \
12

12

41

Tree shape

® Many BSTs correspond to same set of keys.
® Number of compares for search/insert is equal to | + depth of node.

best case m typical case worst case

(C) (S)
OROROERD

Remark. Tree shape depends on order of insertion.

42

BST insertion: random order visualization

Ex. Insert keys in random order.

43

Correspondence between BSTs and quicksort partitioning

10 11 12 13

I
I
T

> » U I W wT|Oo
O m m m m|N
m > » C C|w
- O O O |»

©O O O O |w

< Z Z £ |o

— N < < |N

- — = - |oo

1
S
S
L
C
C
C
C

Remark. Correspondence is |-1 if array has no duplicate keys.

44

BSTs: mathematical analysis

Proposition. If N distinct keys are inserted into a BST in random order,
the expected number of compares for a search/insert is O(log N).

Pf. |-l correspondence with quicksort partitioning.

But... WWorst-case height is V.

(exponentially small chance when keys are inserted in random order)

45

ST implementations: frequency counter

5737 —

cost

~—484
0 g

0 operations |

14350
Costs for java FrequencyCounter 8 < tale.txt using BinarySearchST

20—

~— 13.9

cost

: |
0 operations 14350

Costs for java FrequencyCounter 8 < tale.txt using BST

46

ST implementations: summary

guarantee average case
ordered

implementation —

sequential search
(unordered list)

N N N/2 N no

binary search

(ordered array) g N N ig N N/2 yes

BST N N lg N lg N stay tuned

operations
on keys

equals ()

compareTo ()

compareTo ()

47

» Ordered operations

Minimum and maximum

Minimum. Smallest key in table.
Maximum. Largest key in table.

Q. How to find the min / max?

49

Floor and ceiling

Floor. Largest key < to a given key.

Ceiling. Smallest key = to a given key.

floor(G)

Q. How to find the floor /ceiling?

ceiling(Q)

50

Computing the floor

Case |. [k equals the key at root]
The floor of £ is k.

Case 2. [k is less than the key at root]
The floor of kis in the left subtree.

Case 3. [k is greater than the key at root]
The floor of k is in the right subtree
(if there is any key < £ in right subtree);

otherwise it is the key in the root.

finding f1oor (G)

G is less than S so

m floor (G) must be
on the left

G is greater than E so
floor (G) could be
on the right

®

/

yd
floor(G)in left
subtree is null

®

result

Computing the floor

public Key floor (Key key)

{
Node x = floor (root, key);

if (x == null) return null;
return x.key;

}
private Node floor (Node x, Key key)

{

if (x == null) return null;

int cmp = key.compareTo (x.key) ;

if (cmp == 0) return x;

if (cmp < 0) return floor(x.left, key);
Node t = floor(x.right, key);

if (t '= null) return t;
else return x;

finding f1oor (G)

G is less than S so

m floor (G) must be
on the left

G is greater than E so
floor (G) could be
on the right

®

/

yd
floor(G)in left
subtree is null

®

result

Subtree counts

In each node, we store the number of nodes in the subtree rooted at that

node; to implement size(), return the count at the root.

node count N

Remark. This facilitates efficient implementation of rank () and select().

53

BST implementation: subtree counts

private class Node public int size()

{ { return size(root); }
private Key key;
private Value val; private int size (Node x)
private Node left; {
private Node right; if (x == null) return O0O;
private int N; return x.N; ‘\\pkmcmHMEn

\\ } X is null

\
number of nodes

in subtree

private Node put (Node x, Key key, Value val)

{

if (x == null) return new Node (key, val);

int cmp = key.compareTo (x.key) ;

if (cmp < 0) x.left = put(x.left, key, val);
else if (cmp > 0) x.right = put(x.right, key, wval);

else x.val val;
x.N =1 + size(x.left) + size(x.right);

return x;

54

Rank

Rank. How many keys < k?

node count N

Easy recursive algorithm (4 cases!)

public int rank (Key key)
{ return rank(key, root); }

private int rank (Key key, Node x)
{

if (x == null) return O;

int cmp = key.compareTo (x.key) ;

if (cmp < 0) return rank(key, x.left);

else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
else return size(x.left);

55

Selection

Select. Key of given rank.

public Key select(int k)

{
if (k < 0) return null;
if (k >= size()) return null;
Node x = select(root, k);
return x.key;

}

private Node select(Node x, int k)

{
if (x == null) return null;
int t = size(x.left);
if (t > k)

return select(x.left, k);
else i1f (t < k)

return select(x.right, k-t-1);
else if (t == k)

return x;

finding select(3)
the key of rank 3

8 keys in left subtree
so search for key of
rank 3 on the left

2

[

2 keys in left subtree so
search for key of rank
3-2-1 = 0 on theright

2
A2
2 keys in left subtree

so search for key of
rank O on the left

e

0 keys in left subtree
and searching for

key of rank O
so return H

56

Inorder traversal

® Traverse left subtree.
® Enqueue key.
® Traverse right subtree.

public Iterable<Key> keys ()
{
Queue<Key> q = new Queue<Key>() ;
inorder (root, q); BST

return q;
} key | val

/

private void inorder (Node x, Queue<Key> q) left right

{
if (x == null) return;
inorder (x.left, q);
g.enqueue (x.key) ;

inorder (x.right, q);

™~

Property. Inorder traversal of a BST yields keys in ascending order.

BST with smaller keys BST with larger keys

smaller keys, in order key larger keys, in order

all keys, in order

Inorder traversal

® Traverse left subtree.
® Enqueue key.
® Traverse right subtree.

inorder (S)
inorder (E)
inorder (A)

enqueue A A
inorder (C)

enqueue C C

enqueue E E

inorder (R)
inorder (H)

enqueue H H
inorder (M)

enqueue M M

enqueue R R

enqueue S S

inorder (X)
enqueue X X

recursive calls queue function call stack

BST: ordered symbol table operations summary

sequential binary

search search

search

insert
h = height of BST

ional to log N
min / max (proportional to log

if keys inserted in random order)
floor / ceiling

1114

select

ordered iteration N log N N N

order of growth of running time of ordered symbol table operations

59

» Deletion

ST implementations: summary

guarantee average case
ordered

implementation : :
: : : iteration?
search insert delete search hit insert delete

sequential search

(linked list)

N N N N/2 N N/2 no

binary search
lg N N N lg N N/2 N/2 yes
(ordered array)

BST N N N lg N lg N yes

Next. Deletion in BSTs.

operations

on keys

equals ()

compareTo ()

compareTo ()

6l

BST deletion: lazy approach

To remove a node with a given key:

® Set its value to null.
® | eave key in tree to guide searches (but don't consider it equal to search key).

delete |

Cost. O(log N’) per insert, search, and delete (if keys in random order),

where N'is the number of key-value pairs ever inserted in the BST.

Unsatisfactory solution. Tombstone (memory) overload.

62

Deleting the minimum

To delete the minimum key:

® Go left until finding a node with a null left link.
® Replace that node by its right link.
e Update subtree counts.

public void deleteMin()
{ root = deleteMin (root); }

private Node deleteMin (Node x)
{

if (x.left == null) return x.right;
X.left = deleteMin(x.left);

x.N =1 + size(x.left) + size(x.right);
return x;

go left until
reaching null

left link

\

return that
node’s right link

N
|

available for
garbage collection

update links and node counts
after recursive calls

ot

63

Hibbard deletion

To delete a node with key k: search for node ¢ containing key k.

Case 0. [0 children] Delete ¢ by setting parent link to null.

deleting C update counts after

recursive calls

®
|

replace with

null link

node to delete

available for
garbage
/ collection

64

Hibbard deletion

To delete a node with key k: search for node ¢ containing key £.

Case |. [| child] Delete ¢ by replacing parent link.

deleting R
update counts after

recursivW» 7
CSD/O

replace with

child link available for
/ garbage

collection

node to delete

65

Hibbard deletion

To delete a node with key k: search for node ¢ containing key £.

Case 2. [2 children]

e Find successor x of t.) x has no left child
® Delete the minimum in #'s right subtree. <«—— butdon't garbage collect x
e Put xin t's spot. «<—— stilaBST

node to delete

N

X d

search for kev E t.left eleteMin(t.right)
f 4 L ”’/1::)\\\:K::;/

N 7

X 5
N \
< Ssuccessor

min(t.right)

go right, then / update links and

go left until node counts after
reaching null recursive calls

left link

66

Hibbard deletion: Java implementation

public void delete (Key key)
{ root = delete(root, key); 1}

private Node delete (Node x, Key key) {
if (x == null) return null;
int cmp = key.compareTo (x.key) ;
if (cmp < 0) x.left = delete(x.left, key);

! i] <«<—F+—— search for key
else if (cmp > 0) x.right = delete(x.right, key);
else {
if (x.right == null) return x.left; < no right child
Node t = x;
x = min(t.right); replace with
x.right = deleteMin(t.right) ; <

successor
x.left = t.left;

}

x.N = size(x.left) + size(x.right) + 1; < Lpste sulsilres

n
return x; COLIE

Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.

N=150
max = 16

avg = 9.3
If we always opt = 6.4

delete from the
same side, the
shape of tree
will be not
random, the
right subtrees
are trimmed!

Surprising consequence. Trees not random (!) = sqrt (V) per op.

Longstanding open problem. Simple and efficient delete for BSTs.

68

ST implementations: summary

guarantee average case
ordered

implementation : :
: : : iteration!?
search insert delete search hit insert delete

sequential search

(linked list)

N N N N/2 N N/2 no

binary search
lg N N N lg N N/2 N/2 yes
(ordered array)

BST N N N lg N lg N @ yes

other operations also become VN

if deletions allowed

operations

on keys

equals ()

compareTo ()

compareTo ()

Red-black BST. Guarantee logarithmic performance for all operations.

69

