
BBM 202 - ALGORITHMS

BINARY SEARCH TREES 

 
DEPT. OF COMPUTER ENGINEERING

Acknowledgement: The course slides are adapted from the slides prepared by R.
Sedgewick  
and K. Wayne of Princeton University.

TODAY

‣ BSTs
‣ Ordered operations
‣ Deletion

Binary Search Tree (BST)

• Last lecture, we talked about binary search & linear search
• One had high cost for reorganisation,
• The other had high cost for searching

• In this lecture we will use Binary Trees, for searching
• Plan in a nutshell:

• Assert a more strict property compared to the Heap-Property (in
priority-queues), Remember what that was?

• Know exactly which subtree to look for at each node

3

Definition. A BST is a binary tree in symmetric order.
 
 
A binary tree is either:
• Empty.

• Two disjoint binary trees (left and right).

 
 
 
Symmetric order. Each node has a key,  
and every node’s key is:
• Larger than all keys in its left subtree.

• Smaller than all keys in its right subtree.

4

Binary search trees

right child
of root

a left link

a subtree

root

null links

Anatomy of a binary tree

value
associated

with R

parent of A and R

left link
of E

keys smaller than E keys larger than E

key

A
C

E

H
R

S
X

9

Anatomy of a binary search tree

Java definition. A BST is a reference to a root Node.

A Node is comprised of four fields:
• A Key and a Value.

• A reference to the left and right subtree.

5

BST representation in Java

smaller keys larger keys

private class Node
{
 private Key key;
 private Value val;
 private Node left, right;
 public Node(Key key, Value val)
 {
 this.key = key;
 this.val = val;
 }
}

Key and Value are generic types; Key is Comparable

Binary search tree

BST with smaller keys BST with larger keys

key

left right

val

BST

Node

public class BST<Key extends Comparable<Key>, Value>
{
 private Node root;

 private class Node
 { /* see previous slide */ }

 public void put(Key key, Value val)
 { /* see next slides */ }

 public Value get(Key key)
 { /* see next slides */ }

 public void delete(Key key)
 { /* see next slides */ }

 public Iterable<Key> iterator()
 { /* see next slides */ }

}

6

BST implementation (skeleton)

root of BST

Search. If less, go left; if greater, go right; if equal, search hit.

7

Binary search tree operations

successful search for H

X

RA

C H

E

S

M

Search. If less, go left; if greater, go right; if equal, search hit.

8

Binary search tree operations

black nodes could
match the search key

compare H and S
(go left)

X

RA

C H

E

S

M

H

successful search for H

Search. If less, go left; if greater, go right; if equal, search hit.

9

Binary search tree operations

X

RA

C H

E

S

M

H

successful search for H

Search. If less, go left; if greater, go right; if equal, search hit.

10

Binary search tree operations

X

RA

C H

E

S

M

H

compare H and E
(go right)

successful search for H

Search. If less, go left; if greater, go right; if equal, search hit.

11

Binary search tree operations

X

RA

C H

E

S

M

H

successful search for H

Search. If less, go left; if greater, go right; if equal, search hit.

12

Binary search tree operations

X

RA

C H

E

S

M

H compare H and R
(go left)

successful search for H

Search. If less, go left; if greater, go right; if equal, search hit.

13

Binary search tree operations

X

RA

C H

E

S

M

H

successful search for H

Search. If less, go left; if greater, go right; if equal, search hit.

14

Binary search tree operations

X

RA

C H

E

S

M

H compare H and H
(search hit)

successful search for H

Search. If less, go left; if greater, go right; if equal, search hit.

15

Binary search tree operations

unsuccessful search for G

X

RA

C H

E

S

M

Search. If less, go left; if greater, go right; if equal, search hit.

16

Binary search tree operations

compare G and S
(go left)

X

RA

C H

E

S

M

G

unsuccessful search for G

Search. If less, go left; if greater, go right; if equal, search hit.

17

Binary search tree operations

X

RA

C H

E

S

M

G

unsuccessful search for G

Search. If less, go left; if greater, go right; if equal, search hit.

18

Binary search tree operations

X

RA

C H

E

S

M

G

compare G and E
(go right)

unsuccessful search for G

Search. If less, go left; if greater, go right; if equal, search hit.

19

Binary search tree operations

X

RA

C H

E

S

M

G

unsuccessful search for G

Search. If less, go left; if greater, go right; if equal, search hit.

20

Binary search tree operations

X

RA

C H

E

S

M

G compare G and R
(go left)

unsuccessful search for G

Search. If less, go left; if greater, go right; if equal, search hit.

21

Binary search tree operations

X

RA

C H

E

S

M

G

unsuccessful search for G

Search. If less, go left; if greater, go right; if equal, search hit.

22

Binary search tree operations

X

RA

C H

E

S

M

G compare G and H
(go left)

unsuccessful search for G

Search. If less, go left; if greater, go right; if equal, search hit.

23

Binary search tree operations

X

RA

C H

E

S

M
G

unsuccessful search for G

Search. If less, go left; if greater, go right; if equal, search hit.

24

Binary search tree operations

X

RA

C H

E

S

M

unsuccessful search for G

G

no more tree
(search miss)

Insert. If less, go left; if greater, go right; if null, insert.

25

Binary search tree operations

insert G

X

RA

C H

E

S

M

Insert. If less, go left; if greater, go right; if null, insert.

26

Binary search tree operations

compare G and S
(go left)

X

RA

C H

E

S

M

G

insert G

Insert. If less, go left; if greater, go right; if null, insert.

27

Binary search tree operations

X

RA

C H

E

S

M

G

insert G

Insert. If less, go left; if greater, go right; if null, insert.

28

Binary search tree operations

X

RA

C H

E

S

M

G

compare G and E
(go right)

insert G

Insert. If less, go left; if greater, go right; if null, insert.

29

Binary search tree operations

X

RA

C H

E

S

M

G

insert G

Insert. If less, go left; if greater, go right; if null, insert.

30

Binary search tree operations

X

RA

C H

E

S

M

G compare G and R
(go left)

insert G

Insert. If less, go left; if greater, go right; if null, insert.

31

Binary search tree operations

X

RA

C H

E

S

M

G

insert G

Insert. If less, go left; if greater, go right; if null, insert.

32

Binary search tree operations

X

RA

C H

E

S

M

G compare G and H
(go left)

insert G

Insert. If less, go left; if greater, go right; if null, insert.

33

Binary search tree operations

X

RA

C H

E

S

M
G

insert G

Insert. If less, go left; if greater, go right; if null, insert.

34

Binary search tree operations

X

RA

C H

E

S

M
G

no more tree
(insert here)

insert G

Insert. If less, go left; if greater, go right; if null, insert.

35

Binary search tree operations

X

RA

C H

E

S

M

insert G

G

Insert. If less, go left; if greater, go right; if null, insert.

36

Binary search tree operations

X

RA

C H

E

S

M

insert G

G

Get. Return value corresponding to given key, or null if no such key.

37

BST search

R is less than S
so look to the left

black nodes could
match the search key

gray nodes cannot
match the search key

found R
(search hit)

so return value

R is greater than E
so look to the right

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

T is less than X
so look to the left

link is null
so T is not in tree

(search miss)

T is greater than S
so look to the right

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

Successful (left) and unsuccessful (right) search in a BST

successful search for R unsuccessful search for T

Get. Return value corresponding to given key, or null if no such key.
 
 
 
 
 
 
 
 
 
 
 
 
 
Cost. Number of compares is equal to 1 + depth of node.

38

BST search: Java implementation

 public Value get(Key key)
 {
 Node x = root;
 while (x != null)
 {
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x = x.left;
 else if (cmp > 0) x = x.right;
 else if (cmp == 0) return x.val;
 }
 return null;
 }

Put. Associate value with key.

Search for key, then two cases:

• Key in tree ⇒ reset value.

• Key not in tree ⇒ add new node.

39

BST insert

search for L ends
at this null link

reset links
on the way up

create new node

A
C

E

H
M

P

R

S
X

A
C

E

H

L

M
P

R

S
X

A
C

E

H

L
M

P

R

S
X

Insertion into a BST

inserting L

Put. Associate value with key.
 
 
 
 
 
 
 
 
 
 
 
 
 
Cost. Number of compares is equal to 1 + depth of node.

40

BST insert: Java implementation

 public void put(Key key, Value val)
 { root = put(root, key, val); }

 private Node put(Node x, Key key, Value val)
 {
 if (x == null) return new Node(key, val);
 int cmp = key.compareTo(x.key);
 if (cmp < 0)  
 x.left = put(x.left, key, val); 
 else if (cmp > 0)  
 x.right = put(x.right, key, val); 
 else if (cmp == 0)  
 x.val = val;
 return x;
 }

concise, but tricky,
recursive code; 

read carefully!

Always assign the subtree

returned from recursive
call to a child, but does it actually

change in each call ?

41

BST trace: standard indexing client

S

A
C

E

H
R

S
X

A
C

E

H
R

S

A
C

E

H
R

S

A
C

E
R

S

A
E

R

A
E

S

S

E
S

S

6

S 0

E 1

A 2

R 3

C 4

H 5

E 6

X 7

red nodes
are new

black nodes
are accessed

in search

changed
value

changed
value

changed
value

gray nodes
are untouched

A
C

E

H
M

P

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
R

S
X

A
C

E

H

L
M

P

R

S
X

A
C

E

H

L
M

P

R

S
X12

8

A 8

M 9

P 10

L 11

E 12

BST trace for standard indexing client

key value key value

• Many BSTs correspond to same set of keys.

• Number of compares for search/insert is equal to 1 + depth of node.

Remark. Tree shape depends on order of insertion.

42

Tree shape

A

H

S
R

X

C
E

X
S

R
C

E

H

A

A
C

E

H
R

S
X

BST possibilities

best case

typical case

worst case

A

H

S
R

X

C
E

X
S

R
C

E

H

A

A
C

E

H
R

S
X

BST possibilities

best case

typical case

worst case

A

H

S
R

X

C
E

X
S

R
C

E

H

A

A
C

E

H
R

S
X

BST possibilities

best case

typical case

worst case

43

BST insertion: random order visualization

Ex. Insert keys in random order.

Remark. Correspondence is 1-1 if array has no duplicate keys.

44

Correspondence between BSTs and quicksort partitioning

A

D

H

O

P

T

U

C

YE I

M

L

Proposition. If N distinct keys are inserted into a BST in random order,  
the expected number of compares for a search/insert is O(log N).
Pf. 1-1 correspondence with quicksort partitioning.
 
 
But… Worst-case height is N.  
(exponentially small chance when keys are inserted in random order)

45

BSTs: mathematical analysis

46

ST implementations: frequency counter

Costs for java FrequencyCounter 8 < tale.txt using BinarySearchST

5737

0

0 14350
operations

co
st

484

Costs for java FrequencyCounter 8 < tale.txt using BST

20

0

0 14350
operations

co
st

13.9

47

ST implementations: summary

implementation

guarantee average case
ordered

ops?
operations

on keys
search insert search hit insert

sequential search
(unordered list)

N N N/2 N no equals()

binary search
(ordered array)

lg N N lg N N/2 yes compareTo()

BST N N lg N lg N stay tuned compareTo()

BINARY SEARCH TREES

‣ BSTs
‣ Ordered operations
‣ Deletion

Minimum. Smallest key in table.
Maximum. Largest key in table.

Q. How to find the min / max?

Minimum and maximum

49

Examples of BST order queries

A
C

E

H
M

R

S
X

min()
max()max

min

Floor. Largest key ≤ to a given key.

Ceiling. Smallest key ≥ to a given key.

Q. How to find the floor /ceiling?

Floor and ceiling

50

Examples of BST order queries

A
C

E

H
M

R

S
X

min()
max()

floor(D)

ceiling(Q)

floor(G)

Case 1. [k equals the key at root]  
The floor of k is k.

 
Case 2. [k is less than the key at root]  
The floor of k is in the left subtree.
 
Case 3. [k is greater than the key at root] 
The floor of k is in the right subtree  
(if there is any key ≤ k in right subtree);  
otherwise it is the key in the root.

Computing the floor

51

floor(G)in left
subtree is null

result

finding floor(G)

G is greater than E so
floor(G) could be

on the right

G is less than S so
floor(G) must be

on the left

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

Computing the floor function

Computing the floor

52

public Key floor(Key key)  
{  
 Node x = floor(root, key);  
 if (x == null) return null;  
 return x.key;  
}
private Node floor(Node x, Key key)  
{  
 if (x == null) return null;  
 int cmp = key.compareTo(x.key);

 if (cmp == 0) return x;

 if (cmp < 0) return floor(x.left, key);

 Node t = floor(x.right, key);  
 if (t != null) return t;  
 else return x;

} floor(G)in left
subtree is null

result

finding floor(G)

G is greater than E so
floor(G) could be

on the right

G is less than S so
floor(G) must be

on the left

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

Computing the floor function

In each node, we store the number of nodes in the subtree rooted at that
node; to implement size(), return the count at the root.

Remark. This facilitates efficient implementation of rank() and select().

53

Subtree counts

A

A C E H M R S X

C

E

H
M

R

S
X

A

A C E H M R S X

C
E

H
M

R

S
X

2

6

5

8

8

1

1

1

1

1 1

3

2

22

2

node count N

Two BSTs that represent
the same set of keys

A

A C E H M R S X

C

E

H
M

R

S
X

A

A C E H M R S X

C
E

H
M

R

S
X

2

6

5

8

8

1

1

1

1

1 1

3

2

22

2

node count N

Two BSTs that represent
the same set of keys

 public int size()
 { return size(root); }

 private int size(Node x)
 {
 if (x == null) return 0;
 return x.N;
 }

54

BST implementation: subtree counts

private class Node
{
 private Key key;
 private Value val;
 private Node left;
 private Node right;
 private int N;
}

 private Node put(Node x, Key key, Value val)
 {
 if (x == null) return new Node(key, val);
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x.left = put(x.left, key, val);
 else if (cmp > 0) x.right = put(x.right, key, val);
 else if (cmp == 0) x.val = val;
 x.N = 1 + size(x.left) + size(x.right);
 return x;
 }

number of nodes 
in subtree

ok to call when
x is null

55

Rank

Rank. How many keys < k ?

Easy recursive algorithm (4 cases!)

public int rank(Key key)
{ return rank(key, root); }

private int rank(Key key, Node x)
{
 if (x == null) return 0;
 int cmp = key.compareTo(x.key);
 if (cmp < 0) return rank(key, x.left);
 else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
 else if (cmp == 0) return size(x.left);
}

A

A C E H M R S X

C

E

H
M

R

S
X

A

A C E H M R S X

C
E

H
M

R

S
X

2

6

5

8

8

1

1

1

1

1 1

3

2

22

2

node count N

Two BSTs that represent
the same set of keys

Select. Key of given rank.

Selection

56

public Key select(int k)
{
 if (k < 0) return null;
 if (k >= size()) return null;
 Node x = select(root, k);
 return x.key;
}

private Node select(Node x, int k)
{
 if (x == null) return null;
 int t = size(x.left);
 if (t > k)
 return select(x.left, k);
 else if (t < k)
 return select(x.right, k-t-1);
 else if (t == k)
 return x;
}

8 keys in left subtree
so search for key of
rank 3 on the left

count N
8

2 keys in left subtree so
search for key of rank

3-2-1 = 0 on the right

2

0 keys in left subtree
and searching for

key of rank 0
so return H

2 keys in left subtree
so search for key of
rank 0 on the left

2

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

finding select(3)
the key of rank 3

Selection in a BST

• Traverse left subtree.

• Enqueue key.

• Traverse right subtree.

 
 
 
 
 
 
 
 
 
 
 
Property. Inorder traversal of a BST yields keys in ascending order.

key

key

val

BST with smaller keys

smaller keys, in order larger keys, in order

all keys, in order

BST with larger keys

left right

BST

Inorder traversal

57

public Iterable<Key> keys()
{
 Queue<Key> q = new Queue<Key>();
 inorder(root, q);
 return q;
}

private void inorder(Node x, Queue<Key> q)
{
 if (x == null) return;
 inorder(x.left, q);
 q.enqueue(x.key);
 inorder(x.right, q);
}

• Traverse left subtree.

• Enqueue key.

• Traverse right subtree.

Inorder traversal

58

function call stack

inorder(S)
 inorder(E)
 inorder(A)
 enqueue A
 inorder(C)
 enqueue C
 enqueue E
 inorder(R)
 inorder(H)
 enqueue H
 inorder(M)
 enqueue M
 enqueue R
 enqueue S
 inorder(X)
 enqueue X

 A

 C
 E

 H

 M
 R
 S

 X

S
S E
S E A

S E A C

S E R
S E R H

S E R H M

S X

queuerecursive calls

A

A C E H M R S X

C

E

H
M

R

S
X

59

BST: ordered symbol table operations summary

sequential  
search

binary 
search

BST

search N lg N h

insert 1 N h

min / max N 1 h

floor / ceiling N lg N h

rank N lg N h

select N 1 h

ordered iteration N log N N N

h = height of BST 
(proportional to log N  

if keys inserted in random order)

order of growth of running time of ordered symbol table operations

BINARY SEARCH TREES

‣ BSTs
‣ Ordered operations
‣ Deletion

61

ST implementations: summary

Next. Deletion in BSTs.

implementation

guarantee average case
ordered

iteration?

operations

on keys
search insert delete search hit insert delete

sequential search 
(linked list)

N N N N/2 N N/2 no equals()

binary search 
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N lg N lg N ? ? ? yes compareTo()

To remove a node with a given key:
• Set its value to null.

• Leave key in tree to guide searches (but don't consider it equal to search key).

 
 
 
 
 
 
 
 
 
Cost. O(log N’) per insert, search, and delete (if keys in random order),  
where N' is the number of key-value pairs ever inserted in the BST.
 

Unsatisfactory solution. Tombstone (memory) overload.
62

BST deletion: lazy approach

delete I

S

E

C

A

N

RH

I

S

E

C

A

N

RH

tombstone

To delete the minimum key:
• Go left until finding a node with a null left link.

• Replace that node by its right link.

• Update subtree counts.

63

Deleting the minimum

 public void deleteMin()
 { root = deleteMin(root); }

 private Node deleteMin(Node x)
 {
 if (x.left == null) return x.right;
 x.left = deleteMin(x.left);
 x.N = 1 + size(x.left) + size(x.right);
 return x;
 }

go left until
reaching null

left link

return that
node’s right link

available for
garbage collection

5

7

update links and node counts
after recursive calls

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

C
E

H
M

R

S
X

Deleting the minimum in a BST

node to delete

replace with
null link

available for
garbage

collection

update counts after
recursive calls

5

1

7

A
C

E

H
M

C

R

S
X

A
E

H
M

R

S
X

A
E

H
M

R

S
X

deleting C

To delete a node with key k: search for node t containing key k.

Case 0. [0 children] Delete t by setting parent link to null.

64

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 1. [1 child] Delete t by replacing parent link.

65

Hibbard deletion

node to delete
replace with

child link available for
garbage

collection

A
C C C

E

H
M

R

R

S
X

A
E

H
M

S
X

A
E

H
M

S
X

deleting R
update counts after

recursive calls

5

7

To delete a node with key k: search for node t containing key k.

Case 2. [2 children]
• Find successor x of t.
• Delete the minimum in t's right subtree.

• Put x in t's spot.

66

Hibbard deletion

x has no left child

but don't garbage collect x

still a BST

search for key E

node to delete

deleteMin(t.right)

t

5

7

x

successor
 min(t.right)

t.left

x

update links and
node counts after

recursive calls

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

H

A
C

H

M
R

M
R

S
X

E
S

X

deleting E

Deletion in a BST

go right, then
go left until

reaching null
left link

search for key E

node to delete

deleteMin(t.right)

t

5

7

x

successor
 min(t.right)

t.left

x

update links and
node counts after

recursive calls

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

H

A
C

H

M
R

M
R

S
X

E
S

X

deleting E

Deletion in a BST

go right, then
go left until

reaching null
left link

67

Hibbard deletion: Java implementation

 public void delete(Key key)
 { root = delete(root, key); }

 private Node delete(Node x, Key key) {
 if (x == null) return null;
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x.left = delete(x.left, key);
 else if (cmp > 0) x.right = delete(x.right, key);
 else {
 if (x.right == null) return x.left;

 Node t = x;
 x = min(t.right);
 x.right = deleteMin(t.right);
 x.left = t.left;
 }
 x.N = size(x.left) + size(x.right) + 1;
 return x;
 }

no right child

replace with
successor

search for key

update subtree
counts

68

Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.
 
 
 
 
 
 
 
 
 
 
 
 
Surprising consequence. Trees not random (!) ⇒ sqrt (N) per op.

Longstanding open problem. Simple and efficient delete for BSTs.

If we always
delete from the
same side, the
shape of tree
will be not
random, the
right subtrees
are trimmed!

Red-black BST. Guarantee logarithmic performance for all operations.

69

ST implementations: summary

implementation

guarantee average case
ordered

iteration?

operations

on keys
search insert delete search hit insert delete

sequential search 
(linked list)

N N N N/2 N N/2 no equals()

binary search 
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N lg N lg N √N yes compareTo()

other operations also become √N
if deletions allowed

