BBM 202 - ALGORITHMS

(6) hacettepe university

Dept. of Computer Engineering

Balanced Trees

Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton University.

Balanced Search Trees

- 2-3 search trees
- Red-black BSTs
, B-trees
- Geometric applications of BSTs

Balanced Search Trees

- 2-3 search trees
, Red-black BSTs
- B-trees
- Geometric applications of BSTs

2-3 tree

You can read it as 2 or 3 children tree
Allow I or 2 keys per node.

- 2-node: one key, two children
- 3 -node: two keys, three children.

2-3 tree

Allow I or 2 keys per node.

- 2-node: one key, two children.
- 3 -node: two keys, three children.

Perfect balance. Every path from root to null link has same length. Symmetric order. Inorder traversal yields keys in ascending order.

2-3 tree

Allow I or 2 keys per node.

- 2-node: one key, two children.
- 3-node: two keys, three children.

Our Aim is Perfect balance. Every path from root to null link has same length.

2-3 tree demo

Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).
search for H

2-3 tree demo

Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).
search for H

2-3 tree demo

Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively)

2-3 tree demo

Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).
search for H

2-3 tree demo

Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).
search for B

2-3 tree demo

Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).
search for B

2-3 tree demo

Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).
search for B

B
link is null
(search miss)

2-3 tree demo

Insert into a 2-node at bottom.

- Search for key, as usual.
- Replace 2-node with 3-node.
insert K

2-3 tree demo

Insert into a 2-node at bottom.

- Search for key, as usual.
- Replace 2 -node with 3 -node.
insert K

2-3 tree demo

Insert into a 2-node at bottom.

- Search for key, as usual.
- Replace 2-node with 3-node.
insert K

search ends here

2-3 tree demo

Insert into a 2-node at bottom.

- Search for key, as usual.
- Replace 2-node with 3-node
insert K

2-3 tree demo

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
insert Z

2-3 tree demo

Insert into a 3-node at bottom.

- Add new key to 3 -node to create temporary 4 -node.
- Move middle key in 4 -node into parent.
insert Z

2-3 tree demo

Insert into a 3-node at bottom.

- Add new key to 3 -node to create temporary 4 -node.
- Move middle key in 4 -node into parent.
insert Z

2-3 tree demo

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
insert Z

2-3 tree demo

Insert into a 3-node at bottom.

- Add new key to 3 -node to create temporary 4 -node.
- Move middle key in 4 -node into parent.
insert Z

2-3 tree demo

Insert into a 3-node at bottom.

- Add new key to 3 -node to create temporary 4 -node.
- Move middle key in 4-node into parent.
insert Z

2-3 tree demo

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2 -nodes.

insert L

2-3 tree demo

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4 -node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.
insert L

2-3 tree demo

Insert into a 3-node at bottom.

- Add new key to 3 -node to create temporary 4 -node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2 -nodes.
insert L

split 4-node

2-3 tree demo

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

2-3 tree demo

Insert into a 3 -node at bottom.

- Add new key to 3 -node to create temporary 4 -node.
- Move middle key in 4 -node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2 -nodes.

insert L

2-3 tree demo

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4 -node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2 -nodes.
insert L

Search in a 2-3 tree

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

Insertion in a 2-3 tree

Case I. Insert into a 2-node at bottom.

- Search for key, as usual.
- Replace 2 -node with 3 -node.

Insertion in a 2-3 tree

Case 2. Insert into a 3-node at bottom.

- Add new key to 3 -node to create temporary 4 -node
- Move middle key in 4 -node into parent.
- Repeat up the tree, as necessary.
inserting z

Local transformations in a 2-3 tree

Splitting a 4-node is a local transformation: constant number of operations.

Global properties in a 2-3 tree

Invariants. Maintains symmetric order and perfect balance.
Pf. Each transformation maintains symmetric order and perfect balance.
root

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

- Worst case:
$\lg N$. [all 2-nodes]
- Best case: $\log _{3} N \approx .631 \lg N$.[all 3 -nodes]
- Between 12 and 20 for a million nodes.
- Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

- Worst case:
- Best case:

ST implementations: summary

implementation	worst-case cost (after N inserts)			verage case (after N random inserts)			ordered iteration?	key interface
	search	insert	delete	search hit	insert	delete		
sequential search (unordered list)	N	N	N	N/2	N	N/2	no	equals()
binary search (ordered array)	$\lg N$	N	N	$\lg N$	N/2	N/2	yes	compareTo()
BST	N	N	N	$1.39 \lg N$	1.39 lg N	?	yes	compareTo()
2-3 tree	$c^{\lg } \mathrm{N}$	$c \lg N$	$c^{\lg } \mathrm{N}$	$c^{\lg } \mathrm{N}$	$c^{\lg } \mathrm{N}$	$c \lg N$	yes	compareto ()
constants depend upon implementation								

2-3 tree: implementation?

Direct implementation is complicated, because:

- Maintaining multiple node types is cumbersome.
- Need multiple compares to move down tree
- Need to move back up the tree to split 4 -nodes.
- Large number of cases for splitting.

Bottom line. Could do it, but there's a better way.

Multiple Node Types

- In 2-3 Trees, the algorithm automatically balances the tree
- However, we have to keep track of two different node types, complicating the source code.
- Nodes with one key
- Nodes with two keys
- Instead of multiple nodes:
- Multiple edge types; red and black
- Rotations instead of Split

Balanced Search Trees

- 2-3 search trees
- Red-black BSTs
- B-trees
- Geometric applications of BSTs

Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and

 Sedgewick 2007)I. Represent 2-3 tree as a BST.
2. Use "internal" left-leaning links as "glue" for 3-nodes.

An equivalent definition

A BST such that:

- No node has two red links connected to it.
- Every path from root to null link has the same number of black links.
- We will only allow one red link to simulate 2 keys in node
- A node with two red links would be the same as having 3 keys "perfect black balance"
- Red links lean left (correct ordering)

Search implementation for red-black BSTs

Observation. Search is the same as for elementary BST (ignore color).

$$
\bigcap_{\text {but runs faster because of better balance }}^{\uparrow}
$$

```
public Val get(Key key)
    Node x = root;
    while (x != null)
    I
        int cmp = key.compareTo(x.key)
        if (cmp < 0) x = x.left;
        else if (cmp > 0) x = x.right
        else if (amp == 0) return x.val
    }
    return null
```

)

Remark. Most other ops (e.g., ceiling, selection, iteration) are also identical.

Left-leaning red-black BSTs: I-I correspondence with

2-3 trees

Key property. I-I correspondence between 2-3 and LLRB.

horizontal red links

2-3 tree

Red-black BST representation

Each node is pointed to by precisely one link (from its parent) \Rightarrow can encode color of links in nodes.

```
private static final boolean RED = true;
private class Node
i
    Key key;
    Value val;
    Node left, right;
    boolean color; // color of parent link
}
private boolean isRed(Node x)
    i
    if (x == null) return false;
    return x.color == RED;
}
null links are black
```


Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.
rotate E left
(before)

${ }^{\text {pri }}$
private Node rotateLeft(Node h)
ass
Node
Node $\mathrm{x}=\mathrm{h}$.right; h.right $=\mathbf{x}$.
x.left $=h$;
x. color $=$ h.color
h. color = RED;
return \mathbf{x};
\}

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

```
rotate E left
(after)
```



```
private Node rotateLeft (Node h)
1
Node
Node \(x=h\).right
h.right \(=\mathbf{x}\).lef
x. left \(=\) h;
x.color \(=\) h.color
h. color \(=\) RED
return x ;
\}
```

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

rotate S right
(after)


```
private Node rotateRight(Node h)
i
    Node x = h.left;
    Node x = h.left;
    h.left = x.righ
    x.right = h;
    x.color = h.color
    h.color = RED
    return x
```


private Node rotateRight (Node h)
1
assert isRed (h.left)
Node $x=h$.left;
x. right = h;
x.right $=h$;
x. color $=h$.
x. color $=$ h.color
h. color $=$ RED
heturn \mathbf{x};
\}

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

Invariants. Maintains symmetric order and perfect black balance.

Insertion in a LLRB tree: overview

Basic strategy. Maintain I-I correspondence with 2-3 trees by applying elementary red-black BST operations.

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

private void flipColors(Node h)
${ }^{\mathrm{pr}}$
assert !isRed (h) assert isRed (h.left) asset isRed(h.right) h. color $=$ RED ;
h. left. color = BLACK;
h.right.color = BLACK;

Invariants. Maintains symmetric order and perfect black balance.

Insertion in a LLRB tree

Warmup I. Insert into a tree with exactly I node.

Insertion in a LLRB tree

Case I. Insert into a 2 -node at the bottom.

- Do standard BST insert; color new link red.
- If new red link is a right link, rotate left.

Insertion in a LLRB tree

Case 2. Insert into a 3-node at the bottom

- Do standard BST insert; color new link red.
- Rotate to balance the 4-node (if needed).
- Flip colors to pass red link up one level.

As with 2-3 Trees
we have to update parents, bottom-to-top if we violate the conditions

- Rotate to make lean left (if needed).

Insertion in a LLRB tree

Warmup 2. Insert into a tree with exactly 2 nodes.

Think of this as a split in
2-3 tree

62

Insertion in a LLRB tree: passing red links up the tree

Case 2. Insert into a 3-node at the bottom

- Do standard BST insert; color new link red.
- Rotate to balance the 4-node (if needed).
- Flip colors to pass red link up one level.
- Rotate to make lean left (if needed)
- Repeat case I or case 2 up the tree (if needed).

Red-black BST insertion

insert S

Red-black BST insertion

insert A

Red-black BST insertion

insert E

Red-black BST insertion

insert A

\qquad (rotate S right)

Red-black BST insertion

both children red
(flip colors)

Red-black BST insertion

both children red
(flip colors)

Red-black BST insertion

red-black BST

Red-black BST insertion

insert R

Red-black BST insertion

red-black BST

Red-black BST insertion

insert C

Red-black BST insertion

Red-black BST insertion

red-black BST

Red-black BST insertion

red-black BST

Red-black BST insertion

insert H

Red-black BST insertion

Red-black BST insertion

Red-black BST insertion

Red-black BST insertion

Red-black BST insertion

red-black BST

Red-black BST insertion

red-black BST

Red-black BST insertion

red-black BST

Red-black BST insertion

insert X

Red-black BST insertion

insert X

Red-black BST insertion

red-black BST

Red-black BST insertion

red-black BST

Red-black BST insertion

insert M

Red-black BST insertion

red-black BST

Red-black BST insertion

insert P

Red-black BST insertion

insert P

Red-black BST insertion

Red-black BST insertion

Red-black BST insertion

Red-black BST insertion

Red-black BST insertion

red-black BST

Red-black BST insertion

red-black BST

Red-black BST insertion

red-black BST

Red-black BST insertion

insert L

Red-black BST insertion

red-black BST

LLRB tree insertion trace

Standard indexing client.

Insertion in a LLRB tree: Java implementation

Same code for both cases.

- Right child red, left child black: rotate left.
- Left child, left-left grandchild red: rotate right.
- Both children red: flip colors.

private Node put(Node h, Key key, Value val)
1
if (h == null) return new Node (key, val, RED)) ;

if (cmp < 0) h.left = put(h.left, key, val);
else if (cmp >0) h.right = put(h.right, key, val)
else if (cmp == 0) h.val = val;
if (isRed (h.right) \&\& !isRed (h.left)) $\quad \mathrm{h}=$ rotateLeft (h); if (isRed(h.left) $\& \&$ isRed (h.left.left)) $\mathrm{h}=$ rotateRight (h); if (isRed (h.left) \&\& isRed(h.right)) flipColors(h); return $h ; \quad \uparrow$

Insertion in a LLRB tree: visualization

255 insertions in ascending order

Insertion in a LLRB tree: visualization

Remark. Only a few extra lines of code to standard BST insert.

255 random insertions

Insertion in a LLRB tree: visualization

Remark. Only a few extra lines of code to standard BST insert.

255 insertions in descending order

Balance in LLRB trees

Proposition. Height of tree is $\leq 2 \lg N$ in the worst case
Pf.

- Every path from root to null link has same number of black links.
- Never two red links in-a-row.

Property. Height of tree is $\sim 1.00 \lg N$ in typical applications.

ST implementations: frequency counter

Balanced Search Trees

- 2-3 search trees
- Red-black BSTs
- B-trees
- Geometric applications of BSTs

ST implementations: summary

implementation	worst-case cost (after N inserts)			$\begin{gathered} \text { average case } \\ \text { (after } \mathrm{N} \text { random inserts) } \end{gathered}$			ordered iteration?	$\begin{gathered} \text { key } \\ \text { interface } \end{gathered}$
	search	insert	delete	search hit	insert	delete		
sequential search (unordered list)	N	N	N	N/2	N	N/2	no	equals()
binary search (ordered array)	$\lg N$	N	N	$\lg N$	N/2	N/2	yes	compareTo ()
BST	N	N	N	1.39 gm	1.39 gm	?	yes	compareto ()
2-3 tree	$\mathrm{clg} N$	$\mathrm{clg} N$	$c \lg N$	$c^{\lg } \mathrm{N}$	$c^{\lg } \mathrm{N}$	$c^{\lg } \mathrm{N}$	yes	compareto ()
red-black BST	$2 \lg \mathrm{~N}$	$2 \lg N$	$2 \lg \mathrm{~N}$	$1.00 \lg \mathrm{~N}^{*}$	$1.00 \lg \mathrm{~N}^{*}$	$1.00 \lg \mathrm{~N}^{*}$	yes	compareto ()

*exact value of coefficient unknown but extremely close to 1

File system model

Page. Contiguous block of data (e.g., a file or 4,096-byte chunk).
Probe. First access to a page (e.g., from disk to memory).

slow

fast

Property. Time required for a probe is much larger than time to access data within a page.

Cost model. Number of probes.

Goal. Access data using minimum number of probes.

B-trees (Bayer-McCreight, 1972)

B-tree. Generalize 2-3 trees by allowing up to $M-1$ key-link pairs per node.

- At least 2 key-link pairs at root.

choose M as large as possible so
- At least $M / 2$ key-link pairs in other nodes.

$$
\text { that } \mathrm{M} \text { links fit in a page, e.g., } \mathrm{M}=1024
$$

- External nodes contain client keys.
- Internal nodes contain copies of keys to guide search.

Insertion in a B-tree

- Search for new key.
- Insert at bottom.
- Split nodes with M key-link pairs on the way up the tree.

Searching in a B-tree

- Start at root.
- Find interval for search key and take corresponding link.
- Search terminates in external node

Balance in B-tree

Proposition. A search or an insertion in a B-tree of order M with N keys requires between $\log _{M-1} N$ and $\log _{M / 2} N$ probes.

Pf. All internal nodes (besides root) have between $M / 2$ and M - 1 links.

In practice. Number of probes is at most 4. \qquad $M=1024 ; N=62$ billion

Optimization. Always keep root page in memory.

Building a large B tree

Balanced Search Trees

- 2-3 search trees
- Red-black BSTs
- B-trees
- Geometric applications of BSTs

Balanced trees in the wild

Red-black trees are widely used as system symbol tables

- Java: java.util.TreeMap, java.util.TreeSet
- C++ STL: map, multimap, multiset.
- Linux kernel: completely fair scheduler, linux/rbtree.h.
B-tree variants. $\mathrm{B}+$ tree, B^{*} tree, $\mathrm{B} \#$ tree, ...

B-trees (and variants) are widely used for file systems and databases.

- Windows: HPFS
- Mac: HFS, HFS+.
- Linux: ReiserFS, XFS, Ext3FS, JFS.
- Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

GEOMETRIC APPLICATIONS OF BSTS

- kd trees

2-d orthogonal range search

Extension of ordered symbol-table to 2d keys.

- Insert a 2d key.
- Delete a 2d key.
- Search for a 2d key.
- Range search: find all keys that lie in a 2 d range.
- Range count: number of keys that lie in a $2 d$ range.

Geometric interpretation.

- Keys are point in the plane.
- Find/count points in a given $h-v$ rectangle.

$$
\uparrow_{\text {rectangle is axis-aligned }}^{\uparrow}
$$

Applications. Networking, circuit design, databases,...

2d orthogonal range search: grid implementation costs

Space-time tradeoff.

- Space: $M^{2}+N$.
- Time: $1+N / M^{2}$ per square examined, on average.

Choose grid square size to tune performance.

- Too small: wastes space.
- Too large: too many points per square.
- Rule of thumb: $\sqrt{ } N$-by- $\sqrt{ } N$ grid.

Running time. [if points are evenly distributed]

- Initialize data structure: N.
- Insert point: 1.

2d orthogonal range search: grid implementation

Grid implementation.

- Divide space into M-by- M grid of squares.
- Create list of points contained in each square.
- Use 2d array to directly index relevant square.
- Insert: add (x, y) to list for corresponding square.
- Range search: examine only those squares that intersect 2d range query.

Clustering

Grid implementation. Fast and simple solution for evenly-distributed points.

Problem. Clustering a well-known phenomenon in geometric data.

- Lists are too long, even though average length is short.
- Need data structure that gracefully adapts to data.

Clustering

Grid implementation. Fast and simple solution for evenly-distributed points.

Problem. Clustering a well-known phenomenon in geometric data.
Ex. USA map data.

13,000 points, 1000 grid squares

Space-partitioning trees: applications

Applications.

- Ray tracing.
- 2d range search.
- Flight simulators.
- N-body simulation.
- Collision detection.
- Astronomical databases.
- Nearest neighbor search.
- Adaptive mesh generation.
- Accelerate rendering in Doom.

- Hidden surface removal and shadow casting.

Grid

2d tree

Quadtree

BSP tree

Space-partitioning trees

Use a tree to represent a recursive subdivision of 2 d space.
Grid. Divide space uniformly into squares.
2d tree. Recursively divide space into two halfplanes.
Quadtree. Recursively divide space into four quadrants.
BSP tree. Recursively divide space into two regions.
み
Grid

${ }^{134}$

Quadtree

Idea. Recursively divide space into 4 quadrants.
Implementation. 4-way tree (actually a trie).

${ }^{\text {public class }}$ QuadTree
private quad quad; private value val; private QuadTree NW, NE, SW, SE;
\}

Benefit. Good performance in the presence of clustering.
Drawback. Arbitrary depth!

Quadtree: larger example

http://en.wikipedia.org/wiki/Image:Point_quadtree.svg

Kd tree

Kd tree. Recursively partition k-dimensional space into 2 halfspaces.

Implementation. BST, but cycle through dimensions ala 2d trees.

Efficient, simple data structure for processing k-dimensional data.

- Widely used.
- Adapts well to high-dimensional and clustered data.
- Discovered by an undergrad in an algorithms class!

Curse of dimensionality

k -d range search. Orthogonal range search in k-dimensions. Main application. Multi-dimensional databases.

3d space. Octrees: recursively subdivide 3d space into 8 octants.
100d space. Centrees: recursively subdivide 100d space into 2^{100} centrants???

Raytracing with octrees
http://graphics.cs.ucdavis.edu/~gregorsk/graphics/275.htm

N-body simulation

Goal. Simulate the motion of N particles, mutually affected by gravity.

http://www.youtube.com/watch?v=ua7YIN4eL_w

Brute force. For each pair of particles, compute force. $F=\frac{G m_{1} m_{2}}{r^{2}}$

Appel algorithm for \mathbf{N}-body simulation

Key idea. Suppose particle is far, far away from cluster of particles.

- Treat cluster of particles as a single aggregate particle.
- Compute force between particle and center of mass of aggregate particle.

Appel algorithm for \mathbf{N}-body simulation

- Build 3d-tree with N particles as nodes.
- Store center-of-mass of subtree in each node.
- To compute total force acting on a particle, traverse tree, but stop as soon as distance from particle to subdivision is sufficiently large

suan, ses. sax. comarn

an efficient program for many-body simulation ${ }^{*}$ ANDREW w. APPLL

Impact. Running time per step is $N \log N$ instead of $N^{2} \Rightarrow$ enables new research.

