BBM 202 - ALGORITHMS

HACETTEPE UNIVERSITY

DEPT. OF COMPUTER ENGINEERING

BALANCED TREES

Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick
and K. Wayne of Princeton University.

BALANCED SEARCH TREES

» 2-3 search trees

» Red-black BSTs

» B-trees

» Geometric applications of BSTs

worst-case cost average case

(after N inserts) (after N random inserts) ordered key

implementation : : :
: : : iteration? interface
search | insert delete | search hit insert delete

sequential search

_ N N N/2 N N/2 no equals ()
(unordered list)
binary search
Ig N N N Ig N N/2 N/2 yes compareTo ()
(ordered array)
BST N N N 1.391gN 1.391gN ? yes compareTo ()
goal log N log N log N log N log N log N yes compareTo ()

» Challenge. Guarantee performance.

BALANCED SEARCH TREES

» 2-3 search trees

» Red-black BSTs

» B-trees

» Geometric applications of BSTs

2-3 tree

You can read it as 2 or 3 children tree

Allow | or 2 keys per node.

® 2-node: one key, two children.

e 3-node: two keys, three children.

3-node 2-node

E) (R)

SO OEENONNCT

null link

2-3 tree

Allow | or 2 keys per node.

® 2-node: one key, two children.
e 3-node: two keys, three children.

Our Aim is Perfect balance. Every path from root to null link has same
length.

3-node 2-node

.
E) /

SO OEENONNCT
AN

null link

2-3 tree

Allow | or 2 keys per node.

® 2-node: one key, two children.
e 3-node: two keys, three children.

Perfect balance. Every path from root to null link has same length.

Symmetric order. Inorder traversal yields keys in ascending order.

smaller than E E J e

\ larager than |
/

O/ ORI ONNC

between E and]

2-3 tree demo

Search.

e Compare search key against keys in node.
e Find interval containing search key.
e Follow associated link (recursively).

search for H _
H is less than M

(go left)

PO
E) (R)

SO OEENONNCT

2-3 tree demo

Search.

e Compare search key against keys in node.
® Find interval containing search key.
e Follow associated link (recursively).

search for H

H is between E and J

(M,
(go middle)
H Ce) (R)

SO OEENONNCT

2-3 tree demo

Search.

e Compare search key against keys in node.
® Find interval containing search key.
e Follow associated link (recursively).

search for H

E) (R)

ORI IR ONNCT

found H
(search hit)

2-3 tree demo

Search.

e Compare search key against keys in node.
® Find interval containing search key.
e Follow associated link (recursively).

search for B _
B is less than M

(go left)

5 (M)
E) (R)

SO OEENONNCT

2-3 tree demo

Search.

e Compare search key against keys in node.
® Find interval containing search key.
e Follow associated link (recursively).

search for B

B is less than E

O
(go left)
s (E) (R)

SO OEENONNCT

2-3 tree demo

Search.

e Compare search key against keys in node.
® Find interval containing search key.
e Follow associated link (recursively).

search for B

E) (R)

B is between A and C
(go middle)

SOOI ONNC

2-3 tree demo

Search.

e Compare search key against keys in node.
® Find interval containing search key.
e Follow associated link (recursively).

search for B

E) (R)

SO OEENONNCT

B

link is null

(search miss)

Insert Operation

» Problem with Binary Search Tree: when the tree grows from leaves, it

is possible to always insert to same branch. (worst-case)

» Instead of growing the tree from bottom, try to grow upwards.

» If there is space in a leaf, simply insert it
» Otherwise push nodes from bottom to top, if done recursively the tree will be
balanced as it grows (increasing the height by introducing a new root)

» If we keep on inserting to same branch;

BST: @ 2 or 3 Tree: e
(8
7 CORRO
(6)

2-3 tree demo

Insert into a 2-node at bottom.

® Search for key, as usual.
® Replace 2-node with 3-node.

Kis less than M
(go left)

K {m,
E) (R)

insert K

SO OEENONNCT

2-3 tree demo

Insert into a 2-node at bottom.

® Search for key, as usual.
® Replace 2-node with 3-node.

insert K

K is greater than J

O
(go right)
« CEJ (R)

SO OEENONNCT

2-3 tree demo

Insert into a 2-node at bottom.

® Search for key, as usual.
® Replace 2-node with 3-node.

insert K

E) (R)

OENORICEENONNCT

search ends here

2-3 tree demo

Insert into a 2-node at bottom.

® Search for key, as usual.
® Replace 2-node with 3-node.

insert K

E) (R)

OENORICEENONNC

replace 2-node with
3-node containing K

2-3 tree demo

Insert into a 2-node at bottom.

® Search for key, as usual.
® Replace 2-node with 3-node.

insert K

E) (R)

IO T ENONEG

2-3 tree demo

Insert into a 3-node at bottom.

e Add new key to 3-node to create temporary 4-node.
¢ Move middle key in 4-node into parent.

Z is greater than M
(go right)

(M) 7
‘) (R)

insert Z

RO ENONEG

2-3 tree demo

Insert into a 3-node at bottom.

e Add new key to 3-node to create temporary 4-node.
¢ Move middle key in 4-node into parent.

insert Z

Z is greater than R

O
(go right)
E) (R) 7

RO ENONEG

2-3 tree demo

Insert into a 3-node at bottom.

e Add new key to 3-node to create temporary 4-node.
¢ Move middle key in 4-node into parent.

insert Z

E) (R)

OENON IO

search ends here

2-3 tree demo

Insert into a 3-node at bottom.

e Add new key to 3-node to create temporary 4-node.

¢ Move middle key in 4-node into parent.

insert Z

E) (R)

() Gy () GR

replace 3-node with

temporary 4-node containing Z

2-3 tree demo

Insert into a 3-node at bottom.

e Add new key to 3-node to create temporary 4-node.
¢ Move middle key in 4-node into parent.

insert Z

E) (R)

SO ENONET

2-3 tree demo

Insert into a 3-node at bottom.

e Add new key to 3-node to create temporary 4-node.

¢ Move middle key in 4-node into parent.

insert Z

E) (R)

OB P ENORES">

split 4-node into two 2-nodes

(pass middle key to parent)

2-3 tree demo

Insert into a 3-node at bottom.

e Add new key to 3-node to create temporary 4-node.
¢ Move middle key in 4-node into parent.

insert Z

E J R X

OENONTIORORE

2-3 tree demo

Insert into a 3-node at bottom.

e Add new key to 3-node to create temporary 4-node.
¢ Move middle key in 4-node into parent.

insert Z

E J R X

OENONTIORORE

2-3 tree demo

Insert into a 3-node at bottom.

e Add new key to 3-node to create temporary 4-node.

¢ Move middle key in 4-node into parent.

® Repeat up the tree, as necessary.

e If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

ER

G G O

convert 3-node into 4-node

2-3 tree demo

Insert into a 3-node at bottom.

e Add new key to 3-node to create temporary 4-node.

¢ Move middle key in 4-node into parent.

® Repeat up the tree, as necessary.

e If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

ER

(ac) GHLB) Csx

2-3 tree demo

Insert into a 3-node at bottom.

e Add new key to 3-node to create temporary 4-node.

¢ Move middle key in 4-node into parent.

® Repeat up the tree, as necessary.

e If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

ER

(ac) GHLB) Csx

split 4-node

(move L to parent)

2-3 tree demo

Insert into a 3-node at bottom.

e Add new key to 3-node to create temporary 4-node.

¢ Move middle key in 4-node into parent.

® Repeat up the tree, as necessary.

e If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

2-3 tree demo

Insert into a 3-node at bottom.

e Add new key to 3-node to create temporary 4-node.

¢ Move middle key in 4-node into parent.

® Repeat up the tree, as necessary.

e If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

split 4-node

(move L to parent)

2-3 tree demo

Insert into a 3-node at bottom.

e Add new key to 3-node to create temporary 4-node.
¢ Move middle key in 4-node into parent.

® Repeat up the tree, as necessary.

e If you reach the root and it's a 4-node, split it into three 2-nodes.

height of tree increases by 1

insert L G

2-3 tree demo

Insert into a 3-node at bottom.

e Add new key to 3-node to create temporary 4-node.

¢ Move middle key in 4-node into parent.

® Repeat up the tree, as necessary.

e If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L 0

Search in a 2-3 tree

e Compare search key against keys in node.
® Find interval containing search key.
e Follow associated link (recursively).

successful search for H unsuccessful search for B

H is less than M so B is less than M so

look to the left m look to the left NG m

H is between E and L so B is less than E

look in the middle 50 look to the left
ANGED
(H) (L) (H) (L)

?
}

found H so return value (search hit) B is between A and C so look in the middle
link is null so B is not in the tree (search miss)

36

Insertion in a 2-3 tree

Case |. Insert into a 2-node at bottom.

® Search for key, as usual.
® Replace 2-node with 3-node.

inserting K
(M)
(L)
AN

search for K ends here

N replace 2-node with
new 3-node containing K

37

Insertion in a 2-3 tree

Case 2. Insert into a 3-node at bottom.

e Add new key to 3-node to create temporary 4-node.
¢ Move middle key in 4-node into parent.
® Repeat up the tree, as necessary.

inserting Z

search for Z ends

/ at this 3-node
X

(R)
(5 X)

replace 3-node with
temporary 4-node
/containing Z

replace 2-node
with new 3-node

~ containing

dle key
S) @

N4

split 4-node into two 2-nodes
pass middle key to parent

38

Insertion in a 2-3 tree

Case 2. Insert into a 3-node at bottom.

e Add new key to 3-node to create temporary 4-node.

¢ Move middle key in 4-node into parent.
® Repeat up the tree, as necessary.

increases height by 1

v

e |f you reach the root and it's a 4-node, split it into three 2-nodes.

inserting D

search for D ends

at this 3-node \

add new key D to 3-node
to make temporary 4-node

add middle key C to 3-node
to make temporary 4-node

CEJ
ORO
N/

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into
three 2-nodes £
increasing tree
height by 1

39

Local transformations in a 2-3 tree

Splitting a 4-node is a local transformation: constant number of

///@\
b cd

operations.

less between\ /between\ /between\ /between greater

than a aandb band c c and d dand e than e
a C e

less between\ /between\ /between\ /between greater

than a aandb b and c candd d and e than e

Global properties in a 2-3 tree

Invariants. Maintains symmetric order and perfect balance.
Pf. Each transformation maintains symmetric order and perfect balance.

root parent is a 3-node
—
oo f CIDN (b d e)
(a) (<)

parentis a 2-node

lefi . middle (a e) 1 C e
(ab c) (a) b ¢ d (b) (d)

(d) (b d)
abc (c)
gt & ight (35 G &
——
(b) ()

l

|

41

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

e VWorst case:
e Best case:

42

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
e Worst case: lg N. [all 2-nodes]
e Best case: logs N =.631 lg N.[all 3-nodes]

e Between |2 and 20 for a million nodes.

e Between |8 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

43

ST implementations: summary

worst-case cost average case

(after N inserts) (after N random inserts)

implementation _

sequential search

(unordered list) N N N N72 N N/2
binary search g N N N g N N/2 N/2
(ordered array)
BST N N N .39 1g N .39 1g N 4
2-3 tree clg N clg N clg N clg N clg N clg N

Ny

constants depend upon implementation

ordered
iteration!?

no

yes

yes

yes

key
interface

equals ()

compareTo ()

compareTo ()

compareTo ()

44

2-3 tree: implementation?

Direct implementation is complicated, because:
e Maintaining multiple node types is cumbersome.

® Need multiple compares to move down tree.

® Need to move back up the tree to split 4-nodes.

® Large number of cases for splitting.

Bottom line. Could do it, but there's a better way.

45

BALANCED SEARCH TREES

» 2-3 search trees

» Red-black BSTs

» B-trees

» Geometric applications of BSTs

Multiple Node Types

» In 2-3 Trees, the algorithm automatically balances the tree
» However, we have to keep track of two different node types,

complicating the source code.

» Nodes with one key
» Nodes with two keys

» Instead of multiple nodes:
» Multiple edge types; red and black
» Rotations instead of Split

47

Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and
Sedgewick 2007)

|. Represent 2—3 tree as a BST.
2. Use "internal” left-leaning links as "glue" for 3—nodes.

- <« .
3-node larger key is root
less between greater greater

than a aandb than b
than b
less between
than a aandb

_ black links connect
red links "glue”
2-nodes and 3-nodes

nodes within aijde /

2-3 tree corresponding red-black BST

48

An equivalent definition

A BST such that;

® No node has two red links connected to it.

e Every path from root to null link has the same number of black links.
- We will only allow one red link to simulate 2 keys in node

- A node with two red links would be the same as having 3 keys

"perfect black balance"
® Red links lean left (correct ordering)

49

Left-leaning red-black BSTs: I-1 correspondence with
2-3 trees

Key property. |-l correspondence between 2—-3 and LLRB.

red—black tree

horizontal red links m
(B (], (R)
(Ae(C] (H) (D) (P) (SMX;

2-3 tree

50

Search implementation for red-black BSTs

Observation. Search is the same as for elementary BST (ignore color).

1

but runs faster because of better balance

public Val get (Key key)
{
Node x = root;
while (x '= null)
{

int cmp = key.compareTo (x.key) ;

if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else return x.val;

}

return null;

Remark. Most other ops (e.g., ceiling, selection, iteration) are also

identical.

51

Red-black BST representation

Each node is pointed to by precisely one link (from its parent) =

can encode color of links in nodes.

private static final boolean RED = true;
private static final boolean BLACK = false;
private class Node
{

Key key;

Value val;

Node left, right;

boolean color; // color of parent link

}

private boolean isRed (Node x)

{

if (x == null) return false;

return x.color == RED;
}

null links are black

h.left.color
is RED Ny

©
(A} (D)

(E)

yd

h

(G)

h.right.color

.~ is BLACK

52

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left

(before) .
private Node rotateleft (Node h)

{
h assert isRed(h.right);
Node x = h.right;
X h.right = x.left;
x.left = h;
xX.color = h.color;
h.color = RED;

less
than E

return x;

between greater
EandS than S

Invariants. Maintains symmetric order and perfect black balance.

53

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left

(after) .
private Node rotateleft (Node h)

{

X assert isRed(h.right) ;
Node x = h.right;
h h.right = x.left;
greater x.left = h;

xXx.color = h.color;
h.color = RED;
return x;

than S

less between
than E Eand S

Invariants. Maintains symmetric order and perfect black balance.

54

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right

(before) ; :
private Node rotateRight (Node h)
{
h assert isRed (h.left) ;
Node x = h.left;
X h.left = x.right;
greater x.right = h;
than S xXx.color = h.color;
h.color = RED;
return x;
less between
than E Eand S

Invariants. Maintains symmetric order and perfect black balance.

55

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right

(after)) :
private Node rotateRight (Node h)

{

X assert isRed(h.left);
Node x = h.left;
h h.left = x.right;

x.right = h;
xX.color = h.color;
h.color = RED;
return x;

less
than E

between greater
EandS than S

Invariants. Maintains symmetric order and perfect black balance.

56

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors

(before) : : .
private void flipColors (Node h)

{

assert !isRed (h) ;
assert isRed (h.left) ;
asset isRed(h.right) ;
h.color = RED;
h.left.color = BLACK;
h.right.color = BLACK;

less between between greater
than A A and E EandS than S

Invariants. Maintains symmetric order and perfect black balance.

57

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors

(after) : : .
private void flipColors (Node h)

{

assert !isRed (h) ;
assert isRed (h.left) ;
asset isRed(h.right) ;
h.color = RED;
h.left.color = BLACK;
h.right.color = BLACK;

less between between greater
than A A and E EandS than S

Invariants. Maintains symmetric order and perfect black balance.

58

Insertion in a LLRB tree: overview

Basic strategy. Maintain |-l correspondence with 2-3 trees by
applying elementary red-black BST operations.

insert C

(E)
(A) IS
(R

add new
node here

right link red

so rotate left

59

Insertion in a LLRB tree

Warmup |. Insert into a tree with exactly | node.

(a) ™~

™~ search ends
at this null link

(b

root
e

red link to
new node
containing a

converts 2-node
to 3-node

right
root
Ve

search ends
“~at this null link

a attached new node

<~ with red link

(b
root

'

rotated left

e ™\ to make a
legal 3-node

60

Insertion in a LLRB tree

Case |. Insert into a 2-node at the bottom.

e Do standard BST insert; color new link red.
¢ |f new red link is a right link, rotate left.

insert C

(E)
(A) IS
(R

add new
node here

right link red

so rotate left

Peo

6l

Insertion in a LLRB tree

: : Think of this as a split in
Warmup 2. Insert into a tree with exactly 2 nodes. , , i l

larger smaller between

G search ends (c)
_— atthis search ends
e null link @ at this null link

N search ends
at this null link

e

attached new

attached new (< (b) nffdel?:ih
@ — node with (b)
red link (a) ~_attached new
e G node with
red link (b
rotated e rotated left
right .
G rotate
colors flipped 2 o b, right
'D «— to black
G colors flipped :
2 (b) o 10 black (b) ;Ol;ré{gflf ed

(a) (0

62

Insertion in a LLRB tree

Case 2. Insert into a 3-node at the bottom.
As with 2-3 Trees

we have to update parents,

e Do standard BST insert; color new link red.

® Flip colors to pass red link up one level. conditions

e Rotate to make lean left (if needed).

inserting H two lefts in a row
G so rotate right

NS —p i
oNG

/
add new
node here /
right link red

so rotate left
both children red l

so flip colors

:

63

Insertion in a LLRB tree: passing red links up the tree

Case 2. Insert into a 3-node at the bottom.

® Do standard BST insert; color new link red.

e Rotate to balance the 4-node (if needed).

® Flip colors to pass red link up one level.

e Rotate to make lean left (if needed).

® Repeat case | or case 2 up the tree (if needed).

inserting P

both children red

so flip colors

red so

flip colors

‘ two lefts in a row

so rotate right

node here

right link red
so rotate left
N

both children red

so flip colors

Red-black BST insertion

insert S

i

65

Red-black BST insertion

insert E

66

Red-black BST insertion

insert A

67

Red-black BST insertion

two left reds in a row

insert A (rotate S right)

68

Red-black BST insertion

both children red

(flip colors)

69

Red-black BST insertion

both children red

(flip colors)

70

Red-black BST insertion

red-black BST

71

Red-black BST insertion

red-black BST

72

Red-black BST insertion

insert R

73

Red-black BST insertion

red-black BST

74

Red-black BST insertion

red-black BST

75

Red-black BST insertion

insert C

76

Red-black BST insertion

right link red
(rotate A left)

77

Red-black BST insertion

red-black BST

78

Red-black BST insertion

red-black BST

79

Red-black BST insertion

red-black BST

80

Red-black BST insertion

insert H

8l

Red-black BST insertion

two left reds in a row
(rotate S right)

82

Red-black BST insertion

both children red

(flip colors)

83

Red-black BST insertion

both children red

(flip colors)

84

Red-black BST insertion

right link red
(rotate E left)

85

Red-black BST insertion

red-black BST

86

Red-black BST insertion

red-black BST

87

Red-black BST insertion

red-black BST

88

Red-black BST insertion

insert X

89

Red-black BST insertion

insert X

right link red
(rotate S left)

90

Red-black BST insertion

red-black BST

91

Red-black BST insertion

red-black BST

92

Red-black BST insertion

red-black BST

93

Red-black BST insertion

insert M

94

Red-black BST insertion

insert M

right link red
(rotate H left)

95

Red-black BST insertion

red-black BST

96

Red-black BST insertion

insert P

97

Red-black BST insertion

insert P

two red children

(flip colors)

98

Red-black BST insertion

insert P

two red children

(flip colors)

99

Red-black BST insertion

right link red
(rotate E left)

100

Red-black BST insertion

two left reds in a row
(rotate R right)

0l

Red-black BST insertion

two red children

(flip colors)

102

Red-black BST insertion

two red children

(flip colors)

103

Red-black BST insertion

red-black BST

104

Red-black BST insertion

red-black BST

105

Red-black BST insertion

red-black BST

106

Red-black BST insertion

insert L

107

Red-black BST insertion

insert L

G right link red e

(rotate H left)

108

Red-black BST insertion

red-black BST

109

LLRB tree insertion trace

Standard indexing client.

insert S @
-
(E,
A
(E)
[S)
(R,

C (C)

red-black BST corresponding 2-3 tree

110

LLRB tree insertion trace

Standard indexing client (continued).

red-black BST

corresponding 2-3 tree

Insertion in a LLRB tree: Java implementation

Same code for both cases.

e Right child red, left child black: rotate left. h
o |eft child, left-left grandchild red: rotate right. i —
® Both children red: flip colors.

left "
otate
\\r@ht
rotate flip
qb\g colors

insert at bottom

private Node put (Node h, Key key, Value val)
{

if (h == null) return new Node (key, wval, RED);

: (and color red)
int cmp = key.compareTo (h.key) ;

if (cmp < 0) h.left = put(h.left, key, val);

else if (cmp > 0) h.right = put(h.right, key, val);

else if (cmp == 0) h.wval = wval;

if (isRed(h.right) && 'isRed(h.left)) h = rotatelLeft (h); lean left

if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h); balance 4-node
if (isRed(h.left) && isRed(h.right)) flipColors (h) ; split 4-node

1

return h; :
only a few extra lines of code

provides near-perfect balance

112

MO D O)

255 insertions in descending order

Insertion in a LLRB tree: visualization

Remark. Only a few extra lines of code to standard BST insert.

N =255
max = 10
avg = 7.3
opt=7.0
tln“““ l"l A" "t t“ “ A § llt u't"
l 1 VIO [AN AL

255 random insertions

15

Balance in LLRB trees

Proposition. Height of tree is < 2 1g NV in the worst case.
Pf.

® Every path from root to null link has same number of black links.

® Never two red links in-a-row.

I A‘A A‘
A A it ‘,ﬁ

Property. Height of tree is ~ 1.00 lIg N in typical applications.

116

ST implementations: frequency counter

20—

-—13.9

cost

© e emeomes

: |
0 operations 14350

Costs for java FrequencyCounter 8 < tale.txt using BST

20—

cost
f

o

[\)

. |
0 operations 14350

Costs for java FrequencyCounter 8 < tale.txt using RedBlackBST

117

ST implementations: summary

worst-case cost average case

ordered key

implementation : , :
iteration? interface

search insert delete search hit insert delete

sequential search

(nordered lis0) N N N N/2 N N/2 no equals ()
(::.ZZZ je:rr:;;) g N N N g N N/2 N/2 yes compareTo ()
BST N N N .39 Ig N .39 Ig N ? yes compareTo ()
2-3 tree clgN clg N clg N clgN clg N clg N yes compareTo ()
red-black BST 21g N 21g N 21g N 1.00 g N ™ 1.00 Ilg N ™ 1.00 Ig N ™ yes compareTo ()

* exact value of coefficient unknown but extremely close to 1

118

BALANCED SEARCH TREES

» 2-3 search trees

» Red-black BSTs

» B-trees

» Geometric applications of BSTs

File system model

Page. Contiguous block of data (e.g., a file or 4,096-byte chunk).
Probe. First access to a page (e.g., from disk to memory).

Property. Time required for a probe is much larger than time to access

data within a page.
Cost model. Number of probes.

Goal. Access data using minimum number of probes.

120

B-trees (Bayer-McCreight, 1972)

B-tree. Generalize 2-3 trees by allowing up to M - 1 key-link pairs per node.
® At least 2 key-link pairs at root. AN

choose M as large as possible so

. I .
At least M/ 2 key-link pairs in other nodes. that M links fit in a page, e.g., M = 1024

® External nodes contain client keys.
¢ Internal nodes contain copies of keys to guide search.

2" node

sentinel ke)’ / \mternal 3-node
each red key is a copy ___

of min key in subtree K{QU

external
7 nOde / \\ external 5- node (fV Nﬁaﬂ node

"“BC DEF KMNOP QRT UlW XY

client keys (black) all nodes except the root are 3-, 4- or 5-nodes
are in external nodes
Anatomy of a B-tree set (M = 6)

121

Searching in a B-tree

e Start at root.
¢ Find interval for search key and take corresponding link.
® Search terminates in external node.

searching for E
follow this link because

E is between * Q”V

” DH

follow this link because
_—E 1sbetween D and H
D EF
search for E in v

this external node

Searching in a B-tree set (M = 6)

122

Insertion in a B-tree

® Search for new key.
® Insert at bottom.
e Split nodes with M key-link pairs on the way up the tree.

inserting A *THIKIQ|U
* BIC E F HIJ KMNOP QR T UW X
*ABCEF
new key (A) causes *CIHIK/QU new key (C) causes
overflow and split overflow and split

* A B CEF

root split causes _ ,|K|QlU

a new root to be created \\

—

*|CH
_—— '\

Inserting a new key into a B-tree set

123

Balance in B-tree

Proposition. A search or an insertion in a B-tree of order M with N keys

requires between log y_1 N and log m2 N probes.

Pf. All internal nodes (besides root) have between M /2 and M - 1 links.

In practice. Number of probes is at most 4. M=1024;N =62 billion
logme2 N < 4

Optimization. Always keep root page in memory.

124

Building a large B tree

white: unoccupied portion of page
each line shows the result /
of inserting one key ———>
1n some page

black: occupied portion of page
L

—=F = = =5 =r=or——3 = = _i%\ full page splits into
——=—+———=—+——F——+ == two half -full pages

— e e e e e = === thenanewkeyisadded
- s s to one of them

Balanced trees in the wild

Red-black trees are widely used as system symbol tables.
® Java: java.util.TreeMap, java.util.TreeSet.

e C++ STL: map, multimap, multiset.

® Linux kernel: completely fair scheduler, 1inux/rbtree.n.

B-tree variants. B+ tree, B*tree, B# tree, ...

B-trees (and variants) are widely used for file systems and databases.
¢ Windows: HPFS.

e Mac: HFS, HFS+.

e Linux: ReiserFS, XFS, Ext3FS, JFS.

e Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

126

BALANCED SEARCH TREES

» 2-3 search trees

» Red-black BSTs

» B-trees

» Geometric applications of BSTs

GEOMETRIC APPLICATIONS OF BSTs

» kd trees

2-d orthogonal range search

Extension of ordered symbol-table to 2d keys.
¢ Insert a 2d key.

® Search for a 2d key.
® Range search: find all keys that lie in a 2d range.
® Range count: number of keys that lie in a 2d range.

Geometric interpretation.
e Keys are point in the plane.

® Find/count points in a given /—v rectangle.

1 .

rectangle is axis-aligned

Applications. Networking, circuit design, databases,...

129

2d orthogonal range search: grid implementation

Grid implementation.

e Divide space into M-by-M grid of squares.

® Create list of points contained in each square.

e Use 2d array to directly index relevant square.

® Insert: add (x, y) to list for corresponding square.

® Range search: examine only those squares that intersect 2d range query.

130

2d orthogonal range search: grid implementation

costs

Space-time tradeoff.
® Space: M2+ N.

e Time: 1 + N/ M?2 per square examined, on average.

Choose grid square size to tune performance.
® TJoo small: wastes space.

¢ Too large: too many points per square.
e Rule of thumb: VN-by-VN grid.

Running time. [if points are evenly distributed]

e |nitialize data structure: N.
* Insert point: 1. 4% choose M ~ N o

® Range search: 1 per point in range.

131

Clustering

Grid implementation. Fast and simple solution for evenly-distributed points.

Problem. Clustering a well-known phenomenon in geometric data.

e Lists are too long, even though average length is short.
® Need data structure that gracefully adapts to data.

132

Clustering

Grid implementation. Fast and simple solution for evenly-distributed points.

Problem. Clustering a well-known phenomenon in geometric data.
Ex. USA map data.

E A -
l.' F".‘;- ‘.f‘ o
-“*_‘"": % ‘. v
13,000 points, 1000 grid squares
--------- --lllllllllllllllll
half the squares are empty half the points are

in 10% of the squares
133

Space-partitioning trees

Use a tree to represent a recursive subdivision of 2d space.

Grid. Divide space uniformly into squares.
2d tree. Recursively divide space into two halfplanes.
Quadtree. Recursively divide space into four quadrants.

BSP tree. Recursively divide space into two regions.

..

..

Grid 2d tree Quadtree BSP tree
134

Space-partitioning trees: applications

Applications.

® Ray tracing.

e 2d range search.

® Flight simulators.

® N-body simulation.

e Collision detection.

e Astronomical databases.

® Nearest neighbor search.
e Adaptive mesh generation.

® Accelerate rendering in Doom.
e Hidden surface removal and shadow casting.

..

..

..

Grid 2d tree Quadtree BSP tree

135

Quadtree

|dea. Recursively divide space into 4 quadrants.
Implementation. 4-way tree (actually a trie).

..., 1.0 | e : — ~
S | a h
. °c l /

d |
| 'd
| I d e f g
e l
| o | b C
| o |
: "l o, *h |
N T__________“___j public class QuadTree

{
(e ey Mo private Quad quad;

private Value val;
private QuadTree NW, NE, SW, SE;

Benefit. Good performance in the presence of clustering.
Drawback. Arbitrary depth!

136

Quadtree: larger example

Q
B TR E TR S TS W
J) O (.i [} (I)c) y— 1O
1c
-0 o9 o 9 o e°| |9, L
[O)
1 | ‘ 1 |
9 o 0 o
O 'v | 1O QI
o . o o
C C C N
5t o oP O
|

O (o] -O (o
.d? 1 o _b) = o o)

og- | % ¢ ° o‘]) §

http://en.wikipedia.org/wiki/Image:Point_quadtree.svg .

Curse of dimensionality

k-d range search. Orthogonal range search in k-dimensions.

Main application. Multi-dimensional databases.

3d space. Octrees: recursively subdivide 3d space into 8 octants.
100d space. Centrees: recursively subdivide 100d space into 2100 centrants???

Raytracing with octrees

http://graphics.cs.ucdavis.edu/~gregorsk/graphics/275.html

138

Kd tree

Kd tree. Recursively partition k-dimensional space into 2 halfspaces.

Implementation. BST, but cycle through dimensions ala 2d trees.

/@\

level =i (mod k)

points points

whose ith whose ith

coordinate coordinate

is less than p’s is greater than p’s

™

Efficient, simple data structure for processing k-dimensional data. ":

® Widely used. r =

® Adapts well to high-dimensional and clustered data. ﬂ’
Jon Bentley

® Discovered by an undergrad in an algorithms class!

139

N-body simulation

Goal. Simulate the motion of N particles, mutually affected by gravity.

http:/ /www.youtube.com/watch?v=ua7YIN4elL_w

Brute force. For each pair of particles, compute force. p_ G712

140

Appel algorithm for N-body simulation

Key idea. Suppose particle is far, far away from cluster of particles.

® Treat cluster of particles as a single aggregate particle.
e Compute force between particle and center of mass of aggregate particle.

141

Appel algorithm for N-body simulation

® Build 3d-tree with N particles as nodes.

e Store center-of-mass of subtree in each node.

¢ To compute total force acting on a particle, traverse tree, but stop as soon as

distance from particle to subdivision is sufficiently large.

Impact. Running time per step is N log N instead of N2 = enables new

research.

SIAM J. SC1. STAT. COMPUT. © 1985 Society for Industrial and Applied Mathematics
Vol. 6, No. 1, January 1985 008

AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION*

ANDREW W. APPELfY

Abstract. The simulation of N particles interacting in a gravitational force field is useful in astrophysics,
but such simulations become costly for large N. Representing the universe as a tree structure with the
particles at the leaves and internal nodes labeled with the centers of mass of their descendants allows several
simultaneous attacks on the computation time required by the problem. These approaches range from
algorithmic changes (replacing an O(N?) algorithm with an algorithm whose time-complexity is believed
to be O(N log N)) to data structure modifications, code-tuning, and hardware modifications. The changes
reduced the running time of a large problem (N = 10,000) by a factor of four hundred. This paper describes
both the particular program and the methodology underlying such speedups.

142

