BBM 202 - ALGORITHMS
HACETTEPE UNIVERSITY

DEPT. OF COMPUTER ENGINEERING

UNDIRECTED GRAPHS

Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick
and K. Wayne of Princeton University.

» Undirected Graphs

» Graph API

» Depth-first search

» Breadth-first search

» Connected components
» Challenges

Undirected graphs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

e Thousands of practical applications.

e Hundreds of graph algorithms known.

¢ Interesting and broadly useful abstraction.

Challenging branch of computer science and discrete math.

Graph applications

communication
circuit
mechanical
financial
transportation
internet
game
social relationship
neural network
protein network

chemical compound

telephone, computer
gate, register, processor
joint
stock, currency
street intersection, airport
class C network
board position
person, actor
neuron
protein

molecule

fiber optic cable
wire
rod, beam, spring
transactions
highway, airway route
connection
legal move
friendship, movie cast
synapse
protein-protein interaction

bond

Graph terminology

Path. Sequence of vertices connected by edges.
Cycle. Path whose first and last vertices are the same.

Two vertices are connected if there is a path between them.

vertex
edg
cycle of erge l

length'5 \ l

path of
« length 4

x‘ connected
components

vertex of

degree 3™\

Some graph-processing problems

Path. Is there a path between s and ¢ ?
Shortest path. What is the shortest path between s and #?

Cycle. Is there a cycle in the graph?
Euler tour. Is there a cycle that uses each edge exactly once?
Hamilton tour. Is there a cycle that uses each vertex exactly once!?

Connectivity. Is there a way to connect all of the vertices?
MST. What is the best way to connect all of the vertices?

Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges?
Graph isomorphism. Do two adjacency lists represent the same graph?

Challenge. Which of these problems are easy? difficult? intractable?

UNDIRECTED GRAPHS

» Graph API

Graph representation

Graph drawing. Provides intuition about the structure of the graph.

two drawings of the same graph

Caveat. Intuition can be misleading.

Graph representation Graph API

Vertex representation.
public class Graph

e This lecture: use integers between 0 and V' — 1.

e Applications: convert between names and integers with symbol table. Graph (int V) create an empty graph with V vertices
Graph (In in) create a graph from input stream
° ° void addEdge(int v, int w) add an edge v-w
Iterable<Integer> adj(int v) vertices adjacent to v
° e e ﬁ 0 a e int V() number of vertices
SVboliable int E() number of edges
(o) ()
/ / String toString() string representation
(J ©
In in = new In(args[0]); read graph from
Graph G = new Graph (in) ; 1 input stream

for (int v = 0; v < G.V(); v++)
for (int w : G.adj(v)) S
StdOut.println(v + "-" + w);

print out each

edge (twice)

Anomalies.

Graph APIl: sample client Typical graph-processing code

Graph input format. _ o ‘
public static int degree(Graph G, int v)
14 e . i compute the degree of v int degree = 0;
13 E % java Test tinyG.txt P &re for (int w : G.adj(v)) degree++;
gy == 0-6 return degree;
05 o 0-2 }
43 0-1
1 ®
9 12 ° e 120 public static int maxDegree(Graph G)
6 4 -
54 e’o Q\Q 2-0 int max = 0;
02 3-5) . o for (int v = 0; v < G.VO; v++)
T e @ @ 3-2 compute maximum degree if (degree(G, v) > max)
9 10 max = degree(G, Vv);
return max;
3 g 12-11 3
911 12-9
33 te average dearee public static double averageDegree(Graph G)
compute average degree { return 2.0 * G.EQ / G.VO;
In in = I 0]1);
noAn new n(args[.]) ! - Leadlgraphifiony public static int numberOfSelfLoops(Graph G)
Graph G = new Graph(in) ; input stream
int count = 0;
) 3 o . for (int v = 0; v < G.VQ; v++)
for (int v = 0; v < G.V(); v++) N— count self-loops for (int w : G.adj(v))
rint out eac . YT
for (int w : G.adj(v)) — P) if (v == W) countis; _
Stdout.println(v + "-" + w); edge (twice) return count/2; // each edge counted twice

Set-of-edges graph representation

Maintain a list of the edges (linked list or array).

(0 0o 1
0 2

0 5

ORORO 0 6
3 4

- .
e :
e 4 6
7 8

9 10

Ow®, 5 11
@@ 11 12

Adjacency-matrix graph representation

Maintain a two-dimensional V-by-} boolean array;

for each edge v—w in graph: adj(v](w] = adj[w]l[v] = true.

two entries

o for each edge
O ® :
2

;¢//
"
S

H/o © of-

H o o o r|a

5
1
0
()
1
1

© © © o © o

()
\°
(2)

ERC S
© © 0O 0o 0o Ok K OOHKLERO
© © 0o 0o 0o o0 © oo oo R
© © o oo o0 ©o oo o
© ©o 0o o000 R KO
© ©c 0o 0o 0 o0 r R
© ©c o o o oo
oooooHooooooom
H P HrOOOOO ©OOOoOOoOOo Ofv
H O Or O OO o oo oo o
©O P oOoOPr o oo o oo oo o

ooooHo

©o o o o ©

Adjacency-list graph representation

Maintain vertex-indexed array of lists.

i el e B e N

[~
> Bag objects

O w0

gf o GG

s G

() o [
" NG

representations
of the same edge

Adjacency-list graph representation: Java implementation

public class Graph
{

private final int V; . A
) X adjacency lists
private Bag<Integer>[] adj; e (using Bag data type)

public Graph(int V)

{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V]; <L Createemptygraph
for (int v = 0; v < V; v++) with v vertices
adj[v] = new Bag<Integer>() ;
}
public void addEdge (int v, int w)
{
adj[v].add (w) ; pu BN add edge v-w
adj[w] .add (v) ; (parallel edges allowed)
}

public Iterable<Integer> adj(int v)

. <«<—+— iterator for vertices adjacent to v
{ return adj[v]; }

Graph representations Graph representations

In practice. Use adjacency-lists representation. In practice. Use adjacency-lists representation.
e Algorithms based on iterating over vertices adjacent to v. e Algorithms based on iterating over vertices adjacent to v.
® Real-world graphs tend to be sparse. ® Real-world graphs tend to be sparse.
\ huge number of vertices, \ huge number of vertices,
small average vertex degree small average vertex degree
sparse (E=200) dense (E=1000)
R — space U edge between iterate over vertices
p P 9 v and w? adjacent to v?
list of edges
adjacency matrix V2 1* 1 \"
adjacency lists E+V 1 degree(v) degree(v)
Two graphs (V =50) * disallows parallel edges

UNDIRECTED GRAPHS Maze exploration
Maze graphs.

e Vertex = intersection.

» Graph API

» Depth-first search

» Breadth-first search

» Connected components
» Challenges

o Edge = passage.

Ll:l

i
Je

=L
I
]

I
J£|

™~
L

intersection passage

Goal. Explore every intersection in the maze.

Trémaux maze exploration

Algorithm.
e Unroll a ball of string behind you.

e Mark each visited intersection and each visited passage.

e Retrace steps when no unvisited options.

AN

M\ A

21

Depth-first search

Goal. Systematically search through a graph.
Idea. Mimic maze exploration.

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked

vertices w adjacent to v.

Typical applications.
e Find all vertices connected to a given source vertex.
e Find a path between two vertices.

Design challenge. How to implement?

Design pattern for graph processing

Design pattern. Decouple graph data type from graph processing.

e Create a Graph object.

® Pass the Graph to a graph-processing routine, e.g., Paths.

® Query the graph-processing routine for information.

public class Paths

Paths (Graph G, int s)

boolean hasPathTo (int v)

find paths in G from source s

is there a path from s to v?

Iterable<Integer> pathTo(int v) path from s to v; null if no such path

Paths paths = new Paths (G, s);
for (int v = 0; v < G.V(); v++)
if (paths.hasPathTo(v))

print all vertices

StdOut.println(v) ; —

connected to s

23

Depth-first search

To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.

Z

graph G

tinyG. txt
Vv
=113 E
13 <
05
3

NS SRR
N

VMONOVWRFEOUVIO WO A
o =

W oo

24

Depth-first search

To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.

vertices reachable from 0

v marked[] edgeTol[v]

0 T =
1 T 0
2 T 0
3 T 5
4 T 6
5 T 4
6 T 0
7 F =
8 F =
9 F =
10 F =
1 F =
12 F =

25

Depth-first search

Goal. Find all vertices connected to s (and a path).
Idea. Mimic maze exploration.

Algorithm.

e Use recursion (ball of string).

e Mark each visited vertex (and keep track of edge taken to visit it).
® Return (retrace steps) when no unvisited options.

Data structures.
® boolean[] marked to mark visited vertices.
® int[] edgeTo to keep tree of paths.
(edgeTo[w] == v) means that edge v-w taken to visit w for first time

Depth-first search

public class DepthFirstPaths

{
private boolean[] marked; <«
private int[] edgeTo; —
private int s;

public DepthFirstSearch(Graph G, int s)
{

—

dfs (G, s); h—

private void dfs(Graph G, int v) —
{
marked[v] = true;
for (int w : G.adj(v))
if ('marked([w])
{
dfs (G, w);
edgeTo[w] = v;

marked[v] = true
if v connected to s

edgeTo[v] = previous
vertex on path from s to v

initialize data structures

find vertices connected to s

recursive DFS does the
work

27

Depth-first search properties

Proposition. DFS marks all vertices connected to s in time proportional to
the sum of their degrees.

Pf. source set of marked

vertices

e Correctness:
- if w marked, then w connected to s (why?)
- if w connected to s, then w marked
(if w unmarked, then consider last edge

on a path from s to w that goes from a no such edge

set of <« can exist

marked vertex to an unmarked one) unmarked

vertices “a

® Running time:
Each vertex connected to s is visited once.

28

Depth-first search properties UNDIRECTED GRAPHS

Proposition. After DFS, can find vertices connected to s in constant time

and can find a path to s (if one exists) in time proportional to its length.

» Breadth-first search

Pf. edgeTo[] is a parent-link representation of a tree rooted at s.

public boolean hasPathTo (int v)

{ return marked[v]; }
. . edgeTo[]
public Iterable<Integer> pathTo (int v) @ o 0
{
if ('hasPathTo(v)) return null; o

Stack<Integer> path = new Stack<Integer>();
for (int x = v; x != s; x = edgeTo[x]) o e @
path.push (x) ;
path.push(s) ;
return path;

v A WwN R
wwNOoN

29

Breadth-first search Breadth-first search
Repeat until queue is empty: Repeat until queue is empty:
® Remove vertex v from queue. ® Remove vertex v from queue.
e Add to queue all unmarked vertices adjacent to v and mark them. e Add to queue all unmarked vertices adjacent to v and mark them.

tinyCG. txt
v queue v edgeTo[v]
~ .

8 < 0 -
05 1 _
2 4
23 2 -
12
01 2 -
34 4 -
35
02 5 -

graph G add 0 to queue

31 32

Breadth-first search

Repeat until queue is empty:

® Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

Repeat until queue is empty:

e Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

queue v edgeTo[v] queue v edgeTo[v]
0 - 0 -
1 - 1 -
2 = 2 0
3 - 3 -
4 - 4 -
5 - 5 -
0
dequeue 0 dequeue 0
33 34
Breadth-first search Breadth-first search
Repeat until queue is empty: Repeat until queue is empty:
® Remove vertex v from queue. ® Remove vertex v from queue.
e Add to queue all unmarked vertices adjacent to v and mark them. e Add to queue all unmarked vertices adjacent to v and mark them.
queue v edgeTo[v] queue v edgeTo[v]
0 = 0 =
1 0 1 0
2 0 2 0
3 = 3 =
4 =] 4 =
5 = 5 0

dequeue 0

35

dequeue 0

Breadth-first search

Repeat until queue is empty:

® Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

Repeat until queue is empty:
e Remove vertex v from queue.
e Add to queue all unmarked vertices adjacent to v and mark them.

queue v edgeTo[v] queue v edgeTo[v]
0 - 0 -
1 0 1 0
2 0 2 0
5 3 - 5 3 -
4 - 4 -
1 1
5 0 5 0
2 2
0 done dequeue 2
37 38
Breadth-first search Breadth-first search
Repeat until queue is empty: Repeat until queue is empty:
® Remove vertex v from queue. ® Remove vertex v from queue.
e Add to queue all unmarked vertices adjacent to v and mark them. e Add to queue all unmarked vertices adjacent to v and mark them.
queue v edgeTo[v] queue v edgeTo[v]
0 = 0 =
1 0 1 0
2 0 2 0
3 = 3 =
4 = 4 =
5 5
5 0 5 0

dequeue 2

39

dequeue 2

Breadth-first search

Repeat until queue is empty:

® Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

Repeat until queue is empty:

e Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

queue v edgeTo[v] queue v edgeTo[v]
0 - 0 -
1 0 1 0
2 0 2 0
3 2 3 3 2
4 - 4 2
5 5
5 0 5 0
1 1
dequeue 2 dequeue 2
41 42
Breadth-first search Breadth-first search
Repeat until queue is empty: Repeat until queue is empty:
® Remove vertex v from queue. ® Remove vertex v from queue.
e Add to queue all unmarked vertices adjacent to v and mark them. e Add to queue all unmarked vertices adjacent to v and mark them.
a queue v edgeTo[v] queue v edgeTo[v]
0 = 0 =
1 0 1 0
@ ‘ [‘
2 0 2 0
3 3 2 3 3 2
® _ ® .
5 5
® ® : s o

2 done

43

dequeue 1

Breadth-first search

Repeat until queue is empty:

® Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

queue

® O, :

dequeue 1

v edgeTo[v]

vi A W N — O
o N N O O

45

Breadth-first search

Repeat until queue is empty:

e Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

queue

& O, :

dequeue 1

v edgeTo[v]

i A W N — O
o N N O O

46

Breadth-first search

Repeat until queue is empty:
® Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

queue

1 done

v edgeTo[v]

ui A W N~ O
o N N O O

47

Breadth-first search

Repeat until queue is empty:
® Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

queue

dequeue 5

v edgeTo[v]

vi A W N — O
o N N O O

Breadth-first search

Repeat until queue is empty:

® Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

queue

dequeue 5

v edgeTo[v]

vi A W N — O
o N N O O

49

Breadth-first search

Repeat until queue is empty:

e Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

queue

.

dequeue 5

v edgeTo[v]

i A W N — O
o N N O O

50

Breadth-first search

Repeat until queue is empty:
® Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

queue

o “

5 done

v edgeTo[v]

ui A W N~ O
o N N O O

51

Breadth-first search

Repeat until queue is empty:
® Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

queue

3\@ .

dequeue 3

v edgeTo[v]

vi A W N — O
o N N O O

52

Breadth-first search

Repeat until queue is empty:

® Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

Repeat until queue is empty:

e Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

queue v edgeTo[v] queue v edgeTo[v]
0 - 0 -
1 0 1 0
2 0 2 0
3 2 3 2
4 2 4 2
/e\@ 5 0 °\® 5 0
4 4
dequeue 3 dequeue 3
53 54
Breadth-first search Breadth-first search
Repeat until queue is empty: Repeat until queue is empty:
® Remove vertex v from queue. ® Remove vertex v from queue.
e Add to queue all unmarked vertices adjacent to v and mark them. e Add to queue all unmarked vertices adjacent to v and mark them.
queue v edgeTo[v] queue v edgeTo[v]
0 = 0 =
1 0 1 0
2 0 2 0
3 2 3 2
4 2 a 4 2
@ 5 0 @ 5 0
4 4

dequeue 3

55

3 done

56

Breadth-first search

Repeat until queue is empty:

® Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

Repeat until queue is empty:

e Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

queue v edgeTo[v] queue v edgeTo[v]
0 - 0 -
1 0 1 0
2 0 2 0
3 2 3 2
4 2 4 2
° 5 0 \° 5 0
4
dequeue 4 dequeue 4
57 58
Breadth-first search Breadth-first search
Repeat until queue is empty: Repeat until queue is empty:
® Remove vertex v from queue. ® Remove vertex v from queue.
e Add to queue all unmarked vertices adjacent to v and mark them. e Add to queue all unmarked vertices adjacent to v and mark them.
queue v edgeTo[v] queue v edgeTo[v]
0 = 0 =
1 0 1 0
2 0 2 0
3 2 3 2
4 2 4 2
5 0 ° 5 0

dequeue 4

59

4 done

60

Breadth-first search

Repeat until queue is empty:
e Remove vertex v from queue.
e Add to queue all unmarked vertices adjacent to v and mark them.

0 > v edgeTo[v]
0 -
1 0
2 0
3 2
<:> 4 2
5 0

done

6l

Breadth-first search

Depth-first search. Put unvisited vertices on a stack.
Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to ¢ that uses fewest number of edges.

BFS (from source vertex s)

K

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:

- remove the least recently added vertex v

- add each of v's unvisited neighbors to the queue,

i

and mark them as visited.

4

Intuition. BFS examines vertices in increasing distance from s.

62

Breadth-first search properties

Proposition. BFS computes shortest path (number of edges) from s
in a connected graph in time proportional to E + V.

Pf. [correctness] Queue always consists of zero or more vertices of

distance k from s, followed by zero or more vertices of distance k + 1.

Pf. [running time] Each vertex connected to s is visited once.

standard drawing dist=0 dist=1 dist = 2

63

Breadth-first search

public class BreadthFirstPaths
{
private boolean[] marked;
private boolean[] edgeTo[];
private final int s;

private void bfs(Graph G, int s)
{
Queue<Integer> q = new Queue<Integer>();
q.enqueue (s) ;
marked[s] = true;
while ('q.isEmpty())
{
int v = g.dequeue();
for (int w : G.adj(v))
{
if (!'marked[w])
{
g.enqueue (W) ;
marked[w] = true;
edgeTo[w]

v;

64

UNDIRECTED GRAPHS

» Connected components

Connectivity queries

Def. Vertices v and w are connected if there is a path between them.

Goal. Preprocess graph to answer queries: is v connected to w ?

in constant time.

public class

cC

boolean

int

int

CC(Graph G)
connected (int v, int w)
count ()

id(int v)

find connected components in G
are v and w connected?

number of connected components

component identifier for v

Depth-first search. [next few slides]

66

Connected components Connected components

The relation "is connected to" is an equivalence relation: Def. A connected component is a maximal set of connected vertices.
e Reflexive: v is connected to v.
e Symmetric: if v is connected to w, then w is connected to v.

e Transitive: if v connected to w and w connected to x, then v connected to x.

I 3 a8;

Py TZT'IE

Def. A connected component is a maximal set of connected vertices.

v id[v]
(o)

s T Eh arn
= S I:i:jﬁl
Ash L 1HY

4 LrL:*Eﬂ@'t:Ii

i phnaliy

0

W dJo s WN PO

MNNNMNKEHEHOOOOOO

9 jesas plin i
+ : 1.3}¥ : fr
3 connected components]1; 1= D g .

Remark. Given connected components, can answer queries in constant time.

o 63 connected components ©

Connected components

Goal. Partition vertices into connected components.

Connected components

Initialize all vertices v as unmarked.

Connected components

To visit a vertex v :
e Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

0 ‘ ‘ v marked[] ccl]
. . 0 F -
For each unmarked vertex v, run DFS to identify all EinyGREXE . ; .
vertices discovered as part of the same component. Vi3 .
13« E 2 F -
os OO an®, s
43
01 4 F -
9 12 5 F -
°l (D—») (—2)
(0) 5 4 ® ? -
G 02 7 F -
0)0 12
9 10 c 8 F -
06
9 F -
O XO 0 6
® -2 . S
58 1 F S
graph G
12 F -
69 70
Connected components Connected components
To visit a vertex v : To visit a vertex v :
e Mark vertex v as visited. e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v. e Recursively visit all unmarked vertices adjacent to v.
0 v marked[] cc[] v marked[] cc[]
o ©® @ o T o0
1 F - 1 F -
2 F = 2 F =
ONNONRONNO au® D C—W
3 F - 3 F -
4 F = 4 F -
5 F - 5 F -
(——) (—2) s ¢ - (——) (—2) s @ O
7 F - 7 F -
s 8 F - s 8 F -
9 F - 9 F -
10 F - 10 F -
e 11 F = . 11 F -
visit 0 visit 6
12 F = 12 F =

71

72

Connected components

To visit a vertex v :
e Mark vertex v as visited.

e Recursively visit all unmarked vertices adjacent to v.

Connected components

To visit a vertex v :
e Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

v marked[] ccl] v marked[] ccl]
0 T 0 0 T 0
1 F - 1 F -
2 F - 2 F -
° ° 0 3 F - o 0 3 F -
4 F = s (@ (0
5 F - 5 F -
(—) (—2) s T o (—) s 1 o
7 F - 7 F -
s 8 F - s 8 F -
9 F - 9 F -
10 F - 10 F -
visit 6 " F B visit 4 " F)
12 F - 12 F -
73 74
Connected components Connected components
To visit a vertex v : To visit a vertex v :
e Mark vertex v as visited. e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v. e Recursively visit all unmarked vertices adjacent to v.
v marked[] cc[] v marked[] cc[]
0 T 0 0 T 0
1 - 1 -
2 F - 2 F -
o 0 3 E - o @ 3 @ @
4 T 0 4 T 0
s (@ (0 5 T 0
(—2) 6 T o (—2) 6 T o
7 F - 7 F -
8 F - 8 F -
9 F - 9 F -
10 F - 10 F -
visit 5 3 F B visit 3 " F)
12 F - 12 F -

75

76

Connected components

To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.

Connected components

To visit a vertex v :
e Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

v marked[] ccl] v marked[] ccl]
0 T 0 0 T 0
1 F - 1 F -
2 F - 2 F -
° 0 3 T 0 o 0 3 T 0
4 T 0 4 T 0
{ 5 T 0 { 5 T 0
a_ 0 @ 6 T 0 9 o @ 6 U g
7 F - 7 F -
8 F = ° 8 F =
9 F - 9 F -
10 F - 10 F -
visit 3 " F B 3 done " F)
12 F - 12 F -
77 78
Connected components Connected components
To visit a vertex v : To visit a vertex v :
e Mark vertex v as visited. e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v. e Recursively visit all unmarked vertices adjacent to v.
v marked[] cc[] v marked[] cc[]
0 T 0 0 T 0
1 - 1 -
2 F - 2 F -
o 0 3 T 0 o @ 3 T 0
4 T 0 4 T 0
5 T 0 5 T 0
(—2) 6 T o (—2) 6 T o
7 F - 7 F -
8 F - ° 8 F -
9 F - 9 F -
10 F - 10 F -
visit 5 3 F B visit 5 " F)
12 F - 12 F -

79

80

Connected components

To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.

Connected components

To visit a vertex v :
e Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

v marked[] ccl] v marked[] ccl]
0 T 0 0 T 0
1 F - 1 F -
2 F - 2 F -
° 0 3 T 0 o 0 3 T 0
4 T 0 4 T 0
5 T 0 5 T 0
0 0 @ 6 T 0 o @ 6 T 0
7 F - 7 F -
a 8 F = 8 F =
9 F - 9 F -
10 F - 10 F -
5 done " F - visit 4 " F B
12 F - 12 F -
8l @
Connected components Connected components
To visit a vertex v : To visit a vertex v :
e Mark vertex v as visited. e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v. e Recursively visit all unmarked vertices adjacent to v.
v marked[] cc[] v marked[] cc[]
0 T 0 0 T 0
1 - 1 -
2 F - 2 F -
o @ 3 T 0 e o @ 3 T 0
4 T 0 4 T 0
5 T 0 5 T 0
_° ° @ 6 T 0 ° ° @ 6 T 0
7 F - 7 F -
8 F - 8 F -
9 F - 9 F -
10 F - 10 F -
visit 4 " F B 4 done " F)
12 F - 12 F -

83

Connected components

To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.

Connected components

To visit a vertex v :
e Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

v marked[] ccl] v marked[] ccl]
0 T 0 0 T 0
1 F - 1 F -
2 F - 2 F -
° o 0 3 T 0 o 0 3 T 0
4 T 0 4 T 0
5 T 0 5 T 0
0 @ 6 T 0 0 @ 6 T 0
7 F - 7 F -
8 F - 8 F -
9 F - 9 F -
10 F - 10 F -
6 done " F B visit 0 " F)
12 F - 12 F -
85 86
Connected components Connected components
To visit a vertex v : To visit a vertex v :
e Mark vertex v as visited. e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v. e Recursively visit all unmarked vertices adjacent to v.
v marked[] cc[] v marked[] cc[]
0 T 0 0 T 0
1 F = 1 -
2 ™ (0 2 T 0
o 0 3 T 0 a o @ 3 T 0
4 T 0 4 T 0
5 T 0 5 T 0
(—2) 6 T o (—2) 6 T o
7 F - 7 F -
8 F - 8 F -
9 F - 9 F -
10 F - 10 F -
visit 2 " F B 2 done " F)
12 F - 12 F -

87

Connected components

To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.

Connected components

To visit a vertex v :
e Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

v marked[] ccl] v marked[] ccl]
0 T 0 0 T 0
1 F = 1 @ (0
2 T 0 2 T 0
° 0 3 T 0 o 0 3 T 0
4 T 0 4 T 0
5 T 0 5 T 0
0 @ 6 T 0 o @ 6 T 0
7 F - 7 F -
8 F - 8 F -
9 F - 9 F -
10 F - 10 F -
visit 0 " F B visit 1 " F)
12 F - 12 F -
89 90
Connected components Connected components
To visit a vertex v : To visit a vertex v :
e Mark vertex v as visited. e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v. e Recursively visit all unmarked vertices adjacent to v.
a v marked[] cc[] ° v marked[] cc[]
0 0 0 0
1 T 0 1 T 0
2 T 0 2 T 0
o W s T o W s T o
4 T 0 4 T 0
5 T 0 5 T 0
(—2) 6 T o (—2) 6 T o
7 F - 7 F -
8 F - 8 F -
9 F - 9 F -
10 F - 10 F -
1 done " F B 0 done " F)
12 F - 12 F -

91

92

Connected components

To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.

Connected components

To visit a vertex v :
e Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

v marked[] cc[] v marked[] ccl]
0 T 0 0
connected 1 T 0 1
component 2 T O 2
° 3 T 0 o 0 3
4 T 0 4
5 T 0 5
(—2) s T o (—2) 6
7 F = 7 F =
8 F - 8 F -
9 F - 9 F -
10 F - 10 F -
connected component: 0 1 2 3 4 5 6 B F - check1 2 3 456 B F B
12 F - 12 F -
93 94
Connected components Connected components
To visit a vertex v : To visit a vertex v :
e Mark vertex v as visited. e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v. e Recursively visit all unmarked vertices adjacent to v.
v marked(] cc[] e v marked|[] cc[]
0 0
1 1
2 2
(—) (O— :
4 4
5 5
(—2) 6 (—2) 6
7 @™ O 7 T 1
8 F = s O (O
9 F - 9 F -
10 F - 10 F -
visit 7 " F B visit 8 " F)
12 F = 12 F -

95

96

Connected components Connected components
To visit a vertex v : To visit a vertex v :
e Mark vertex v as visited. e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v. o Recursively visit all unmarked vertices adjacent to v.
0 e v marked[] ccl] 0 v marked[] ccl]
0 0
1 1
2 2
(—9 . C—w ;
4 4
5 5
O— ‘ O— ‘
7 T 1 7 T 1
8 T 1 8 T 1
9 F - 9 F -
10 F - 10 F -
8 done " F - 7 done " F B
12 F - 12 F -
97
Connected components Connected components
To visit a vertex v : To visit a vertex v :
e Mark vertex v as visited. e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v. e Recursively visit all unmarked vertices adjacent to v.
H v marked(] cc[] v marked|[] cc[]
0 0
1 1
2 2
C— : C— ;
4 4
5 5
O— ¢ O— ‘
7 T 1 7
8 T 1 8
9 F - 9 F -
10 F - 10 F -
connected component: 7 8 1 F - check 8 1 F B
12 F - 12 F -
99

Connected components

To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.

Connected components

To visit a vertex v :
e Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

v marked[] ccl] v marked[] ccl]
0 0
1 1
2 2
° 0 3 3
4 4
5 5
(—) ‘ .
7 7
8 8
v O @ 9 T 2
10 F - 10 F -
visit 9 " F B visit 11 n © @
12 F 12 F -
101 102
Connected components Connected components
To visit a vertex v : To visit a vertex v :
e Mark vertex v as visited. e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v. e Recursively visit all unmarked vertices adjacent to v.
v marked(] cc[] v marked|[] cc[]
0 0
1 1
2 2
—® Y
4 4
5 4 5
G_@ 6 _@ 6
7 7
8 8
9 T 2 9 T 2
10 F - 10 F -
visit 11 " T : visit 12 " i 2
12 F = 2 O @

Connected components

To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.

Connected components

To visit a vertex v :
e Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

v marked[] ccl] v marked[] ccl]
0 0
1 1
2 2
—® —©
4 4
5 5
o ‘ ® O ‘
7 7
8 8
9 T 2 9 T 2
10 F - 10 F -
visit 12 B T 2 12 done B T 2
12 T 2 12 T 2
105 106
Connected components Connected components
To visit a vertex v : To visit a vertex v :
e Mark vertex v as visited. e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v. e Recursively visit all unmarked vertices adjacent to v.
v marked(] cc[] v marked|[] cc[]
0 0
1 1
2 2
: ;
4 4
5 5
G 6 6
7 7
8 8
9 T 2 9 T 2
10 F - 10 F -
11 done B T 2 visit 9 B T 2
12 T 2 12 T 2

Connected components

To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.

Connected components

To visit a vertex v :
e Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

v marked[] ccl] v marked[] ccl]
0 0
1 1
2 2
—O0 3 o 0 3
4 4
5 5
6 6
7 7
8 8
9 T 2 9 T 2
1w O @ 10 T 2
visit 10 B T 2 10 done B T 2
12 T 2 12 T 2
109 1o
Connected components Connected components
To visit a vertex v : To visit a vertex v :
e Mark vertex v as visited. e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v. e Recursively visit all unmarked vertices adjacent to v.
v marked(] cc[] v marked|[] cc[]
0 0
1 1
2 2
0 : © O :
4 4
5 5
6 ® O 6
7 7
8 8
9 T 2 9 T 2
10 T 2 10 T 2
9 done B T 2 connected component: 9 10 11 12 B T 2
12 T 2 12 T 2

Connected components
To visit a vertex v :

e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.

check 10 11 12

v marked[] cc[]

- O

o@OO\IO\U"-bWN

N —

Connected components
To visit a vertex v :

e Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

done

v marked[]
0

1 T
2 T
3 T
4 T
5 T
6 T
7 T
8 T
9 T
10 T
11 T
12 T

ccl]

o O O O o o o

N ONONN

Finding connected components with DFS

public class CC

{
private boolean marked[];
private int[] id;
private int count;

public CC(Graph G)
{
marked = new boolean[G.V()];
id = new int[G.V()];
for (int v = 0; v < G.V(); v++)
{
if (!'marked[v])
{
dfs (G, v);

count++;

}

public int count()
public int id(int v)
private void dfs(Graph G, int v)

id[v] = id of component containing v

number of components

run DFS from one vertex in
each component

see next slide

Finding connected components with DFS (continued)

public int count()

{ return count; }
public int id(int v) —
{ return id[v]; }
private void dfs(Graph G, int v)
{
marked[v] = true;
id[v] = count; b

for (int w : G.adj(v))
if (!'marked[w])
dfs (G, w);

number of components

id of component containing v

all vertices discovered in
same call of dfs have same id

UNDIRECTED GRAPHS Graph-processing challenge |

Problem. Is a graph bipartite?

» Challenges

How difficult?

e Any programmer could do it.

Typical diligent algorithms student could do it.
e Hire an expert.

Intractable.
e No one knows.

Impossible.

Graph-processing challenge | Graph-processing challenge 2

Problem. Is a graph bipartite? Problem. Find a cycle.

& B NMNNKHOOOO

How difficult? (3)

® Any programmer could do it.

Typical diligent algorithms student could do it.

& B NMNNKHOOOO
1
O U WWwo BN

How difficult?

e Any programmer could do it. ® Hire an expert.

Intractable.

<
.

Typical diligent algorithms student could do it.

® No one knows.

0-1
e Hire an expert. \ 0-2
0-5 e Impossible.
[]
Intractable. simple DFS-based solution 0-6 o e o
® No one knows. (see textbook) 1-3 e o
. 2-3
e Impossible. 2-4
4-5
4-6

& B NNHOOOO
O Ud WWo BN K

B B NNKH OO OO

O U e W Wwo BN

O WWwo NP

Graph-processing challenge 2 Bridges of Konigsberg
Problem. Find a cycle. The Seven Bridges of Konigsberg. [Leonhard Euler 1736]

“...in Konigsberg in Prussia, there is an island A, called the

Kneiphof; the river which surrounds it is divided into two branches ...

and these branches are crossed by seven bridges. Concerning these

bridges, it was asked whether anyone could arrange a route in such a

way that he could cross each bridge once and only once.”

How difficult? o

e Any programmer could do it.

& B NNKFHOOOOo
|
O UldEe WWo BTN K

Ve Typical diligent algorithms student could do it. ° :
e Hire an expert. ©
o |ntractable. simple DFS-based solution A D
e No one knows. (see textbook) O
® |Impossible. o e o °
Euler tour. Is there a (general) cycle that uses each edge exactly once!?
&) L Answer. Yes iff connected and all vertices have even degree.
© To find path. DFS-based algorithm (see textbook).
Graph-processing challenge 3 Graph-processing challenge 3

Problem. Find a cycle that uses every edge. Problem. Find a cycle that uses every edge.
Assumption. Need to use each edge exactly once. Assumption. Need to use each edge exactly once.

0-1 0-1

0-2 0-2

0-5 0-5

0-6 0-6
How difficult? 2 How difficult? >4
e Any programmer could do it. ;:: ¢ Any programmer could do it. 2::
e Typical diligent algorithms student could do it. 4-5 Ve Typical diligent algorithms student could do it. 4-5
o Hire an expert. 0-1-2-3-4-2-0-6-4-5-0 4-6 o Hire an expert. 0-1-2-3-4-2-0-6-4-5-0 4-6
e Intractable. e Intractable. Eulerian tour
o No one knows. o No one knows. (classic graph-processing problem)
e Impossible. e Impossible.

Graph-processing challenge 4

Problem. Find a cycle that visits every vertex exactly once.

How difficult?

® Any programmer could do it.

® Hire an expert.

Intractable.

No one knows.

Impossible.

Typical diligent algorithms student could do it.

0-5-3-4-6-2-1-0

BB WWNHOOOO
)
o e NN

Graph-processing challenge 4

Problem. Find a cycle that visits every vertex.

Assumption. Need to visit each vertex exactly once.

How difficult?

e Any programmer could do it.

Typical diligent algorithms student could do it.
e Hire an expert.
V' e Intractable.

No one knows. Hamiltonian cycle

(classical NP-complete problem)

Impossible.

0-5-3-4-6-2-1-0

BB WWNHOOOO
)
O de NN

Graph-processing challenge 5

Problem. Are two graphs identical except for vertex names?

How difficult?

e Any programmer could do it.

® Hire an expert.

Intractable.
e No one knows.

Impossible.

Typical diligent algorithms student could do it.

0<>4, 1<>3, 2<>2, 36, 4<>5, 50,

B d WWwo o oo
1
[NS I C B - € I S)

U WNKHEKEOOO
1
o N N W IS

6<>1

Graph-processing challenge 5

Problem. Are two graphs identical except for vertex names?

How difficult?

e Any programmer could do it.

Typical diligent algorithms student could do it.
® Hire an expert.

Intractable.
v @ No one knows.

Impossible. \

longstanding open problem

graph isomorphism is

04,

13, 252, 3<6, 45, 50,

BB WWwo oo o
]

1
[NS I E B - € I S)

U WNKHKEHOOO
1
o B B U A OO

6<>1

Graph-processing challenge 6 Graph-processing challenge 6

Problem. Lay out a graph in the plane without crossing edges? Problem. Lay out a graph in the plane without crossing edges?

0-1
0-2
0-5
0-6
. 3-4 .
How difficult? - How difficult?
e Any programmer could do it. 2'2 e Any programmer could do it.
o Typical diligent algorithms student could do it. e Typical diligent algorithms student could do it.
e Hire an expert. V' e Hire an expert.
e Intractable. o e Intractable.
e No one knows. o No one knows. linear-time DFS-based planarity algorithm
e Impossible. e Impossible. discovered by Tarjan in 1970s
P a o e P (too complicated for practitioners)

B B WWwoooo

o Ul e oI N

