BBM 202 - ALGORITHMS

HACETTEPE UNIVERSITY

DEPT. OF COMPUTER ENGINEERING

DIRECTED GRAPHS

Mar. 31, 2016

Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick

and K. Wayne of Princeton University.

Directed Graphs

Digraph API
Digraph search
Topological sort
Strong components

Road network

Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.

vertex of
outgleg’ree 4
and indegree 2

{

6 directed
/ cycle

S

directed path
sk | O
®/5j @

Ss®.

Vertex = Intersection; edge = one-way street.
o oo ot . 7
t §) %y
g g <O
= g
Vesty s O 3 <
~ I -~
Vesiry s
t i t
-aight s¢ t
@ Laight st 7
8 Laight ¢
£ i A S
bert 5t = t
s Hubert s¢ ' N
g 4 5
| s & /
3 £ g 2] .
& 3 .§‘ o= (5] ;)
Beach sy I 2 &
~~J N
f Encsson st .
[Moore s¢ t By
N
+~ N Moore 51 P
! 7 > 2 ey
< HIR
£ 2 R
o Fraokinsy £ = e)§; & %//rs,
5 rankiin
H } 3 é§' St
arson s B
Hamison st i S Loy, "
= Mary t e
S 7, S S
v,

©2008 Google - Map data ©2008 Sanbor, NAVTEQ™ - Terms of Use

Staple
a

Digraph applications

transportation street intersection one-way street
web web page hyperlink
food web species predator-prey relationship
WordNet synset hypernym
scheduling task precedence constraint
financial bank transaction
cell phone person placed call
infectious disease person infection
game board position legal move
citation journal article citation
object graph object pointer
inheritance hierarchy class inherits from
control flow code block jump

Some digraph problems

Path. Is there a directed path from s to ¢ ?

Shortest path. What is the shortest directed path

fromsto t? :

Topological sort. Can you draw the digraph so that
all edges point upwards?

Strong connectivity. Is there a directed path between all pairs of vertices?
Transitive closure. For which vertices v and w is there a path from v to w ?

PageRank. What is the importance of a web page?

DIRECTED GRAPHS

» Digraph API

Digraph API

public class Digraph

Digraph (int V) create an empty digraph with V vertices
Digraph(In in) create a digraph from input stream
void addEdge (int v, int w) add a directed edge v—w
Iterable<Integer> adj(int v) vertices pointing from v
int V() number of vertices
int E() number of edges
Digraph reverse() reverse of this digraph
String toString() string representation
In in = new In(args[0]); read digraph from
Digraph G = new Digraph,(in) ; =1 inpu? st':eam

for (int v = 0; v < G.V(); v++)
for (int w : G.adj(v)) D
StdOut.println(v + "->" + w);

print out each
edge (once)

Digraph API

tinyDG. txt
V\>13 E % java Digraph tinyDG.txt
24«7 0->5
‘Z‘ g 0->1
o 2oa
6 0 B
0 1 @ Q) @ 3->5
2 0 3->2
11 12 4->3
e e
9 10
s O \@Q 5->4
79 ;
10 12 11->4
11 4 11->12
4 3 12-9
3 5
6 8
8 6
In in = new In(args[0]); read digraph from
- = - <«
Digraph G = new Digraph(in); input stream
for (int v = 0; v < G.V(); v++) .
) . print out each
for (int w : G.adj(v)) S
edge (once)
StdOut.println(v + "->" + w);

Adjacency-lists digraph representation

Maintain vertex-indexed array of lists.

adj[]

© N O UV A WN R O

®

[
=

i
N

-0

10

Adjacency-lists graph representation: Java implementation

public class Graph
{
private final int V;
private final Bag<Integer>[] adj;

public Graph(int V)
{
this.V = V;
adj = (Bag<Integer>[]) new Bagl[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>();

public void addEdge (int v, int w)
{

adj[v].add(w) ;

adj([w] .add(v) ;

public Iterable<Integer> adj(int v)
{ return adj[v]; }

<«—1— adjacency lists

create empty graph

—

with V vertices

add edge v-w
—

iterator for vertices
—

adjacent to v

Adjacency-lists digraph representation: Java implementation

public class Digraph
{
private final int V;
private final Bag<Integer>[] adj;

public Digraph(int V)
{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>();

public void addEdge (int v, int w)
{
adj[v].add (w) ;

public Iterable<Integer> adj(int v)
{ return adj[v]; }

adjacency lists

create empty digraph

with V vertices

add edge v—w

iterator for vertices

pointing from v

Digraph representations DIRECTED GRAPHS

In practice. Use adjacency-lists representation.
e Algorithms based on iterating over vertices pointing from v.

» Digraph search

® Real-world digraphs tend to be sparse.

N

huge number of vertices,
small average vertex degree

. insert edge edge from iterate over vertices
representation space o
from v to w v to w? pointing from v?
E 1 E E

list of edges
adjacency matrix V2 1+ 1 \Y
adjacency lists E+V 1 outdegree(v) outdegree(v)

t disallows parallel edges

Reachability Depth-first search in digraphs

Problem. Find all vertices reachable from s along a directed path. Same method as for undirected graphs.

o Every undirected graph is a digraph (with edges in both directions).
S
mi
A A A A 4
Y \

e DFS is a digraph algorithm.

A A A A
\ \ \ \ DFS (to visit a vertex v) @
A A A | | | Mark v as visited. @ /

A
\
-« Q9«90 >P<—9 > Recursively visit all unmarked
: I :: I vertices w pointing from v. e

{
RERRERE

B~

®
e

Depth-first search Depth-first search
To visit a vertex v : (= To visit a vertex v :
e Mark vertex v as visited. 2=3 e Mark vertex v as visited.
q R q Rl 3-2 g A q Bl
® Recursively visit all unmarked vertices pointing from v. 60 ® Recursively visit all unmarked vertices pointing from v.
0—1
2—0
1112 v marked[] edgeTol[]
12—-9
0 T -
9—-10
911 ‘ 1 T 0
B reachable 2 T 3
from vertex 0
10—12 3 T 4
114 4 T 5
4-3 5 T 0
6—8
4 7 F =
8—6
54 8 F -
0-5 9 [F =
64 10 F -
a directed graph 69 reachable from 0 11 F -
7—6
" 12 F -
Depth-first search (in undirected graphs) Depth-first search (in directed graphs)
Recall code for undirected graphs. Code for directed graphs identical to undirected one.
[substitute Digraph for Graph]
public class DepthFirstSearch public class DirectedDFS
{ {
private boolean[] marked; <«<—F— trueifpathtos private boolean[] marked; <«——F— true if path from s
public DepthFirstSearch(Graph G, int s) public DirectedDFS (Digraph G, int s)
{ { .
marked = new boolean[G.V()]; <« L constructor marks marked = new boolean[G.V()]; <« L constructor marks vertices
dfs (G, s); vertices connected to s dfs (G, s); reachable from s
} }
private void dfs(Graph G, int v) <“<——F— recursive DFS does the work private void dfs(Digraph G, int v) <«——F— recursive DFS does the work
{ {
marked[v] = true; marked[v] = true;
for (int w : G.adj(v)) for (int w : G.adj(v))
if ('marked[w]) dfs(G, w); if (!marked[w]) dfs(G, w);
} }
public boolean visited(int v) | client can ask whether any public boolean visited(int v) | client can ask whether any
{ return marked[v]; } vertex is connected to s { return marked[v]; } vertex is reachable from s
} }
19

Reachability application: program control-flow analysis

Every program is a digraph.
e Vertex = basic block of instructions (straight-line program).
e Edge = jump.

Dead-code elimination.
Find (and remove) unreachable code.

Infinite-loop detection.
Determine whether exit is unreachable.

21

Reachability application: mark-sweep garbage collector
Every data structure is a digraph.

® Vertex = object.
e Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program
(starting at a root and following a chain of pointers). _\'\’

.

S5

T
{_,,/J

Ssjoou

22

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]
e Mark: mark all reachable objects.
o Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses | extra mark bit per object (plus DFS stack).

2 o 1
7
I
{_/,/J

Sjoou

23

Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.
Reachability.

Path finding.

Topological sort.

<
o o

e Directed cycle detection.

Basis for solving difficult digraph problems.
o 2-satisfiability.

e Directed Euler path.

e Strongly-connected components.

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*
ROBERT TARJAN{

Abstract. The value of depth

of edges of the graph being examined.

24

Breadth-first search in digraphs

Same method as for undirected graphs.
e Every undirected graph is a digraph (with edges in both directions).
e BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.

Repeat until the queue is empty:

- remove the least recently added vertex v

- for each unmarked vertex pointing from v:

add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges)
from s to all other vertices n a digraph in time proportional to E+V.

25

Multiple-source shortest paths

Multiple-source shortest paths. Given a digraph and a set of source
vertices, find shortest path from any vertex in the set to each other vertex.

Ex. S={1,7,10 }.

e Shortest path to 4 is 7—=6—4.
e Shortest path to 5 is 7—=6—0—5.

e Shortest path to 12 is 10—12. G

Ayele
B
17

Q. How to implement multi-source constructor?
A. Use BFS, but initialize by enqueuing all source vertices.

26

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.
Solution. BFS with implicit graph.

BFS.

e Choose root web page as source s.
e Maintain a gueue of websites to explore.
e Maintain a seT of discovered websites.
e Dequeue the next website and enqueue
websites to which it links
(provided you haven't done so before).

Q. Why not use DFS?

27

Bare-bones web crawler: Java implementation

Queue<String> queue = new Queue<String>(); <«<—+— queue of websites to crawl
SET<String> discovered = new SET<String>(); <«—+— set of discovered websites
String root = "http://www.princeton.edu";
queue.enqueue (root) ; <“——f1— start crawling from root website
discovered.add (root) ;
while (!queue.isEmpty())
{

String v = queue.dequeue(); <«—+—— read in raw html from next

Stdout.println(v) ;
In in = new In(v);
String input = in.readAll();

website in queue

String regexp = "http://(\\w+\\.)* (\\w+)";
Pattern pattern Pattern.compile (regexp) ; «——
Matcher matcher pattern.matcher (input) ;
while (matcher.find())

{

- use regular expression to find all URLs

in website of form http://xxx.yyy.zzz

[crude pattern misses relative URLs]

String w = matcher.group() ;

if (!'discovered.contains(w))
{ ; . . .
discovered.add (w) ; if undiscovered, mark it as discovered

queue.enqueue (W) ; and put on queue

28

DIRECTED GRAPHS

» Topological sort

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints,

in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

. Algorithms
. Complexity Theory
. Artificial Intelligence @4_@ §D

. Intro to CS /‘

. Cryptography e o

. Scientific Computing

o v A W KN = O

. Advanced Programming

tasks precedence constraint graph

O50s0l0=0)

feasible schedule

30

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

0—5 0—2
0—1 3—6
3—5 3—4

00 §D

5—2 6—4 /
6—0 3—2 @
1—4

directed edges DAG

Solution. DFS.What else?

CFO-O -G

topological order

Topological sort algorithm

® Run depth-first search.
® Return vertices in reverse postorder.

a directed acyclic graph

32

Topological sort algorithm

® Run depth-first search.
® Return vertices in reverse postorder.

Topological sort algorithm

® Run depth-first search.
® Return vertices in reverse postorder.

postorder t\ postorder
6
visit 0: check 1 visit 1: check 4
33 34
Topological sort algorithm Topological sort algorithm
® Run depth-first search. ® Run depth-first search.
e Return vertices in reverse postorder. e Return vertices in reverse postorder.
postorder t\ postorder
4

visit 4

35

4 done

Topological sort algorithm Topological sort algorithm

® Run depth-first search. ® Run depth-first search.
® Return vertices in reverse postorder. ® Return vertices in reverse postorder.

postorder postorder
4 4 1
6 6
visit 1 1 done
37 38
Topological sort algorithm Topological sort algorithm

® Run depth-first search. ® Run depth-first search.

e Return vertices in reverse postorder. e Return vertices in reverse postorder.
postorder postorder
41 41

N

visit 0: check 2 visit 2

39 40

Topological sort algorithm Topological sort algorithm
® Run depth-first search. ® Run depth-first search.

® Return vertices in reverse postorder. ® Return vertices in reverse postorder.

postorder postorder
4 1 2 41 2
6 %
2 done visit 0: check 5
Topological sort algorithm Topological sort algorithm
® Run depth-first search. ® Run depth-first search.
e Return vertices in reverse postorder. e Return vertices in reverse postorder.
t postorder t postorder
41 2 41 2

visit 5: check 2

43

visit 5

25

Topological sort algorithm

® Run depth-first search.
® Return vertices in reverse postorder.

Topological sort algorithm

® Run depth-first search.
® Return vertices in reverse postorder.

postorder postorder
41 25 4125
6 6
5 done visit 0
45 46
Topological sort algorithm Topological sort algorithm

® Run depth-first search. ® Run depth-first search.

e Return vertices in reverse postorder. e Return vertices in reverse postorder.
postorder postorder
41250 41250

0 done

47

check 1

Topological sort algorithm

® Run depth-first search.
® Return vertices in reverse postorder.

Topological sort algorithm

® Run depth-first search.
® Return vertices in reverse postorder.

postorder postorder
41250 41250
6 6
check 2 visit 3: check 2
49 50
Topological sort algorithm Topological sort algorithm
® Run depth-first search. ® Run depth-first search.
e Return vertices in reverse postorder. e Return vertices in reverse postorder.
postorder postorder
41250 41250

visit 3: check 4

51

visit 3: check 5

52

Topological sort algorithm Topological sort algorithm

® Run depth-first search. ® Run depth-first search.

® Return vertices in reverse postorder. ® Return vertices in reverse postorder.
postorder A postorder
41250 41250

6
visit 3: check 6 visit 6: check 0
53 54
Topological sort algorithm Topological sort algorithm
® Run depth-first search. ® Run depth-first search.
e Return vertices in reverse postorder. e Return vertices in reverse postorder.

postorder postorder

41250 41 2506

@) o

visit 6: check 4 6 done

55 56

Topological sort algorithm Topological sort algorithm

® Run depth-first search. ® Run depth-first search.
® Return vertices in reverse postorder. ® Return vertices in reverse postorder.

postorder postorder

412506 412506 3

visit 3 3 done
57 58
Topological sort algorithm Topological sort algorithm
® Run depth-first search. ® Run depth-first search.
e Return vertices in reverse postorder. e Return vertices in reverse postorder.
postorder postorder
412506 3 412506 3

check 4 check 5

59 60

Topological sort algorithm

® Run depth-first search.
® Return vertices in reverse postorder.

postorder

412506 3

check 6

6l

Topological sort algorithm

® Run depth-first search.
® Return vertices in reverse postorder.

0
postorder
412506 3
o topological order
3605214
6

done

62

Depth-first search order

public class DepthFirstOrder
{
private boolean[] marked;
private Stack<Integer> reversePost;

public DepthFirstOrder (Digraph G)
{
reversePost = new Stack<Integer>();
marked = new boolean[G.V()];
for (int v = 0; v < G.V(); v++)
if ('marked[v]) dfs(G, v);
}

private void dfs(Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if ('marked[w]) dfs(G, w);
reversePost.push (v) ;

}

public Iterable<Integer> reversePost() <+ — returnsallverticesin
{ return reversePost; } “reverse DFS postorder”

63

Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge v—w.When dss (v) is called:
dfs (0)
dfs (1)
dfs (4)
e Case |: dfs(w) has already been called and returned. 4 done
1 done
dfs (2)
2 done
dfs (5)

Thus, w was done before v.

e Case 2: dfs(w) has not yet been called.
g q q q 5 done
dfs (w) will get called directly or indirectly 0 done
by dfs (v) and will finish before dafs (v).

Ex: ——> dfs(3)

case 1 <

Thus, w will be done before v.

® Case 3: dfs (w) has already been called, 4£s (6)
but has not yet returned. case 2 <I3 ZO::“‘*
Can’t happen in a DAG: function call stack contains
path from w to v, so v—w would complete a cycle.

done

all vertices pointing from 3 are done before 3 is done,
so they appear after 3 in topological order

64

Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle.
Pf.

e |f directed cycle, topological order impossible.
¢ If no directed cycle, DFS-based algorithm finds a topological order.

a digraph with a directed cycle

Goal. Given a digraph, find a directed cycle.
Solution. DFS.What else? See textbook.

65

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence
constraints, in what order should we schedule the tasks?

PRGE 3
DEPARTMENT COURSE DESCRIPTION PREREQS
COMPUTER CPSC 432) INTERMEDIATE COMPILER CPSC 432
SCENCE DESIGN, WITH A FOCUS ON
DEPENDENCY RESOLUTION.

http://xkcd.com/754

Remark. A directed cycle implies scheduling problem is infeasible.

66

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

public class A extends B % javac A.java

{ A.java:1l: cyclic inheritance
involving A

} public class A extends B { }
1 error

public class B extends C

{

}

public class C extends A
{

}

67

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

Workbook1

< A B (S D
1 "=B1+1" "=C1+ 1" "=A1+ 1"
2
B
4
5
6
7 Microsoft Excel cannot calculate a formula.
8 u Cell references in the formula refer to the formula's
@ result, creating a circular reference. Try one of the
9 following
10 « If you accidentally created the circular reference, click
OK. This will display the Circular Reference toolbar and
help for using it to correct your formula.
1 1 + To continue leaving the formula as it is, click Cancel.
12 Cancel 0K
1z
14
15
16
17
18
1_Sheetl Sheet2 Sheet3 [

Directed cycle detection applications

e Causalities.

e Email loops.

e Compilation units.

e Class inheritance.

e Course prerequisites.

e Deadlocking detection.

® Precedence scheduling.

e Temporal dependencies.

e Pipeline of computing jobs.

® Check for symbolic link loop.
e Evaluate formula in spreadsheet.

69

DIRECTED GRAPHS

» Strong components

Strongly-connected components

Def. Vertices v and w are strongly connected if there is a directed path
from v to w and a directed path from w to v.

Key property. Strong connectivity is an equivalence relation:

® v is strongly connected to v.

e If v is strongly connected to w, then w is strongly connected to v.

® If v is strongly connected to w and w to x, then v is strongly connected to x.

Def. A strong component is a maximal subset of strongly-connected
vertices.

71

Examples of strongly-connected digraphs

0§

O~

o (R

72

Connected components vs. strongly-connected components

v and w are connected if there is

a path between v and w

-3 connected components

connected component id (easy to compute with DFS)

0 1 2 3 4 5 6 7 8 91011 12
cc[] O 0 0 00 0 1 1 1 2 2 2 2

public int connected(int v, int w)
{ return cclv] == cc[wl; }

|
constant-time client connectivity query

-v and w are strongly connected if there is a directed

path from v to w and a directed path from w to v

o°

-5 strongly-connected components

strongly-connected component id (how to compute?)

0 1 2 3 4 5 6 7 8 91011 12
see[] 1 0 1 1 1 1 3 4 3 2 2 2 2

public int stronglyConnected(int v, int w)
{ return scc[v] == scc[w]; }

constant-time client strong-connectivity query
73

Strong component application: ecological food webs

Food web graph.Vertex = species; edge = from producer to consumer.

A =

7
M o vole A great =gret
}‘/' f 3
A/ blae-gill fsh
A

7 algae (magnified)

/salGraphics/ gif

http:/ /www.twing! istri k12.il.u

Strong component. Subset of species with common energy flow.

74

Strong component applicati

Software module dependency graph.
e Vertex = software module.
e Edge: from module to dependency.

on: software modules

Firefox

Internet Explorer

Strong component. Subset of mutually interacting modules.

Approach |. Package strong compo
Approach 2. Use to improve design

nents together.
!

75

Strong components algorithms: brief history

1960s: Core OR problem.
e Widely studied; some practical algorithms.
e Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

e Classic algorithm.

o Level of difficulty: Algs4++.

e Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).
e Forgot notes for lecture; developed algorithm in order to teach it!
e Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.
e Gabow: fixed old OR algorithm.
e Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

76

Kosaraju's algorithm: intuition
Reverse graph. Strong components in G are same as in GR.

Kernel DAG. Contract each strong component into a single vertex.

how to compute?

Idea. —

e Compute topological order (reverse postorder) in kernel DAG.
e Run DFS, considering vertices in reverse topological order.

first vertex is a sink
(has no edges pointing from it)

digraph G and its strong components kernel DAG of G (in reverse topological order)

77

KOSARAJU'S ALGORITHM

» DFS in reverse graph

Kosaraju-Sharir

Phase |. Compute reverse postorder in GR.

digraph G

79

Kosaraju-Sharir

Phase |. Compute reverse postorder in GR.

reverse digraph GR

0 N O U1 A W N = O |<

N o — o ©

marked[v]

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-.

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-.

v marked[v] > v marked[v]

0 T 0 T

1 F 1 F

2 F 2 F

3 F 3 F

4 F 4 F

5 F 5 F

6 F 6 T

7 F 7 F

8 F 5 8 F

9 F 9 F

10 F 10 F
visit 0: check 6 1 F visit 6: check 8 11 F

12 F . 12 F u

Kosaraju-Sharir Kosaraju-Sharir
Phase |. Compute reverse postorder in GR. Phase |. Compute reverse postorder in GR.

v marked[v] Y marked[v]

0 T 0 T

1 F 1 F

2 F 2 F

3 F 3 F

4 F 4 F

5 F 5 F

6 T 6 T

7 F 7 F

8 T 8 T

9 F 9 F

10 F 10 F
visit 8: check 6 11 F 8 done 11 F

12 F 12 F

83

84

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-.
8

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-.
8

v marked[v] > v marked[v]
0 T 0 T
1 F 1 F
2 F ° 2 F
3 F 3 F
4 F 4 F
5 F @ 5 F
6 T 6 T
7 F 7 T
8 T 5 8 T
9 F @ 9 F
10 F 10 F

visit 6: check 7 11 F visit 7 11 F
12 F o 12 F w

Kosaraju-Sharir Kosaraju-Sharir
Phase |. Compute reverse postorder in GR. Phase |. Compute reverse postorder in GR.
@ 8 @ 7 8

v marked[v] Y marked[v]
0 T 0 T
1 F 1 F
2 F 2 F
3 F 3 F
4 F 4 F
5 F @ 5 F
6 T 6 T
7 T 7 T
8 T 8 T
9 F @ 9 F
10 F 10 F

7 done 11 F 6 done 11 F
12 F 12 F

87

88

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-.

6 7 8

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-.
6 7 8

v marked[v] > v marked[v]
0 T 0 T
1 F 1 F
2 F 2 T
3 F 3 F
4 F 4 F
5 F o @ 5 F
6 T 6 T
7 T 7 T
8 T 5 8 T
9 F 0 @ 9 F
10 F 10 F
visit 0: check 2 11 F visit 2: check 4 11 F
12 F - 12 F "
Kosaraju-Sharir Kosaraju-Sharir
Phase |. Compute reverse postorder in GR. Phase |. Compute reverse postorder in GR.
6 7 8 6 7 8
v marked[v] Y marked[v]
0 T 0 T
1 F 1 F
2 T 2 T
/ 3 F / 3 F
4 T 4 T
5 F @ 5 F
. 6 T \ 6 T
7 T 7 T
5 8 T 5 8 T
(——) G (12) G
10 F 10 F
visit 4: check 11 11 F visit 11: check 9 11 T
12 F 12 F

91

92

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-.
6 7 8

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-.
6 7 8

> v marked[v] > v marked[v]
0 T 0 T
1 F 1 F
2 T 2 T
3 F 3 F
4 T 4 T
@ 5 F @ 5 F
6 T 6 T
7 T 7 T
5 5 @ 8 T 5 - 8 T
9 T 9 T
10 F 10 F
visit 9: check 12 11 T visit 12: check 11 11 T
12 F ” 12 T o
Kosaraju-Sharir Kosaraju-Sharir
Phase |. Compute reverse postorder in GR. Phase |. Compute reverse postorder in GR.
6 7 8 6 7 8
v marked[v] Y marked[v]
0 T 0 T
1 F 1 F
2 T 2 T
/ 3 F / 3 F
4 T 4 T
@ 5 F 4—® 5 F
6 T 6 T
7 T 7 T
5 . ™ 8 T < | 8 -
9 T 9 T
10 F 10 T
visit 12: check 10 11 T visit 10: check 9 11 T
12 T 12 T

95

96

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-.

678

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-.

@10678

> v marked[v] > v marked[v]
0 T 0 T
1 F 1 F
2 T 2 T
3 F 3 F
4 T 4 T
@ 5 F 5 F
6 T 6 T
7 T 7 T
5 - 8 T 5 8 T
Q 9 T @ 9 T
10 T 10 T
10 done 11 T 12 done 11 T
12 T ” 12 T %
Kosaraju-Sharir Kosaraju-Sharir
Phase |. Compute reverse postorder in GR. Phase |. Compute reverse postorder in GR.
12 10 6 7 8 12 10 6 7 8
v marked[v] Y marked[v]
0 T 0 T
1 F 1 F
2 T 2 T
/ 3 F / 3 F
4 T 4 T
5 F 5 F
6 T 6 T
7 T 7 T
5 > 8 T 5 - 8 T
9 T 9 T
10 T 10 T
visit 9: check 7 11 T visit 9: check 6 11 T
12 T 12 T

99

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-.

@1210678

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-.

@91210678

> v marked[v] > v marked[v]
0 T 0 T
1 F 1 F
2 T 2 T
3 F 3 F
4 T 4 T
5 F 5 F
6 T 6 T
7 T 7 T
5 8 T 5 8 T
G 9 T m 9 T
10 T 10 T
9 done 11 T 11 done 11 T
12 T o 12 T -
Kosaraju-Sharir Kosaraju-Sharir
Phase |. Compute reverse postorder in GR. Phase |. Compute reverse postorder in GR.
11 9 12 10 6 7 8 11 9 12 10 6 7 8
v marked[v] Y marked[v]
0 T 0 T
1 F 1 F
2 T 2 T
/ 3 F / 3 F
4 T 4 T
5 F 5 F
6 T 6 T
7 T 7 T
5 8 T 5 8 T
9 T 9 T
10 T 10 T
visit 4: check 6 11 T visit 4: check 5 11 T
12 T 12 T

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-.

11 9 12 10 6 7 8

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-.

11 9 12 10 6 7 8

> v marked[v] > v marked[v]

0 T 0 T
1 F 1 F
2 T 2 T
3 F 3 T
4 T 4 T
5 T 5 T
6 T 6 T
7 T 7 T
8 T 8 T
9 T 9 T
10 T 10 T

visit 5: check 3 11 T visit 3: check 4 11 T
12 T s 12 T 106

Kosaraju-Sharir Kosaraju-Sharir
Phase |. Compute reverse postorder in GR. Phase |. Compute reverse postorder in GR.
11 9 12 10 6 7 8 @1191210678

v marked[v] Y marked[v]
0 T 0 T
1 F 1 F
2 T 2 T
3 T 3 T
4 T 4 T
5 T 5 T
6 T 6 T
7 T 7 T
8 T a 8 T
9 T 9 T
10 T 10 T

visit 3: check 2 11 T 3 done 11 T
12 T 12 T

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-.

3 11 9 12 10 6 7 8

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-.

@31191210678

A v marked[v] v marked[v]
0 T 0 T
1 F 1 F
2 T 2 T
3 T 3 T
4 T 4 T
5 T 5 T
6 T 6 T
7 T a 7 T
° 8 T a 8 T
9 T 9 T
10 T 10 T
visit 5: check 0 11 T 5 done 11 T
12 T . 12 T ©
Kosaraju-Sharir Kosaraju-Sharir
Phase |. Compute reverse postorder in GR. Phase |. Compute reverse postorder in GR.
@531191210678 453119 12 10 6 7 8
v marked[v] Y marked[v]
0 T 0 T
1 F 1 F
2 T 2 T
3 T 3 T
4 T 4 T
5 T 5 T
6 T 6 T
0 7 T 7 T
8 T 8 T
9 T 9 T
10 T 10 T
4 done 11 T visit 2: check 3 11 T
12 T 12 T

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-.

@4531191210678

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-.

@24531191210678

v marked[v] v marked[v]
0 T 0 T
1 F 1 F
Q 2 T 2 T

3 T 3 T
4 T 4 T
5 T 5 T
6 T 6 T
7 T 7 T
8 T 8 T
9 T 9 T
10 T 10 T

2 done 11 T 0 done 11 T
12 T " 12 T s

Kosaraju-Sharir Kosaraju-Sharir
Phase |. Compute reverse postorder in GR. Phase |. Compute reverse postorder in GR.
0245311 9 12 10 6 7 8 @024531191210678

v marked[v] Y marked[v]
0 T 0 T
1 T 1 T
2 T ‘ 2 T
3 T 3 T
4 T 4 T
5 T 5 T
6 T 6 T
7 T 7 T
8 T 8 T
9 T 9 T
10 T 10 T

visit 1: check 0 11 T 1 done 11 T
12 T 12 T

Kosaraju-Sharir

Phase |. Compute reverse postorder in GR.
102453119 12 10 6 7 8

<

marked[v]

o
-

0 N O U~ W N =

check23456789101112 11
12

-4 4 4 4 4 4 4 444 -4 44

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-,
102453119 12 10 6 7 8

reverse digraph GR

Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components.
e Run DFS on GR to compute reverse postorder.
e Run DFS on G, considering vertices in order given by first DFS.

DFS in reverse digraph G*

check unmarked vertices in the order reverse postorder for use in second dfs ()
01234567891011 12 102453119121067 8

dfs(0)

dfs(6)

dfs(8)
check 6

8 done
dfs(7)
7 done

6 done

check 6

KOSARAJU'S ALGORITHM

» DFS in original graph

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. 10 2 453 11 9 12 10 6 7 8

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

ofGR.@024531191210678

v scclv] v scclv]

0 = 0 =

1 - 1 ®)

2 - 2 -

3 - 3 -

4 = 4 =

5 = 5 -

6 = 6 -

7 = 7 -

8 = 8 -

9 - 9 -

10 = 10 -
original digraph G 11 - visit 1 11 =

12 = . 12 - n

Kosaraju-Sharir Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. 1 0 2 453 11 9 12 10 6 7 8

1 done

© N O v A W N — O |<

N - o ©

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GRR. 1 02 453 11 9 12 10 6 7 8

strong component: 1

®© N O v A W N — O |<

N —- o ©

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

visit 0: check 5

® N O v A W N — O <

N = o ©

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

visit 5: check 4

® N O v A W N — O <

N — o ©

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

visit 4: check 3

© N O v A W N — O |<

N - o ©

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

visit 3: check 5

®© N O v A W N — O |<

N —- o ©

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

v scclv] v scclv]
o 0=0NN0 o
1 0 1 0
: - 2 O
3 1 / 3 1
4 1 4 1
s), (9 s
6 - 6
;o © .
8 = 8 -
o © (—2) L
10 = 10 -
visit 3: check 2 11 = visit 2: check 0 11 =
12 - 129 12 B 130
Kosaraju-Sharir Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

Q@
©
O

visit 2: check 3

© N O v A W N — O |<

N - o ©

scc[v]

T e e

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

2%

2 done

®© N O v A W N — O |<

N —- o ©

scc[v]

T

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

% scclv] v scclv]

O=ONN0 o 0=ONN0 o

1 0 1 0

2 1 2 1

3 1 3 1

4 1 4 1

9 9 @ 5 1 e @ 5 1

4 6 B 4 6 B

7 = 7 -

8 = 8 -

© (—09 o © (—2) L

10 - 10 -

3 done 11 = visit 4: check 2 11 -
12 - 8 12 - -

Kosaraju-Sharir Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

4 done

<

0 N O 1 A W N — O

scc[v]

T e e

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

7Y

5 done

®© N O v A W N — O |<

N —- o ©

scc[v]

T

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

v scclv] v scclv]

0=0NN0 o 0="0NN0 o

1 0 1 0

2 1 2 1

3 1 3 1

4 1 4 1

9 @ 5 1 ° @ 5 1

6 = 6 -

7 = 7 -

(—02 . (——2) .

10 = 10 =

visit 0: check 1 11 = 0 done 11 -
12 - . 12 - e

Kosaraju-Sharir Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

w

Q/

strong component: 02 34 5

© N O v A W N — O |<

N - o ©

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @4531191210678

check 2

®© N O v A W N — O |<

N —- o ©

scc[v]

T

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @5311912 10 6 7 8 of GR. @3 11 9 12 10 6 7 8
v scclv] v scclv]
O==ONEN0 o (efi—() (7 o
1 0 1 0
2 1 2 1
3 1 3 1
4 1 4 1
9 @ 5 1 e @ 5 1
6 = 6 -
7 = 7 -
(——(2) . (—(2) .
10 = 10 -
check 4 11 - check 5 11 -
12 - . 12 - s
Kosaraju-Sharir Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @11912 10 6 7 8

check 3

© N O v A W N — O |<

N - o ©

scc[v]

T e

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR.

visit 11: check 4

@91210678

®© N O v A W N — O |<

N —- o ©

scc[v]

T

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @9 12 10 6 7 8 of GR. @9 12 10 6 7 8
v scclv] v scclv]
0=0NN0 o 0=0NN0 o
1 0 1 0
2 1 2 1
3 1 3 1
4 1 4 1
(O—(9) s (O—(9) s
6 - 6 -
7 - 7 -
8 - 8 -
11 12
(12) 0o 0o
10 - 10 -
visit 11: check 12 11 2 visit 12: check 9 11 2
12 - 145 12 @ 146
Kosaraju-Sharir Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR,

visit 9: check 11

@91210678

<

scc[v]

T e

0 N O 1 A W N — O

O
©

N O — O
|

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @9 12 10 6 7 8

0—
@—0

visit 9: check 10

®© N O v A W N — O |<

N —- o ©

scc[v]

T

Kosaraju-Sharir Kosaraju-Sharir
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR, (1) 9 12 10 6 7 8 of GR. (1) 9 12 10 6 7 8

v scclv] v scclv]

0=0 o 0=0 o

1 0 1 0

2 1 2 1

3 1 3 1

4 1 4 1

5 1 @ 5 1

6 - 6 -

7 - 7 -

8 = 8 -

10 @ 10 2

visit 10: check 12 11 2 10 done 11 2

12 2 - 12 2

Kosaraju-Sharir Kosaraju-Sharir
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR. (1) 9 12 10 6 7 8 of GR. (1) 9 12 10 6 7 8

v scc[v] v scclv]

O==0 o O=-0 o

1 0 1 0

2 1 2 1

3 1 3 1

4 1 4 1

(5] s s

6 = 6 -

7 - 7 -

8 = 8 -

O—0 0o o0 o

10 2 10 2

9 done 11 2 12 done 11 2

12 2 o 12 2

Kosaraju-Sharir Kosaraju-Sharir
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR, (1) 9 12 10 6 7 8 of GR. (1) 9 12 10 6 7 8
v scclv] v scclv]
0=0 o 0=0 o
1 0 1 0
2 1 2 1
3 1 3 1
4 1 4 1
5 1 — 5 1
6 - 6 -
7 - 7 -
G 8 - 8 -
9 2 9
10 2 10 %
11 done 11 2 strong component: 9 10 11 12 11 @
12 2 . 12 ©)
Kosaraju-Sharir Kosaraju-Sharir
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR. (9)12 10 6 7 8 of GR. (1210 6 7 8
v scc[v] v scclv]
0=—0 o 0=—0 o
1 0 1 0
2 1 2 1
3 1 3 1
4 1 4 1
5 1 5 1
6 - 6 -
7 = 7 =
8 - 8 -
9 2 9 2
10 2 10 2
check 9 11 2 check 12 11 2
12 2 s 12 2

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. 678

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @7 8

v scclv] v scclv]
0=0 o 3—0 o

1 0 1 0

2 1 2 1

3 1 3 1

4 1 4 1

5 1 5 1

6 = 6 ©)

7 = 7 =

8 = 8 =

9 2 9 2

10 2 10 2
check 10 11 2 visit 6: check 9 11 2

12 2 . 12 2 158

Kosaraju-Sharir Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @7 8

s 2O

visit 6: check 4, check 8, and check 0

© N O v A W N — O |<

N - o ©

scc[v]

T e

N N NN

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @7 8

visit 6: check 8

®© N O v A W N — O |<

N —- o ©

scc[v]

T

N N NN

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @7 8

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @7 8

v scclv] v scclv]
\O(_e 0 1 \o e 0 1
1 0 1 0
2 1 2 1
3 1 3 1
4 1 4 1
5 1 5 1
6 3 6 3
7 = 7 =
8 ©) 8 3
9 2 9 2
10 2 10 2
visit 8: check 6 11 2 8 done 11 2
12 2 o 12 2 @
Kosaraju-Sharir Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @7 8

\G

visit 6: check 0

© N O v A W N — O |<

N - o ©

scc[v]

W = = = —m O =

N N NN W

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @7 8

6 done

®© N O v A W N — O |<

N —- o ©

scc[v]

W = = = - O =

N N NN W

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @7 8

O==0)

strong component: 6 8

® N O v A W N — O <

N = o ©

scclv]

v e@ i@ o= oo =

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR.

visit 7: check 6

(7)s

® N O v A W N — O <

N — o ©

scclv]

NNNNW@W—'—'—'—‘O—'

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @ 8

visit 7: check 9

© N O v A W N — O |<

N - o ©

scc[v]

N N N N W A W = = = = O =

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR.

7 done

(7)8

®© N O v A W N — O |<

N —- o ©

scc[v]

N N N N W A W = = = = O =

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @ 8

<

scclv]

® o

1 0
2 1
3 1
4 1
5 1
6 3
7@
8 3
9 2
10 2
strong component: 7 11 2
12 2

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR,

v scclv]
0 1
1 0
2 1
3 1
4 1
5 1
6 3
7 4
8 3
9 2
10 2
check 8 11 2
12 2

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

\ scclv]
0 1
1 0
2 1
3 1
4 1
5 1
6 3
7 4
8 3
9 2
10 2
done 11 2
12 2

Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components.
e Run DFS on G- to compute reverse postorder.

e Run DFS on G, considering vertices in order given by first DFS.

DFS in original digraph G

P ¢

check unmarked vertices in the order
102453119121067 8

dfs(1) dfs(0) dfs(11) dfs(6) dfs(7)
1 done dfs(5) check 4 check 9 check 6
dfs(4) dfs(12) check 4 check 9
dfs(3) dfs(9) dfs(8) 7 done
check 5 check 11 check 6
dfs(2) dfs(10) 8 done
check 0 check 12 check 0
check 3 10 done 6 done
2 done 9 done
3 done 12 done
check 2 11 done

4 done
5 done
check 1
0 done

Proposition. Second DFS gives strong components. (!!)

Connected components in an undirected graph (with DFS)

public class CC
{

private boolean marked[];
private int[] id;
private int count;

public CC(Graph G)
{

marked = new boolean[G.V()];
id = new int[G.V()];

for (int v = 0; v < G.V(); v++)
{
if (!'marked[v])

dfs (G, v);
count++;

}
private void dfs(Graph G, int v)
{

marked[v] = true;
id[v] = count;
for (int w : G.adj(v))
if ('marked[w])
dfs (G, w);
}

public boolean connected(int v, int w)

{ return id[v] == id[w]; }

Strong components in a digraph (with two DFSs)

public class KosarajuSCC
{

private boolean marked[];
private int[] id;
private int count;

public KosarajuSCC(Digraph G)
{
marked = new boolean[G.V()];
id = new int[G.V()];
DepthFirstOrder dfs = new DepthFirstOrder (G.reverse());
for (int v : dfs.reversePost())
{
if (!'marked[v])

dfs (G, v);
count++;

}
private void dfs(Digraph G, int v)
{

marked[v] = true;
id[v] = count;
for (int w : G.adj(v))
if ('marked[w])
dfs (G, w);
}

public boolean stronglyConnected(int v, int w)
{ return id[v] == id[w]; }

single-source

reachability

topological sort
(DAG)

strong OO ®
components N

DFS

DFS

Kosaraju
DFS (twice)

