## BBM 202 - ALGORITHMS

(b) hacettepe university

Dept. of Computer Engineering

## Directed Graphs

Mar. 31, 2016

Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton University.

## Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.

- Directed Graphs
- Digraph API
, Digraph search
- Topological sort
- Strong components


## Road network

Vertex $=$ intersection; edge $=$ one-way street.


Digraph applications

| digraph | vertex | directed edge |
| :---: | :---: | :---: |
| transportation | street intersection | one-way street |
| web | web page | hyperlink |
| food web | species | predator-prey relationship |
| WordNet | synset | hypernym |
| scheduling | task | precedence constraint |
| financial | bank | transaction |
| cell phone | person | placed call |
| infectious disease | person | infection |
| game | board position | legal move |
| citation | journal article | citation |
| object graph | object | pointer |
| inheritance hierarchy | class | inherits from |
| control flow | code block | jump |

## Directid Graphs

- Digraph API
- Digraph search
, Topological sort
- Strong components


## Some digraph problems

Path. Is there a directed path from $s$ to $t$ ?
Shortest path. What is the shortest directed path
from $s$ to $t$ ?

Topological sort. Can you draw the digraph so that all edges point upwards?

Strong connectivity. Is there a directed path between all pairs of vertices?

Transitive closure. For which vertices $v$ and $w$ is there a path from $v$ to $w$ ?

PageRank. What is the importance of a web page?

Digraph API

|  | Digraph (int v) | create an empty digraph with V vertices |
| :---: | :---: | :---: |
|  | Digraph (In in) | create a digraph from input stream |
| void | addEdge (int v , int w ) | add a directed edge $v \rightarrow w$ |
| Iterable<Integer> | adj (int v) | vertices pointing from v |
| int | v() | number of vertices |
| int | E() | number of edges |
| Digraph | reverse() | reverse of this digraph |
| String | tostring () | string representation |



## Digraph API



In in $=$ new $\operatorname{In}(\operatorname{args}[0])$; Digraph G = new Digraph (in);
for (int $\mathrm{v}=0$; $\mathrm{v}<\mathrm{G} . \mathrm{V}()$; $\mathrm{v}++$ ) for (int w : G.adj(v)) StdOut.println(v + "->" + w);
 read digraph from input stream print out each edge (once)

## Adjacency-lists graph representation: Java implementation



## Adjacency-lists digraph representation

Maintain vertex-indexed array of lists.


## Adjacency-lists digraph representation: Java implementation



## Digraph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices pointing from $v$.
- Real-world digraphs tend to be sparse.

huge number of vertices,
small average vertex degre

| representation | space | insert edge <br> from v to w | edge from <br> V to w ? | iterate over vertices <br> pointing from v? |
| :---: | :---: | :---: | :---: | :---: |
| list of edges | E | 1 | E | E |
| adjacency matrix | $\mathrm{V}^{2}$ | $1+$ | 1 | V |
| adjacency lists | $\mathrm{E}+\mathrm{V}$ | 1 | outdegree(v) | outdegree(v) |

## Reachability

Problem. Find all vertices reachable from $s$ along a directed path.


## Directed Graphs

Digraph API
Digraph search
Topological sor
Strong components

## Depth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions)
- DFS is a digraph algorithm


## DFS (to visit a vertex $\mathbf{v}$ )

Mark vas visited.
Recursively visit all unmarked
vertices $\mathbf{w}$ pointing from $\mathbf{v}$.


## Depth-first search

To visit a vertex $v$ :
$4 \rightarrow 2$
$2 \rightarrow 3$
$3 \rightarrow 2$
$6 \rightarrow 0$
$0 \rightarrow 1$
$2 \rightarrow 0$
$11 \rightarrow 12$
$12 \rightarrow 9$
$9 \rightarrow 10$
$9 \rightarrow 11$
$8 \rightarrow 9$
$10 \rightarrow 12$
$11 \rightarrow 4$
$4 \rightarrow 3$
$3 \rightarrow 5$
$6 \rightarrow 8$
$8 \rightarrow 6$
$5 \rightarrow 4$
$0 \rightarrow 5$
$6 \rightarrow 4$
$6 \rightarrow 9$
$7 \rightarrow 6$
a directed graph

## Depth-first search (in undirected graphs)

Recall code for undirected graphs.


## Depth-first search

To visit a vertex $v$ :

- Mark vertex $v$ as visited.
- Recursively visit all unmarked vertices pointing from $v$.



## Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one.
[substitute Digraph for Graph]


## Reachability application: program control-flow analysis

Every program is a digraph.

- Vertex = basic block of instructions (straight-line program).
- Edge = jump.

Dead-code elimination.
Find (and remove) unreachable code.

Infinite-loop detection.
Determine whether exit is unreachable.

## Reachability application: mark-sweep garbage collector

Every data structure is a digraph.

- Vertex = object.
- Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program (starting at a root and following a chain of pointers).


## Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.

- Reachability
- Path finding.
- Topological sort.
- Directed cycle detection.

Basis for solving difficult digraph problems.

- 2-satisfiability.
- Directed Euler path.
- Strongly-connected components.

$$
\begin{aligned}
& \text { bbert tardant }
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{E v = 2}=\mathrm{E}
\end{aligned}
$$

## Breadth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions)
- BFS is a digraph algorithm.


## BFS (from source vertex s)

Put $s$ onto a FIFO queue, and mark $s$ as visited.
Repeat until the queue is empty:

- remove the least recently added vertex $v$
- for each unmarked vertex pointing from $\mathbf{v}$ : add to queue and mark as visited.


Proposition. BFS computes shortest paths (fewest number of edges) from $s$ to all other vertices n a digraph in time proportional to $E+V$.

## Multiple-source shortest paths

Multiple-source shortest paths. Given a digraph and a set of source vertices, find shortest path from any vertex in the set to each other vertex.

Ex. $S=\{1,7,10\}$

- Shortest path to 4 is $7 \rightarrow 6 \rightarrow 4$.
- Shortest path to 5 is $7 \rightarrow 6 \rightarrow 0 \rightarrow 5$.
- Shortest path to 12 is $10 \rightarrow 12$.

Q. How to implement multi-source constructor?
A. Use BFS, but initialize by enqueuing all source vertices.


## Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu. Solution. BFS with implicit graph.

## BFS.

- Choose root web page as source $s$.
- Maintain a queue of websites to explore.
- Maintain a SET of discovered websites.
- Dequeue the next website and enqueue websites to which it links (provided you haven't done so before).
Q. Why not use DFS?



## Bare-bones web crawler: Java implementation

| Queue<String> queue = new Queue<String>(); SET<String> discovered $=$ new SET<String>(); | queue of websites to crawl set of discovered websites |
| :---: | :---: |
| String root = "http://www.princeton.edu"; <br> queue.enqueue (root); <br> discovered.add(root); | start crawling from root website |
| while (!queue.isEmpty()) <br> 1 |  |
| ```String v = queue.dequeue(); StdOut.println(v); In in = new In(v); String input = in.readAll();``` | read in raw html from next website in queue |
| ```String regexp = "http://(\\w+\\.)*(\\w+)"; Pattern pattern = Pattern.compile(regexp); Matcher matcher = pattern.matcher(input); while (matcher.find()) { String w = matcher.group();``` | use regular expression to find all URLs in website of form http://xxx.yyy. zzz [crude pattern misses relative URLs] |
| ```if (!discovered.contains(w)) f discovered.add(w); queue.enqueue(w); }``` | if undiscovered, mark it as discovered and put on queue |
| , |  |

## Directed Graphs

- Digraph API
- Digraph search
- Topological sort
- Strong components


## Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints,
in which order should we schedule the tasks?

Digraph model. vertex $=$ task; edge $=$ precedence constraint.
0. Algorithms

1. Complexity Theory
2. Artificial Intelligence
3. Intro to CS
4. Cryptography
5. Scientific Computing
6. Advanced Programming
tasks

precedence constraint graph

feasible schedule

## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.

a directed acyclic graph


## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.

visit 0 : check 1 , check 2 , and check 5


## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.



## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.

visit 1: check 4


## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.



## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.


## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.

visit 1


## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.

postorder
41

postorder
41

1 done

## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.

visit 2
postorder
41


## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.

412

2 done

## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.

postorder
412
visit $\mathbf{0}$ : check 1 , check 2 , and check 5


## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.

visit 5


## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.

4125

5 done

## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.



## postorder

41250

## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.

postorder
4125
visit 0


## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.



## postorder

41250
check 1

## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.


## postorder

41250
check 2

## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.



## postorde

41250
visit 3: check 2, check 4, check 5, and check 6

## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.

postorder
41250
visit 3: check 2, check 4, check 5, and check 6


## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.



## postorder

41250
visit 3: check 2, check 4, check 5, and check 6

## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.

visit 3: check 2 , check 4 , check 5 , and check 6
41250


## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.

postorder
41250
visit 6: check $\mathbf{0}$ and check 4


## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.

postorder
412506


## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.

412506
visit 3

## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.


## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.

3 done

## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.

postorder
4125063
postorder
4125063
postorder
4125063


## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.
check 6


## Topological sort algorithm

- Run depth-first search.
- Return vertices in reverse postorder.

postorde
4125063
topological order
36105214
done


## Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order. Pf. Consider any edge $v \rightarrow w$. When dfs $(v)$ is called:

- Case I: dfs (w) has already been called and returned. Thus, $w$ was done before $v$.
- Case 2: dfs (w) has not yet been called. dfs (w) will get called directly or indirectly by dfs (v) and will finish before dfs (v). Thus, $w$ will be done before $v$.
- Case 3: dfs (w) has already been called, but has not yet returned.
Can't happen in a DAG: function call stack contains path from $w$ to $v$, so $v \rightarrow w$ would complete a cycle.

vertices pointing from 3 are done before 3 is done, so they appear after 3 in topological order


## Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle. Pf.

- If directed cycle, topological order impossible.
- If no directed cycle, DFS-based algorithm finds a topological order.

a digraph with a directed cycle

Goal. Given a digraph, find a directed cycle
Solution. DFS.What else? See textbook.

## Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

```
public class A extends B
l
}
```

javac A. java
A.java:1: cyclic inheritance involving A
public class A extends B \{ \}
1 error

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence constraints, in what order should we schedule the tasks?

| PAGE 3 DEPARTMENT | COURSE | DESCRIPTION | PREREQS |
| :---: | :---: | :---: | :---: |
| COMPUTER SCIENCE | CPSC 432 | INTERMEDIATE COMPILER DESIGN, WITH A FOCUS ON DEPENDENCY RESOLUTION. | CPSC 432 |

http://xkcd.com/754

Remark. A directed cycle implies scheduling problem is infeasible.

## Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

## Directed cycle detection applications

- Causalities.
- Email loops
- Compilation units.
- Class inheritance
- Course prerequisites.
- Deadlocking detection.
- Precedence scheduling.
- Temporal dependencies
- Pipeline of computing jobs.
- Check for symbolic link loop.
- Evaluate formula in spreadsheet.


## Strongly-connected components

Def. Vertices $v$ and $w$ are strongly connected if there is a directed path from $v$ to $w$ and a directed path from $w$ to $v$.

Key property. Strong connectivity is an equivalence relation

- $v$ is strongly connected to $v$
- If $v$ is strongly connected to $w$, then $w$ is strongly connected to $v$
- If $v$ is strongly connected to $w$ and $w$ to $x$, then $v$ is strongly connected to $x$.

Def. A strong component is a maximal subset of strongly-connected vertices.


## Directed Graphs

- Digraph API

Digraph search

- Topological sort

Strong components

## Examples of strongly-connected digraphs



## Connected components vs. strongly-connected components

```
v and w are connected if there is
```

    a path between \(v\) and \(w\)
    
connected component id (easy to compute with DFS)

$$
\begin{array}{lllllllllllll} 
\\
\operatorname{cc}[] & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \text { public int connected(int } v, \text { int w) } \\
& \{\text { return } \operatorname{cc}[v]==\operatorname{cc}[w] ;\}
\end{aligned}
$$

constant-time client connectivity query
$v$ and $w$ are strongly connected if there is a directed path from v to w and a directed path from w to v

strongly-connected component id (how to compute?)

$$
\operatorname{scc}[] \begin{array}{lllllllllllll} 
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline
\end{array}
$$


constant-time client strong-connectivity quer

## Strong component application: ecological food webs

Food web graph.Vertex = species; edge $=$ from producer to consumer.


Strong component. Subset of species with common energy flow.

## Strong components algorithms: brief history

1960s: Core OR problem.

- Widely studied; some practical algorithms.

Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

- Classic algorithm.
- Level of difficulty:Algs4++
- Demonstrated broad applicability and importance of DFS

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).

- Forgot notes for lecture; developed algorithm in order to teach it!
- Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.

- Gabow: fixed old OR algorithm.
- Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.


## Kosaraju's algorithm: intuition

Reverse graph. Strong components in $G$ are same as in $G^{R}$.

Kernel DAG. Contract each strong component into a single vertex.
Idea.
how to compute?

- Compute topological order (reverse postorder) in kernel DAG.
- Run DFS, considering vertices in reverse topological order.

digraph G and its strong components

kernel DAG of G (in reverse topological order)


## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.

digraph G

## Kosaraju's algorithm

- DFS in reverse graph
- DFS in original graph


## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.


| $\mathbf{v}$ | marked[v] |
| :---: | :---: |
| 0 | - |
| 1 | - |
| 2 | - |
| 3 | - |
| 4 | - |
| 5 | - |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | - |
| 10 | - |
| 11 | - |
| 12 | - |
|  |  |

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.

visit 0 : check 6 and check 2

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.


| v | marked[v] |
| :---: | :---: |
| 0 | T |
| 1 | F |
| 2 | F |
| 3 | F |
| 4 | F |
| 5 | F |
| 6 | T |
| 7 | F |
| 8 | T |
| 9 | F |
| 10 | F |
| 11 | F |
| 12 | F |

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.


| v | marked[v] |
| :---: | :---: |
| 0 | T |
| 1 | F |
| 2 | F |
| 3 | F |
| 4 | F |
| 5 | F |
| 6 | T |
| 7 | F |
| 8 | F |
| 9 | F |
| 10 | F |
| 11 | F |
| 12 | F |

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.
(8)


| v | marked[v] |
| :---: | :---: |
| 0 | T |
| 1 | F |
| 2 | F |
| 3 | F |
| 4 | F |
| 5 | F |
| 6 | T |
| 7 | F |
| 8 | T |
| 9 | F |
| 10 | F |
| 11 | F |
| 12 | $F$ |

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.


| $\mathbf{v}$ | marked[v] |
| :---: | :---: |
| 0 | T |
| 1 | F |
| 2 | F |
| 3 | F |
| 4 | F |
| 5 | F |
| 6 | T |
| 7 | T |
| 8 | T |
| 9 | F |
| 10 | F |
| 11 | F |
| 12 | F |

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.
(6) 78



## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.
678

visit 0 : check 6 and check 2

| $\mathbf{v}$ | marked[v] |
| :---: | :---: |
| 0 | T |
| 1 | F |
| 2 | F |
| 3 | F |
| 4 | F |
| 5 | F |
| 6 | T |
| 7 | T |
| 8 | T |
| 9 | F |
| 10 | F |
| 11 | F |
| 12 | F |

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.
678

visit 4: check 11, check 6, and check 5

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$


| v | marked[v] |
| :---: | :---: |
| 0 | T |
| 1 | F |
| 2 | T |
| 3 | F |
| 4 | F |
| 5 | F |
| 6 | T |
| 7 | T |
| 8 | T |
| 9 | F |
| 10 | F |
| 11 | F |
| 12 | F |

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.
678


| $\mathbf{v}$ | marked[v] |
| :---: | :---: |
| 0 | T |
| 1 | F |
| 2 | T |
| 3 | F |
| 4 | T |
| 5 | F |
| 6 | T |
| 7 | T |
| 8 | T |
| 9 | F |
| 10 | F |
| 11 | T |
| 12 | F |

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.
678

visit 9: check 12, check 7, and check 6

| $\mathbf{v}$ | $\boldsymbol{m a r k e d}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | T |
| 1 | F |
| 2 | T |
| 3 | F |
| 4 | T |
| 5 | F |
| 6 | T |
| 7 | T |
| 8 | T |
| 9 | T |
| 10 | F |
| 11 | T |
| 12 | F |

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.
678

visit 12: check 11 and check 10

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.

visit 12: check 11 and check 10

| $\mathbf{v}$ | marked[v] |
| :---: | :---: |
| 0 | T |
| 1 | F |
| 2 | T |
| 3 | F |
| 4 | T |
| 5 | F |
| 6 | T |
| 7 | T |
| 8 | T |
| 9 | T |
| 10 | F |
| 11 | T |
| 12 | T |

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.
678

visit 10: check 9

| $\mathbf{V}$ | marked[v] |
| :---: | :---: |
| 0 | T |
| 1 | F |
| 2 | T |
| 3 | F |
| 4 | T |
| 5 | F |
| 6 | T |
| 7 | T |
| 8 | T |
| 9 | T |
| 10 | T |
| 11 | T |
| 12 | T |

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.

$$
\text { (10) } 678
$$



10 done

| $\mathbf{v}$ | marked[v] |
| :---: | :---: |
| 0 | T |
| 1 | F |
| 2 | T |
| 3 | F |
| 4 | T |
| 5 | F |
| 6 | T |
| 7 | T |
| 8 | T |
| 9 | T |
| 10 | T |
| 11 | T |
| 12 | T |

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.
$\begin{array}{lllll}12 & 10 & 6 & 7 & 8\end{array}$


| $\mathbf{v}$ | marked[v] |
| :---: | :---: |
| 0 | T |
| 1 | F |
| 2 | T |
| 3 | F |
| 4 | T |
| 5 | F |
| 6 | T |
| 7 | T |
| 8 | T |
| 9 | T |
| 10 | T |
| 11 | T |
| 12 | T |

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.
(12) 10678


| $\mathbf{v}$ | marked[v] |
| :---: | :---: |
| 0 | T |
| 1 | F |
| 2 | T |
| 3 | F |
| 4 | T |
| 5 | F |
| 6 | T |
| 7 | T |
| 8 | T |
| 9 | T |
| 10 | T |
| 11 | T |
| 12 | T |

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.
$\begin{array}{lllll}12 & 10 & 6 & 7 & 8\end{array}$

visit 9: check 12 , check 7 , and check 6

| v | marked $[\mathbf{v}]$ |  |
| :---: | :---: | :---: |
| 0 | T |  |
| 1 | F |  |
| 2 | T |  |
| 3 | F |  |
| 4 | T |  |
| 5 | F |  |
| 6 | T |  |
| 7 | T |  |
| 8 | T |  |
| 9 | T |  |
| 10 | T |  |
| 11 | T |  |
| 12 | T | 100 |

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.
(9) $12 \quad 10 \quad 6 \quad 7 \quad 8$


9 done

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.
$\begin{array}{lllllll}11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$

visit 4: check 11 , check 6 , and check 5

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.
(11) $9 \quad 12 \quad 10 \quad 6 \quad 7 \quad 8$


| v | marked $[\mathbf{v}]$ |  |
| :---: | :---: | :---: |
| 0 | T |  |
| 1 | F |  |
| 2 | T |  |
| 3 | F |  |
| 4 | T |  |
| 5 | F |  |
| 6 | T |  |
| 7 | T |  |
| 8 | T |  |
| 9 | T |  |
| 10 | T |  |
| 11 | T |  |
| 12 | T | 102 |

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.
$\begin{array}{lllllll}11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$


| $\mathbf{v}$ | marked[v] |
| :---: | :---: |
| 0 | T |
| 1 | F |
| 2 | T |
| 3 | F |
| 4 | T |
| 5 | F |
| 6 | T |
| 7 | T |
| 8 | T |
| 9 | T |
| 10 | T |
| 11 | T |
| 12 | T |

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.
$\begin{array}{lllllll}11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$


| $\mathbf{v}$ | $\boldsymbol{m a r k e d}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | T |
| 1 | F |
| 2 | T |
| 3 | F |
| 4 | T |
| 5 | T |
| 6 | T |
| 7 | T |
| 8 | T |
| 9 | T |
| 10 | T |
| 11 | T |
| 12 | T |

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.
$\begin{array}{lllllll}11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$

visit 3: check 4 and check 2

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.
$\begin{array}{lllllll}11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$


| v | marked[v] |
| :---: | :---: |
| 0 | T |
| 1 | F |
| 2 | T |
| 3 | T |
| 4 | T |
| 5 | T |
| 6 | T |
| 7 | T |
| 8 | T |
| 9 | T |
| 10 | T |
| 11 | T |
| 12 | T |
|  |  |

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.
(3) $\begin{array}{llllllll}11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$


| $\mathbf{v}$ | $\boldsymbol{m a r k e d}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | T |
| 1 | F |
| 2 | T |
| 3 | T |
| 4 | T |
| 5 | T |
| 6 | T |
| 7 | T |
| 8 | T |
| 9 | T |
| 10 | T |
| 11 | T |
| 12 | T |

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.

$$
\begin{array}{llllllll}
3 & 11 & 9 & 12 & 10 & 6 & 7 & 8
\end{array}
$$



| $\mathbf{v}$ | marked[v] |
| :---: | :---: |
| 0 | T |
| 1 | F |
| 2 | T |
| 3 | T |
| 4 | T |
| 5 | T |
| 6 | T |
| 7 | T |
| 8 | T |
| 9 | T |
| 10 | T |
| 11 | T |
| 12 | T |

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.
$\begin{array}{llllllllll}4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$


4 done

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.
$\begin{array}{lllllllll}5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$


5 done

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.
$\begin{array}{llllllllll}4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$


| $\mathbf{v}$ | marked[v] |
| :---: | :---: |
| 0 | T |
| 1 | F |
| 2 | T |
| 3 | T |
| 4 | T |
| 5 | T |
| 6 | T |
| 7 | T |
| 8 | T |
| 9 | T |
| 10 | T |
| 11 | T |
| 12 | T |

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.

$$
\text { (2) } 4 \begin{array}{lllllllll}
5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8
\end{array}
$$



| v | marked[v] |
| :---: | :---: |
| 0 | T |
| 1 | F |
| 2 | T |
| 3 | T |
| 4 | T |
| 5 | T |
| 6 | T |
| 7 | T |
| 8 | T |
| 9 | T |
| 10 | T |
| 11 | T |
| 12 | T |

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.
$\begin{array}{llllllllllll}0 & 2 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$

visit 1 : check 0

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.

$$
\text { (0) } 2 \begin{array}{lllllllllll}
1 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8
\end{array}
$$



| $\mathbf{v}$ | marked[v] |
| :---: | :---: |
| 0 | T |
| 1 | F |
| 2 | T |
| 3 | T |
| 4 | T |
| 5 | T |
| 6 | T |
| 7 | T |
| 8 | T |
| 9 | T |
| 10 | T |
| 11 | T |
| 12 | T |

114

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$. (1) $0 \begin{array}{llllllllllll} & 2 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$


| $\mathbf{v}$ | $\boldsymbol{m a r k e d}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | T |
| 1 | T |
| 2 | T |
| 3 | T |
| 4 | T |
| 5 | T |
| 6 | T |
| 7 | T |
| 8 | T |
| 9 | T |
| 10 | T |
| 11 | T |
| 12 | T |

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.

$$
\begin{array}{lllllllllllll}
1 & 0 & 2 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8
\end{array}
$$



| v | marked[v] |
| :---: | :---: |
| 0 | T |
| 1 | T |
| 2 | T |
| 3 | T |
| 4 | T |
| 5 | T |
| 6 | T |
| 7 | T |
| 8 | T |
| 9 | T |
| 10 | T |
| 11 | T |
| 12 | T |

117

## Kosaraju-Sharir

Phase I. Compute reverse postorder in $G^{R}$.
$\begin{array}{lllllllllllll}1 & 0 & 2 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$

reverse digraph $\mathrm{G}^{\mathrm{R}}$

## Kosaraju's algorithm

, DFS in reverse graph
, DFS in original graph

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder $\begin{array}{llllllllllllll}\text { of } G^{R} . & 1 & 0 & 2 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$


| $\mathbf{v}$ | $\boldsymbol{\operatorname { s c c } [ \mathbf { v } ]}$ |
| :---: | :---: |
| 0 | - |
| 1 | - |
| 2 | - |
| 3 | - |
| 4 | - |
| 5 | - |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | - |
| 10 | - |
| 11 | - |
| 12 | - |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^{R} . \begin{array}{lllllllllllll}1 & 0 & 2 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$


| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | - |
| 1 | 0 |
| 2 | - |
| 3 | - |
| 4 | - |
| 5 | - |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | - |
| 10 | - |
| 11 | - |
| 12 | - |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^{R}$. $\begin{array}{lllllllllllll}1 & 0 & 2 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$


$$
\begin{array}{cc}
\mathbf{v} & \boldsymbol{\operatorname { s c c }}[\mathbf{v}] \\
\hline 0 & - \\
1 & - \\
2 & - \\
3 & - \\
4 & - \\
5 & - \\
6 & - \\
7 & - \\
8 & - \\
9 & - \\
10 & - \\
11 & - \\
12 & - \\
\hline
\end{array}
$$

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^{R}$. $1 \begin{array}{lllllllllllll} & 0 & 2 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$

trong component: 1

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^{R}$. 1 (0) $24 \begin{array}{llllllllll}4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$


| $\mathbf{v}$ | $\boldsymbol{\operatorname { s c c }}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | - |
| 3 | - |
| 4 | - |
| 5 | - |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | - |
| 10 | - |
| 11 | - |
| 12 | - |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^{R}$. | 1 | 0 | 2 | 4 | 5 | 3 | 11 | 9 | 12 | 10 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | - |
| 3 | - |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | - |
| 10 | - |
| 11 | - |
| 12 | - |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder $\begin{array}{llllllllllllll}\text { of } G^{R} . & 1 & 0 & 2 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$


$$
\begin{array}{cc}
\mathbf{v} & \mathbf{s c c}[\mathbf{v}] \\
\hline 0 & 1 \\
1 & 0 \\
2 & - \\
3 & - \\
4 & - \\
5 & 1 \\
6 & - \\
7 & - \\
8 & - \\
9 & - \\
10 & - \\
11 & - \\
12 & -
\end{array}
$$

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^{R}$.2 453119 91210 78


| $\mathbf{v}$ | scc[v] |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | - |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | - |
| 10 | - |
| 11 | - |
| 12 | - |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^{R}$. 1 (0) $24 \begin{array}{llllllllll}4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$


| $\mathbf{v}$ | $\boldsymbol{\operatorname { s c c } [ \mathbf { v } ]}$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | - |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | - |
| 10 | - |
| 11 | - |
| 12 | - |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^{R}$. 1 (0) $2 \times 4 \begin{array}{lllllllll}5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$


| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | - |
| 10 | - |
| 11 | - |
| 12 | - |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^{R}$. $10 \begin{array}{llllllllllll}10 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$


| $\mathbf{v}$ | $\boldsymbol{\operatorname { s c c }}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | - |
| 10 | - |
| 11 | - |
| 12 | - |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^{R}$.2 45 9 12106 78


| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | - |
| 10 | - |
| 11 | - |
| 12 | - |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^{R}$. 1 (0) $24 \begin{array}{llllllllll}4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$


| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | - |
| 10 | - |
| 11 | - |
| 12 | - |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^{R}$. | 1 | 0 | 2 | 4 | 5 | 3 | 11 | 9 | 12 | 10 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | - |
| 10 | - |
| 11 | - |
| 12 | - |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^{R}$. $10 \begin{array}{llllllllllll}1 & 2 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$


| $\mathbf{v}$ | $\operatorname{scc}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | - |
| 10 | - |
| 11 | - |
| 12 | - |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^{R}$.2 43119 12106 78


| v | scc[v] |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | - |
| 10 | - |
| 11 | - |
| 12 | - |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder



| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | - |
| 10 | - |
| 11 | - |
| 12 | - |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^{R}$. 1 (0) $2 \begin{array}{llllllllll}4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$


| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | - |
| 10 | - |
| 11 | - |
| 12 | - |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^{R} .1$| 1 | 1 | 2 | 4 | 5 | 3 | 11 | 9 | 12 | 10 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



| $\mathbf{v}$ | $\boldsymbol{\operatorname { s c c }}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | - |
| 10 | - |
| 11 | - |
| 12 | - |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^{R}$. $1100(2) 4 \begin{array}{lllllllll}2 & 3 & 11 & 9 & 12 & 10 & 6 & 7\end{array}$


| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | - |
| 10 | - |
| 11 | - |
| 12 | - |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder



| $\mathbf{v}$ | $\boldsymbol{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | - |
| 10 | - |
| 11 | - |
| 12 | - |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder



| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | - |
| 10 | - |
| 11 | - |
| 12 | - |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $\begin{aligned} & G^{R} .\end{aligned} 1$


| $\mathbf{v}$ | $\boldsymbol{\operatorname { s c c }}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | - |
| 10 | - |
| 11 | - |
| 12 | - |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^{R}$. $\qquad$ (11) $9 \quad 12 \quad 10 \quad 6$ 78


| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | - |
| 10 | - |
| 11 | 2 |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $\begin{aligned} & G^{R} .\end{aligned} 1 \begin{array}{lllllllllll} & 0 & 2 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & 6\end{array} \mathbf{7}$


| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | - |
| 10 | - |
| 11 | 2 |
| 12 | - |

visit 11: check 4 and check 12

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^{R}$ $\begin{array}{lllllllllllll}G^{R} . & 1 & 0 & 2 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7\end{array}$


| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | 2 |
| 10 | - |
| 11 | 2 |
| 12 | 2 |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $\begin{array}{lllllllllllll}G^{R} . & 1 & 0 & 2 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 \\ 8\end{array}$


| $\mathbf{v}$ | $\boldsymbol{\operatorname { s c c }}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | - |
| 10 | - |
| 11 | 2 |
| 12 | 2 |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^{R}$. $\qquad$ (11) $9 \quad 12 \quad 10 \quad 6$ 78


| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | 2 |
| 10 | - |
| 11 | 2 |
| 12 | 2 |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $\begin{aligned} & G^{R} .\end{aligned} 1 \begin{array}{lllllllllll} & 0 & 2 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & 6\end{array} \mathbf{7}$


| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | 2 |
| 10 | 2 |
| 11 | 2 |
| 12 | 2 |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder


done

| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | 2 |
| 10 | 2 |
| 11 | 2 |
| 12 | 2 |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $\begin{array}{lllllllllllll}G^{R} . & 1 & 0 & 2 & 4 & 5 & 3 & 11 & 9 & \mathbf{1 2} & \mathbf{1 0} & \mathbf{6} & \mathbf{7} \\ \mathbf{8}\end{array}$


| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | 2 |
| 10 | 2 |
| 11 | 2 |
| 12 | 2 |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^{R}$ $G^{R} .1 \begin{array}{lllll}1 & 0 & 2 & 5\end{array}$ (11) $9 \quad 12 \quad 10 \quad 6$ 78


| $\mathbf{v}$ | $\mathbf{S C C}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | 2 |
| 10 | 2 |
| 11 | 2 |
| 12 | 2 |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $\begin{aligned} & G^{R} .\end{aligned} 1$


| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | 2 |
| 10 | 2 |
| 11 | 2 |
| 12 | 2 |

11 done
12

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $\begin{array}{lllllllllllll}G^{R} . & 1 & 0 & 2 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 \\ 8\end{array}$

check 9

| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | 2 |
| 10 | 2 |
| 11 | 2 |
| 12 | 2 |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder $\begin{array}{lllllllllllllll}\text { of } G^{R} . & 1 & 0 & 2 & 4 & 5 & 3 & 11 & \mathbf{9} & \mathbf{1 2} & \mathbf{1 0} & \mathbf{6} & \mathbf{7} & \mathbf{8}\end{array}$


| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | 2 |
| 10 | 2 |
| 11 | 2 |
| 12 | 2 |

${ }_{154}$

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^{R}$. $\qquad$ (12) 10 78


| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | 2 |
| 10 | 2 |
| 11 | 2 |
| 12 | 2 |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $\begin{array}{lllllllllllll}G^{R} . & 1 & 0 & 2 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7\end{array}$


| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | - |
| 7 | - |
| 8 | - |
| 9 | 2 |
| 10 | 2 |
| 11 | 2 |
| 12 | 2 |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $\begin{array}{llllllllllll}G^{R} . & 1 & 0 & 2 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & (6) 7\end{array}$


| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | 3 |
| 7 | - |
| 8 | - |
| 9 | 2 |
| 10 | 2 |
| 11 | 2 |
| 12 | 2 |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder $\begin{array}{lllllllllllllll}\text { of } G^{R} . & 1 & 0 & 2 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$


| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | 3 |
| 7 | - |
| 8 | - |
| 9 | 2 |
| 10 | 2 |
| 11 | 2 |
| 12 | 2 |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^{R}$. $\qquad$ (6) 78


| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | 3 |
| 7 | - |
| 8 | - |
| 9 | 2 |
| 10 | 2 |
| 11 | 2 |
| 12 | 2 |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder $\begin{array}{lllllllllllllllll}\text { of } G^{R} . & 1 & 0 & 2 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$


| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | 3 |
| 7 | - |
| 8 | 3 |
| 9 | 2 |
| 10 | 2 |
| 11 | 2 |
| 12 | 2 |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $\begin{array}{lllllllllllllll}G^{R} . & 1 & 0 & 2 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$

| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | 3 |
| 7 | - |
| 8 | 3 |
| 9 | 2 |
| 10 | 2 |
| 11 | 2 |
| 12 | 2 |

162

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^{R}$. $\qquad$ (6) 78


| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | 3 |
| 7 | - |
| 8 | 3 |
| 9 | 2 |
| 10 | 2 |
| 11 | 2 |
| 12 | 2 |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $\begin{array}{lllllllllllllll}G^{R} . & 1 & 0 & 2 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$


| $\mathbf{v}$ | $\boldsymbol{\operatorname { s c c }}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | 3 |
| 7 | - |
| 8 | 3 |
| 9 | 2 |
| 10 | 2 |
| 11 | 2 |
| 12 | 2 |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder



| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | 3 |
| 7 | 4 |
| 8 | 3 |
| 9 | 2 |
| 10 | 2 |
| 11 | 2 |
| 12 | 2 |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder $\begin{array}{llllllllllllllllllll}\text { of } G^{R} . & 1 & 0 & 2 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$


| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | 3 |
| 7 | 4 |
| 8 | 3 |
| 9 | 2 |
| 10 | 2 |
| 11 | 2 |
| 12 | 2 |

visit 7: check 6 and check 9

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $\begin{array}{lllllllllllll}G^{R} . & 1 & 0 & 2 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7\end{array}$


| v | scC $[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | 3 |
| 7 | 4 |
| 8 | 3 |
| 9 | 2 |
| 10 | 2 |
| 11 | 2 |
| 12 | 2 |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of | $G^{R}$. | 1 | 0 | 2 | 4 | 5 | 3 | 11 | 9 | 12 | 10 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



| $\mathbf{v}$ | $\boldsymbol{\operatorname { s c c }}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | 3 |
| 7 | 4 |
| 8 | 3 |
| 9 | 2 |
| 10 | 2 |
| 11 | 2 |
| 12 | 2 |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $\begin{array}{lllllllllllll}G^{R} . & 1 & 0 & 2 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 \\ 8\end{array}$


| $\mathbf{v}$ | $\mathbf{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | 3 |
| 7 | 4 |
| 8 | 3 |
| 9 | 2 |
| 10 | 2 |
| 11 | 2 |
| 12 | 2 |

## Kosaraju-Sharir

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder $\begin{array}{llllllllllllll}\text { of } G^{R} . & 1 & 0 & 2 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8\end{array}$


| $\mathbf{v}$ | $\boldsymbol{s c c}[\mathbf{v}]$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | 3 |
| 7 | 4 |
| 8 | 3 |
| 9 | 2 |
| 10 | 2 |
| 11 | 2 |
| 12 | 2 |

170

## Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components.

- Run DFS on $G^{R}$ to compute reverse postorder.
- Run DFS on $G$, considering vertices in order given by first DFS


Proposition. Second DFS gives strong components. (!!)

Connected components in an undirected graph (with DFS)

```
public class cc
    private boolean marked[];
    private boolean m;
    private int count;
    f marked = new boolean[G.v()]
        marked = new boolean[G
        for (int v = 0; v < G.v(); v++)
            if (!marked[v])
            dfs(G, v);
            count++;
            }
        }
        private void dfs (Graph G, int v)
            marked[v] = true
            id[v] = count; (.adj(v))
            for (int w: G.adj(v))
                dfs(G,w);
    }
    public boolean connected (int v, int w)
    f return id[v] == id[w];
}
```

Digraph-processing summary: algorithms of the day


