BBM 202 - ALGORITHMS

HACETTEPE UNIVERSITY

DEPT. OF COMPUTER ENGINEERING

ELEMENTARY SEARCH ALGORITHMS

Acknowledgement: The course slides are adapted from the slides prepared by
R. Sedgewick and K. Wayne of Princeton University.

» Symbol Tables

» API
» Elementary implementations
» Ordered operations

SYMBOL TABLES

» API

Symbol tables

Key-value pair abstraction.

e |nsert a value with specified key.
e Given a key, search for the corresponding value.

Ex. DNS lookup.

® |nsert URL with specified IP address.
e Given URL, find corresponding IP address.

URL IP address

WWwW.Cs.princeton.edu 128.112.136.11
www.princeton.edu 128.112.128.15
www.yale.edu 130.132.143.21
www.harvard.edu 128.103.060.55
WWW . Simpsons.com 209.052.165.60

T T

key value

Symbol table applications

dictionary find definition word definition
book index find relevant pages term list of page numbers
file share find song to download name of song computer ID
financial account process transactions account number transaction details
web search find relevant web pages keyword list of page names
compiler find properties of variables variable name type and value
routing table route Internet packets destination best route
DNS find IP address given URL URL IP address
reverse DNS find URL given IP address IP address URL
genomics find markers DNA string known positions

file system find file on disk filename location on disk

Basic symbol table API

Associative array abstraction. Associate one value with each key.

public class ST<Key, Value>

ST(O create a symbol table

put key-value pair into the table

. ' alkey] = val;
(remove key from table if value is nu11)

void put(Key key, Value val)

Value get(Key key) E/:llﬁi 1; ﬁi zi;hb:eeni) a[key]
void delete(Key key) remove key (and its value) from table
boolean contains(Key key) is there a value paired with key?
boolean 1isEmpty() is the table empty?
int size() number of key-value pairs in the table

Iterable<Key> keys() all the keys in the table

Conventions

® Values are not null.
® Method get () returns null if key not present.
e Method put () overwrites old value with new value.

Intended consequences.

® Easy to implement contains().

public boolean contains (Key key)

{ return get(key) !'= null; }

e Can implement lazy version of delete().

public void delete (Key key)
{ put(key, null); }

Keys and values

Value type. Any generic type.

specify Comparable in API.

Key type: several natural assumptions.

e Assume keys are Comparable, US€ compareTo ().
e Assume keys are any generic type, use equals () to test equality.
e Assume keys are any generic type, use equals () to test equality;

use hashCode () to scramble key. /
\ built-in to Java

(stay tuned)

Best practices. Use immutable types for symbol table keys.
® Immutable in Java: String, Integer, Double, java.io.File,...
e Mutable in Java: StringBuilder, java.net.URL, arrays, ...

Equality test

All Java classes inherit a method equais).

Java requirements. For any references x,y and z:

e Reflexive: x.equals (x) IS true.

. . equivalence
® Symmetrlc: x.equals (y) Iffy.equals (x). relation
® Transitive: if x.equals(y) and y.equals(z),then x.equals(z). _
® Non-null: x.equals (null) IS false.

do x and y refer to

/ the same object?

Default implementation. (x == y)
Customized implementations. integer, Double, String, File, URL, ...
User-defined implementations. Some care needed.

Implementing equals for user-defined types

Seems easy.

public class Date implements Comparable<Date>

{

private final int month;
private final int day;
private final int year;

public boolean equals (Date that)
{

if (this.day != that.day) return false;
if (this.month '!'= that.month) return false; <«—
if (this.year != that.year) return false;

return true;

check that all significant

fields are the same

Implementing equals for user-defined types

Safer to use equals () with inheritance

Seems easy, but requires some care.

if fields in extending class contribute to

equals() the symmetry violated

public final class Date implements Comparable<Date>
{

private final int month; . |
private final int day; must be Object.

private final int year;

public boolean equals (Object y)

{
if (y == this) return true; optimize for true object equality
if (y == null) return false; check for null
if (y.getClass() != this.getClass()) objects must be in the same class

return false;

Date that = (Date) y; cast is guaranteed to succeed

if (this.day != that.day) return false; L

)] check that all significant
if (this.month !'= that.month) return false; _

if (this.year !'= that.year) return false; fields are the same

return true;

Equals design

"Standard” recipe for user-defined types.

e Optimization for reference equality.
e Check against null.
e Check that two objects are of the same type and cast.

e Compare each significant field:
- if field is a primitive type, use ==
- if field is an object, use equals () <«—— apply rule recursively

- if field is an array, apply to each entry «—— alternatively, use Arrays.equals(a, b) or
Arrays.deepEquals(a, b),

but not a.equals (b)

Best practices.

® No need to use calculated fields that depend on other fields.

e Compare fields mostly likely to differ first.

® Only use necessary fields, e.g. a webpage is best defined by URL, not number of

views.
® Make compareTo () consistent with equals ().

\

x.equals(y) ifandonlyif (x.compareTo(y) == 0)

ST test client for traces

Build ST by associating value i with i string from standard input.

public static void main(String[] args)
{
ST<String, Integer> st = new ST<String, Integer>();
for (int i = 0; !StdIn.isEmpty(); i++)
{
String key = StdIn.readString() ;
st.put (key, 1i);
} output
for (String s : st.keys())"‘
StdOut.println(s + " " + st.get(s));

12

11

keys S E A R C H E X A M P L E
values 0 1 2 3 4 5 6 7 8 9 10 11 12

10

X LN X T =2 rTmMmaMNANO >
O

ST test client for analysis

Frequency counter. Read a sequence of strings from standard input

and print out one that occurs with highest frequency.

% more

it
it
it
it
it
it
it
it
it
it

%

it

%

was
was
was
was
was
was
was
was
was
was

java

10

tinyTale. txt

the
the
the
the
the
the
the
the
the
the

best of times

worst of times

age of wisdom

age of foolishness
epoch of belief
epoch of incredulity
season of light
season of darkness
spring of hope
winter of despair

FrequencyCounter 1 < tinyTale.txt tiny example

(60 words, 20 distinct)

java FrequencyCounter 8 < tale.txt real example

business 122 (135,635 words, 10,769 distinct)

%

java FrequencyCounter 10 < leipziglM. txt real example

government 24763 (21,191,455 words, 534,580 distinct)

Frequency counter implementation

public class FrequencyCounter

{

public static void main (String[] args)

{

int minlen = Integer.parselInt(args[0]) ;

ST<String, Integer> st = new ST<String, Integer>() ; <
while (!StdIn.isEmpty())
{
String word = StdIn.readString() ; 4’,,ignoreshortstrings
if (word.length() < minlen) continue; <
if (!'st.contains(word)) st.put(word, 1),
else st.put (word, st.get(word) + 1) ;
}
String max = "";
st.put(max, 0); <

for (String word : st.keys())
if (st.get(word) > st.get (max))
max = word;
StdOut.println(max + " " + st.get(max));

create ST

read string and

update frequency

print a string

with max freq

SYMBOL TABLES

» Elementary implementations

Sequential search in a linked list

Data structure. Maintain an (unordered) linked list of key-value pairs.

Search. Scan through all keys until find a match.
Insert. Scan through all keys until find a match; if no match add to front.

key value first

red nodes
S 0 slo are new
E 1 El1 /S 0 black nodes
areaccess}sd
A2 [al2={E[1}+{s]o /”“e““
R 3 R13 Al?2 El1l S|10
C 4 Cl4 R13 Al?2 El1l S|10
circled entries are
H 5 H|5S Cl4 R13 Al?2 El1l S O/Changedvalues
—
E 6 |H|5—C|4~{R|3{A]2E[6)
X 7 X|7 H|5 Cl4 R1|3 Al?2 E|6 S|10
gray nodes
A8 X7 Hi>S Cj4 R|3 A are untouched
M 9 M9 X7 H|5S Cl4 RI3 Al8HE|®6 S10
P 10 P (10 M9 X7 H|5 Cl|l4 R13 A8 E|6 S|10
L 11 L (11 P10 M9 X|7 H|5 Cl4 R13 A8 E|6 S|10
E12 |L|11}—={P|10r={M|9 X |7 H|5={C|4|~{R|[3{A]|8} E[12)

Trace of linked-list ST implementation for standard indexing client

Elementary ST implementations: summary

worst-case cost average case

(after N inserts) (after N random inserts) ordered

ST implementation : :
iteration?

search insert search hit insert

N N N/2 N no

N\

sequential search
(unordered list)

Challenge. Efficient implementations of both search and insert.

key
interface

equals ()

Elementary ST implementations: summary

worst case average case :
ordered operations

ST implementation : :
: : : iteration? on keys
search insert search hit insert

sequential search

1
(unordered list) N N N/2 N no equals()
5737 —
&
8
E I —
S 2246
" |

operations

0 14350

Costs for java FrequencyCounter 8 < tale.txt using SequentialSearchST

Grey data points are observed costs for i operation, reds are their averages

Challenge. Efficient implementations of both search and insert.

Binary search

Data structure. Maintain an ordered array of key-value pairs.

Rank helper function. How many keys < k!

keys|[]

successful search for P O 1 2 3 4 5 6 7 8 9

To hi m

0O 9 4 A CE HL MUPU R S X entries in black

5 9 7 M P R S X/area[]o..hi]

S 6 5 M P RN

6 6 6 p \entryin red is a[m]
unsuccessful search for Q ™ loop exits with keys[m] = P: return 6

lo hi m

0O 9 4 A C E H L M P R S X

5 9 7 M P R S X

5 6 5 M P

7 6 6 P

™

loop exits with 1o > hi: return 7

Trace of binary search for rank in an ordered array

20

Binary search: Java implementation

public Value get (Key key)
{
if (isEmpty()) return null;
int i = rank (key)
if (1 < N && keys[i] .compareTo (key) == 0) return vals[i];

else return null;

private int rank (Key key) number of keys < key
{
int lo = 0, hi = N-1;
while (lo <= hi)
{
int mid = 1lo + (hi - lo) / 2;
int cmp = key.compareTo (keys[mid]) ;

if (cmp < 0) hi = mid - 1;
else if (cmp > 0) lo = mid + 1;
else if (cmp == 0) return mid;

}

return 1lo;

21

Binary search: mathematical analysis

Proposition. Binary search uses ~ Ig N compares to search any array of

size V.

Pf. T(N) = number of compares to binary search in a sorted array of

size JV. left or right half

< T(N/2]) + 1

Recall lecture 2.

22

Binary search: trace of standard indexing client

Problem. To insert, need to shift all greater keys over.

keys[] vals[]
key value O 1 2 3 4 5 6 7 8 9 N O 1 2 3 4 5 6 7 8 9
S 0 S 1 0
E 1 E S) 1 0 entries in black
entries in red moved to the right
A 2 A E S _— were inserted 3 2 1 0 /
R 3 R S 4 3 0
C 4 C E RS entries in gray 5 4 1 3 0 - od entri
did not circled entries are
H 5 H R S __— didnotmove 6 » changed vales
E 6 6 (6)
X / X 7 /
A8 7
M 9 M R S X 8 9 3 0
P 10 P R S X 9 10 3 0 7
L 11 L M P R S X 10 11 10 3 0 7
E 12 10 (12)

A.CEHL MP R S X 8 412 511 910 3 0 7

Elementary ST implementations: frequency counter

5737 —
@
©
o
£ .
S = 2246
0 |
0 operatlons 14350

Costs for java FrequencyCounter 8 < tale.txt using SequentialSearchST

5737 —
~—4384
0—= |
0 operations 14350

Costs for java FrequencyCounter 8 < tale.txt using BinarySearchST

24

Elementary ST implementations: summary

worst-case cost average case

(after N inserts) (after N random inserts) ordered

ST implementation : :
iteration?

search insert search hit insert

sequential search
(unordered list) N N N /2 N

binary search
(ordered array) log N @ log N @ yes

no

key
interface

equals ()

compareTo ()

Challenge. Efficient implementations of both search and insert.

25

SYMBOL TABLES

» Ordered operations

Ordered symbol table APl (Example Operations)

keys

values

min()—>-09:00:00 Chicago
09:00:03 Phoenix

09:00: Houston
get(09:00:13) 9:00:59 Chicago

09
floor(09:05:00)—=09
09

select(7)—09

09
09
09
keys(09:15:00, 09:25:00)—| 09
09
09
09
ceiling(09:30:00)— 09
09

max()—>09

size(09:15:00, 09:25:00) 1s 5
rank (09:10:25) is 7

:01:
:03:
:10:
:10:
:14:
:19:
:19:
:21:

122

:35

10 Houston
13 Chicago
11 Seattle
25 Seattle
25 Phoenix
32 Chicago
46 Chicago
05 Chicago

43 Seattle
22
-25:

54 Seattle
52 Chicago

:21 Chicago
:36:
:37:

14 Seattle
44 Phoenix

Examples of ordered symbol-table operations

27

Ordered symbol table API

public class ST<Key extends Comparable<Key>, Value>

void

Value

void
boolean
boolean
int

Key

Key

Key

Key

int

Key
void
void
int

Iterable<Key>

Iterable<Key>

STQO create an ordered symbol table

put key-value pair into the table

t(Key key, Val 1 : .
put(Key key, Value val) (remove key from table if value is nu11)

value paired with key

get(Key key) (nuTI ifkey is absent)

delete(Key key) remove key (and its value) from table
contains(Key key) is there a value paired with key?
1sEmpty () is the table empty?

size() number of key-value pairs

min() smallest key

max () largest key

floor(Key key) largest key less than or equal to key
ceiling(Key key) smallest key greater than or equal to key
rank (Key key) number of keys less than key
select(int k) key of rank k

deTeteMin() delete smallest key

deleteMax () delete largest key

size(Key 1o, Key hi) number of keys in [10. .hi]
keys(Key 1o, Key hi) keys in [1o..hi1, in sorted order
keys () all keys in the table, in sorted order

28

Binary search: ordered symbol table operations
summary

sequential binary
search search

search N lg

N

min / max N I

floor / ceiling N lg N

rank N lg N

select N I

ordered iteration N log N N

order of growth of the running time for ordered symbol table operations

29

