
BBM 202 - ALGORITHMS

MINIMUM SPANNING TREES

 
DEPT. OF COMPUTER ENGINEERING

Acknowledgement:	The	course	slides	are	adapted	from	the	slides	prepared	by	R.	Sedgewick	 
and	K.	Wayne	of	Princeton	University.

TODAY 

‣ Minimum Spanning Trees
‣ Greedy algorithm
‣ Edge-weighted graph API
‣ Kruskal's algorithm
‣ Prim's algorithm
‣ Context

 3

Given. Undirected graph G with positive edge weights (connected).
Def. A spanning tree of G is a subgraph T that is connected and acyclic.

Goal. Find a min weight spanning tree.

Minimum spanning tree

graph G

23

10

21

14

24

 16

4

18
9

7

11

8

5

6

a subset of the edges of a connected, edge-weighted

undirected graph that connects all the vertices together,

without any cycles and with the minimum possible total edge

weight

 4

Given. Undirected graph G with positive edge weights (connected).
Def. A spanning tree of G is a subgraph T that is connected and acyclic.

Goal. Find a min weight spanning tree.

Minimum spanning tree

not connected

23

10

21

14

24

 16

4

18
9

7

11

8

5

6

 5

Given. Undirected graph G with positive edge weights (connected).
Def. A spanning tree of G is a subgraph T that is connected and acyclic.

Goal. Find a min weight spanning tree.

Minimum spanning tree

23

10

21

14

24

 16

4

18
9

7

11

8

5

6

not acyclic

 6

Given. Undirected graph G with positive edge weights (connected).
Def. A spanning tree of G is a subgraph T that is connected and acyclic.

Goal. Find a min weight spanning tree.

Brute force. Try all spanning trees?

Minimum spanning tree

spanning tree T: cost = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7

23

10

21

14

24

 16

4

18
9

7

11

8

5

6

 7

MST is fundamental problem with diverse applications.
• Dithering.

• Cluster analysis.

• Max bottleneck paths.

• Real-time face verification.

• LDPC codes for error correction.

• Image registration with Renyi entropy.

• Find road networks in satellite and aerial imagery.

• Reducing data storage in sequencing amino acids in a protein.

• Model locality of particle interactions in turbulent fluid flows.

• Autoconfig protocol for Ethernet bridging to avoid cycles in a network.

• Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).

• Network design (communication, electrical, hydraulic, cable, computer, road).

Applications

http://www.ics.uci.edu/~eppstein/gina/mst.html

MINIMUM SPANNING TREES

‣ Greedy algorithm
‣ Edge-weighted graph API
‣ Kruskal's algorithm
‣ Prim's algorithm
‣ Context

Simplifying assumptions. Edge weights are distinct; graph is connected.

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets.  
A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.

Cut property

 9

Cut property

minimum-weight crossing edge
 must be in the MST

crossing edges separating
gray from white vertices

are drawn in red

e

Cut property: correctness proof

 10

Simplifying assumptions. Edge weights are distinct; graph is connected.

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets.  
A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.

Pf. Let e be the min-weight crossing edge in cut.

• Suppose e is not in the MST.

• Adding e to the MST creates a cycle.

• Some other edge f in cycle must be a crossing edge.

• Removing f and adding e is also a spanning tree.

• Since weight of e is less than the weight of f,  
that spanning tree is lower weight.

• Contradiction. ▪

Cut property

adding e to MST
creates a cycle

the MST does
not contain e

e

f

• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.

 11

Greedy MST algorithm

5

4

7

1
3

0

2

6

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

an edge-weighted graph

• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.

 12

Greedy MST algorithm

5

4

7

1
3

0

2

6

0-2 0.26

1-3 0.29

2-7 0.34

1-2 0.36

6-0 0.58

6-4 0.93

crossing edges

(sorted by weight)

in MST

crossing edge

min-weight

crossing edgegrey vertices form

one side of cut

• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.

 13

Greedy MST algorithm

5

4

7

1
3

0

2

6

0-2

MST edges

• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.

 14

Greedy MST algorithm

5

4

7

1
3

0

2

6

5-7 0.28

1-5 0.32

4-5 0.35

crossing edges

(sorted by weight)

in MST

0-2

MST edges

min-weight

crossing edge

• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.

 15

Greedy MST algorithm

5

4

7

1
3

0

2

6

0-2 5-7

MST edges

• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.

 16

Greedy MST algorithm

5

4

7

1
3

0

2

6

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

crossing edges

(sorted by weight)

in MST

0-2 5-7

MST edges

min-weight

crossing edge

• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.

 17

Greedy MST algorithm

5

4

7

1
3

0

2

6

0-2 5-7 6-2

MST edges

• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.

 18

Greedy MST algorithm

5

4

7

1
3

0

2

6

0-7 0.16

2-3 0.17

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

3-6 0.52

crossing edges

(sorted by weight)

in MST

0-2 5-7 6-2

MST edges

min-weight

crossing edge

• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.

 19

Greedy MST algorithm

5

4

7

1
3

0

2

6

0-2 5-7 6-2 0-7

MST edges

• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.

 20

Greedy MST algorithm

5

4

7

1
3

0

2

6

0-2 5-7 6-2 0-7

MST edges

min-weight

crossing edge

2-3 0.17

1-7 0.19

1-5 0.32

1-2 0.36

crossing edges

(sorted by weight)

in MST

• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.

 21

Greedy MST algorithm

5

4

7

1
3

0

2

6

0-2 5-7 6-2 0-7 2-3

MST edges

• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.

 22

Greedy MST algorithm

5

4

7

1
3

0

2

6

0-2 5-7 6-2 0-7 2-3

MST edges

min-weight

crossing edge

1-7 0.19

1-3 0.29

1-5 0.32

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-4 0.93

crossing edges

(sorted by weight)

in MST

• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.

 23

Greedy MST algorithm

5

4

7

1
3

0

2

6

0-2 5-7 6-2 0-7 2-3 1-7

MST edges

• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.

 24

Greedy MST algorithm

5

4

7

1
3

0

2

6

0-2 5-7 6-2 0-7 2-3 1-7

MST edges

min-weight

crossing edge

4-5 0.35

4-7 0.37

0-4 0.38

6-4 0.93

crossing edges

(sorted by weight)

in MST

• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.

 25

Greedy MST algorithm

5

4

7

1
3

0

2

6

0-2 5-7 6-2 0-7 2-3 1-7 4-5

MST edges

Greedy MST algorithm: correctness proof

Proposition. The greedy algorithm computes the MST.
 
Pf.
• Any edge colored black is in the MST (via cut property).

• If fewer than V - 1 black edges, there exists a cut with no black crossing edges.  
(consider cut whose vertices are one connected component)

 26

fewer than V-1 edges colored black a cut with no black crossing edges

Greedy MST algorithm: efficient implementations

Proposition. The greedy algorithm computes the MST:
 
Efficient implementations. Choose cut? Find min-weight edge?
Ex 1. Kruskal's algorithm. [stay tuned]
Ex 2. Prim's algorithm. [stay tuned]
Ex 3. Borüvka's algorithm.

 27

 28

Q. What if edge weights are not all distinct?
A. Greedy MST algorithm still correct if equal weights are present!  
(our correctness proof fails, but that can be fixed)
 
 
 
 
 
Q. What if graph is not connected?
A. Compute minimum spanning forest = MST of each component.

Removing two simplifying assumptions

weights need not be
proportional to distance

4 6 0.62
5 6 0.88
1 5 0.02
0 4 0.64
1 6 0.90
0 2 0.22
1 2 0.50
1 3 0.97
2 6 0.17

no MST if graph is not connected
4 5 0.61
4 6 0.62
5 6 0.88
1 5 0.11
2 3 0.35
0 3 0.6
1 6 0.10
0 2 0.22

can independently compute
MSTs of components

Various MST anomalies

weights can be 0 or negative

4 6 0.62
5 6 0.88
1 5 0.02
0 4 -0.99
1 6 0
0 2 0.22
1 2 0.50
1 3 0.97
2 6 0.17

MST may not be unique
when weights have equal values

1 2 1.00
1 3 0.50
2 4 1.00
3 4 0.50

1 2 1.00
1 3 0.50
2 4 1.00
3 4 0.50

weights need not be
proportional to distance

4 6 0.62
5 6 0.88
1 5 0.02
0 4 0.64
1 6 0.90
0 2 0.22
1 2 0.50
1 3 0.97
2 6 0.17

no MST if graph is not connected
4 5 0.61
4 6 0.62
5 6 0.88
1 5 0.11
2 3 0.35
0 3 0.6
1 6 0.10
0 2 0.22

can independently compute
MSTs of components

Various MST anomalies

weights can be 0 or negative

4 6 0.62
5 6 0.88
1 5 0.02
0 4 -0.99
1 6 0
0 2 0.22
1 2 0.50
1 3 0.97
2 6 0.17

MST may not be unique
when weights have equal values

1 2 1.00
1 3 0.50
2 4 1.00
3 4 0.50

1 2 1.00
1 3 0.50
2 4 1.00
3 4 0.50

weights need not be
proportional to distance

4 6 0.62
5 6 0.88
1 5 0.02
0 4 0.64
1 6 0.90
0 2 0.22
1 2 0.50
1 3 0.97
2 6 0.17

no MST if graph is not connected
4 5 0.61
4 6 0.62
5 6 0.88
1 5 0.11
2 3 0.35
0 3 0.6
1 6 0.10
0 2 0.22

can independently compute
MSTs of components

Various MST anomalies

weights can be 0 or negative

4 6 0.62
5 6 0.88
1 5 0.02
0 4 -0.99
1 6 0
0 2 0.22
1 2 0.50
1 3 0.97
2 6 0.17

MST may not be unique
when weights have equal values

1 2 1.00
1 3 0.50
2 4 1.00
3 4 0.50

1 2 1.00
1 3 0.50
2 4 1.00
3 4 0.50

MINIMUM SPANNING TREES

‣ Greedy algorithm
‣ Edge-weighted graph API
‣ Kruskal's algorithm
‣ Prim's algorithm
‣ Context

 30

Weighted edge API

Edge abstraction needed for weighted edges.

Idiom for processing an edge e: int v = e.either(), w = e.other(v);

 public class Edge implements Comparable<Edge>

Edge(int v, int w, double weight) create a weighted edge v-w

int either() either endpoint

int other(int v) the endpoint that's not v

int compareTo(Edge that) compare this edge to that edge

double weight() the weight

String toString() string representation

v
weight

w

 31

public class Edge implements Comparable<Edge>
{
 private final int v, w;
 private final double weight;

 public Edge(int v, int w, double weight)  
 {
 this.v = v;
 this.w = w;
 this.weight = weight;
 }

 public int either()  
 { return v; }

 public int other(int vertex)  
 {
 if (vertex == v) return w;
 else return v;
 }

 public int compareTo(Edge that)  
 {
 if (this.weight < that.weight) return -1;
 else if (this.weight > that.weight) return +1;
 else return 0;
 }
}

Weighted edge: Java implementation

constructor

either endpoint

other endpoint

compare edges by weight

 32

Conventions. Allow self-loops and parallel edges.

Edge-weighted graph API

 public class EdgeWeightedGraph

EdgeWeightedGraph(int V) create an empty graph with V vertices

EdgeWeightedGraph(In in) create a graph from input stream

void addEdge(Edge e) add weighted edge e to this graph

Iterable<Edge> adj(int v) edges incident to v

Iterable<Edge> edges() all edges in this graph

int V() number of vertices

int E() number of edges

String toString() string representation

 33

Edge-weighted graph: adjacency-lists representation

Maintain vertex-indexed array of Edge lists.

Edge-weighted graph representation

adj[]
0

1

2

3

4

5

6

7

6 0 .58 0 2 .26 0 4 .38 0 7 .16 Bag
objects

8
16
4 5 0.35
4 7 0.37
5 7 0.28
0 7 0.16
1 5 0.32
0 4 0.38
2 3 0.17
1 7 0.19
0 2 0.26
1 2 0.36
1 3 0.29
2 7 0.34
6 2 0.40
3 6 0.52
6 0 0.58
6 4 0.93

1 3 .29 1 2 .36 1 7 .19 1 5 .32

6 2 .40 2 7 .34 1 2 .36 0 2 .26 2 3 .17

3 6 .52 1 3 .29 2 3 .17

6 4 .93 0 4 .38 4 7 .37 4 5 .35

1 5 .32 5 7 .28 4 5 .35

6 4 .93 6 0 .58 3 6 .52 6 2 .40

2 7 .34 1 7 .19 0 7 .16 5 7 .28 5 7 .28

references to the
same Edge object

tinyEWG.txt
V

E

 34

public class EdgeWeightedGraph
{
 private final int V;
 private final Bag<Edge>[] adj;

 public EdgeWeightedGraph(int V)
 {
 this.V = V;
 adj = (Bag<Edge>[]) new Bag[V];
 for (int v = 0; v < V; v++)
 adj[v] = new Bag<Edge>();
 }

 public void addEdge(Edge e)
 {
 int v = e.either(), w = e.other(v);
 adj[v].add(e);
 adj[w].add(e);
 }

 public Iterable<Edge> adj(int v)
 { return adj[v]; }
}

Edge-weighted graph: adjacency-lists implementation

add edge to both

adjacency lists

constructor

same as Graph, but adjacency

lists of Edges instead of integers

Q. How to represent the MST?

 35

Minimum spanning tree API

8
16
4 5 0.35
4 7 0.37
5 7 0.28
0 7 0.16
1 5 0.32
0 4 0.38
2 3 0.17
1 7 0.19
0 2 0.26
1 2 0.36
1 3 0.29
2 7 0.34
6 2 0.40
3 6 0.52
6 0 0.58
6 4 0.93

non-MST edge
(gray)

MST edge
(black)

An edge-weighted graph and its MST

tinyEWG.txt
V

E
% java MST tinyEWG.txt
0-7 0.16
1-7 0.19
0-2 0.26
2-3 0.17
5-7 0.28
4-5 0.35
6-2 0.40
1.81

 public class MST

MST(EdgeWeightedGraph G) constructor

Iterable<Edge> edges() edges in MST

double weight() weight of MST

Q. How to represent the MST?

 36

Minimum spanning tree API

 public static void main(String[] args)
 {
 In in = new In(args[0]);
 EdgeWeightedGraph G = new EdgeWeightedGraph(in);
 MST mst = new MST(G);
 for (Edge e : mst.edges())
 StdOut.println(e);
 StdOut.printf("%.2f\n", mst.weight());
 }

% java MST tinyEWG.txt
0-7 0.16
1-7 0.19
0-2 0.26
2-3 0.17
5-7 0.28
4-5 0.35
6-2 0.40
1.81

 public class MST

MST(EdgeWeightedGraph G) constructor

Iterable<Edge> edges() edges in MST

double weight() weight of MST

MINIMUM SPANNING TREES

‣ Greedy algorithm
‣ Edge-weighted graph API
‣ Kruskal's algorithm
‣ Prim's algorithm
‣ Context

• Consider edges in ascending order of weight.

• Add next edge to tree T unless doing so would create a cycle.

 38

Kruskal's algorithm

5

4

7

1
3

0

2

6

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

graph edges

sorted by weight

an edge-weighted graph

 39

Kruskal's algorithm

0-7 0.16

5

4

7

1
3

0

2

6

does not create a cycle

in MST

• Consider edges in ascending order of weight.

• Add next edge to tree T unless doing so would create a cycle.

 40

Kruskal's algorithm

0-7 0.16

2-3 0.17

5

4

7

1
3

0

2

6

in MST

does not

create a cycle

• Consider edges in ascending order of weight.

• Add next edge to tree T unless doing so would create a cycle.

 41

Kruskal's algorithm

0-7 0.16

2-3 0.17

1-7 0.19

5

4

7

1
3

0

2

6

in MST

does not create a cycle

• Consider edges in ascending order of weight.

• Add next edge to tree T unless doing so would create a cycle.

 42

Kruskal's algorithm

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26
5

4

7

1
3

0

2

6

in MST

does not create a cycle

• Consider edges in ascending order of weight.

• Add next edge to tree T unless doing so would create a cycle.

 43

Kruskal's algorithm

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28
5

4

7

1
3

0

2

6

in MST

does not create a cycle

• Consider edges in ascending order of weight.

• Add next edge to tree T unless doing so would create a cycle.

 44

Kruskal's algorithm

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

5

4

7

1
3

0

2

6

creates a cycle

not in MST

• Consider edges in ascending order of weight.

• Add next edge to tree T unless doing so would create a cycle.

 45

Kruskal's algorithm

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

5

4

7

1
3

0

2

6

creates a cycle

not in MST

• Consider edges in ascending order of weight.

• Add next edge to tree T unless doing so would create a cycle.

 46

Kruskal's algorithm

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

5

4

7

1
3

0

2

6

creates a cycle

not in MST

• Consider edges in ascending order of weight.

• Add next edge to tree T unless doing so would create a cycle.

 47

Kruskal's algorithm

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

5

4

7

1
3

0

2

6

in MST

does not create a cycle

• Consider edges in ascending order of weight.

• Add next edge to tree T unless doing so would create a cycle.

 48

Kruskal's algorithm

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

5

4

7

1
3

0

2

6

creates a cycle

not in

MST

• Consider edges in ascending order of weight.

• Add next edge to tree T unless doing so would create a cycle.

 49

Kruskal's algorithm

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

5

4

7

1
3

0

2

6

creates a cycle

not in

MST

• Consider edges in ascending order of weight.

• Add next edge to tree T unless doing so would create a cycle.

 50

Kruskal's algorithm

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

5

4

7

1
3

0

2

6

creates a cycle
not in MST

• Consider edges in ascending order of weight.

• Add next edge to tree T unless doing so would create a cycle.

 51

Kruskal's algorithm

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

5

4

7

1
3

0

2

6

in MSTdoes not create a cycle

• Consider edges in ascending order of weight.

• Add next edge to tree T unless doing so would create a cycle.

 52

Kruskal's algorithm

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

5

4

7

1
3

0

2

6

creates a cycle

not in MST

• Consider edges in ascending order of weight.

• Add next edge to tree T unless doing so would create a cycle.

 53

Kruskal's algorithm

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

5

4

7

1
3

0

2

6

creates a cycle

not in MST

• Consider edges in ascending order of weight.

• Add next edge to tree T unless doing so would create a cycle.

 54

Kruskal's algorithm

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

5

4

7

1
3

0

2

6

creates a cycle

not in MST

• Consider edges in ascending order of weight.

• Add next edge to tree T unless doing so would create a cycle.

 55

Kruskal's algorithm

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

5

4

7

1
3

0

2

6

a minimum spanning tree

• Consider edges in ascending order of weight.

• Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm: visualization

 56

Proposition. [Kruskal 1956] Kruskal's algorithm computes the MST.
 
Pf. Kruskal's algorithm is a special case of the greedy MST algorithm.
• Suppose Kruskal's algorithm colors the edge e = v–w black.

• Cut = set of vertices connected to v in tree T.

• No crossing edge is black.

• No crossing edge has lower weight. Why?

 57

Kruskal's algorithm: correctness proof

adding edge to tree
would create a cycle

add edge to tree

Challenge. Would adding edge v–w to tree T create a cycle? If not, add it.

How difficult?
• E + V
• V
• log V
• log* V
• 1

 58

Kruskal's algorithm: implementation challenge

run DFS from v, check if w is reachable  
(T has at most V – 1 edges)

use the union-find data structure !  
(log* function: number of times needed to take the lg of a number until reaching 1)

adding edge to tree
would create a cycle

add edge to tree

 59

Challenge. Would adding edge v–w to tree T create a cycle? If not, add it.
 
Efficient solution. Use the union-find data structure.
• Maintain a set for each connected component in T.

• If v and w are in same set, then adding v–w would create a cycle.

• To add v–w to T, merge sets containing v and w.

Case 1: adding v–w creates a cycle

Kruskal's algorithm: implementation challenge

v w

Case 2: add v–w to T and merge sets containing v and w

w

v

build priority queue

 60

Kruskal's algorithm: Java implementation

public class KruskalMST
{
 private Queue<Edge> mst = new Queue<Edge>();

 public KruskalMST(EdgeWeightedGraph G)
 {
 MinPQ<Edge> pq = new MinPQ<Edge>();
 for (Edge e : G.edges())
 pq.insert(e);

 UF uf = new UF(G.V());
 while (!pq.isEmpty() && mst.size() < G.V()-1)
 {
 Edge e = pq.delMin();
 int v = e.either(), w = e.other(v);
 if (!uf.connected(v, w))
 {
 uf.union(v, w);
 mst.enqueue(e);
 }
 }
 }

 public Iterable<Edge> edges()
 { return mst; }
}

greedily add edges to MST

edge v–w does not create cycle

merge sets

add edge to MST

 61

Proposition. Kruskal's algorithm computes MST in time proportional to 
E log E (in the worst case).
 
Pf.
 
 
 
 
 
 
 
 
 
 
Remark. If edges are already sorted, order of growth is E log* V.

† amortized bound using weighted quick union with path compression

Kruskal's algorithm: running time

recall: log* V ≤ 5 in this universe

operation frequency time per op

build pq 1 E

delete-min E log E

union V log* V †

connected E log* V †

log* function:  
number of times needed to take  
the lg of a number until reaching 1

MINIMUM SPANNING TREES

‣ Greedy algorithm
‣ Edge-weighted graph API
‣ Kruskal's algorithm
‣ Prim's algorithm
‣ Context

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 63

Prim's algorithm

5

4

7

1
3

0

2

6

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

an edge-weighted graph

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 64

Prim's algorithm

5

4

7

1
3

0

2

6

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 65

Prim's algorithm

0

0-7 0.16

0-2 0.26

0-4 0.38

6-0 0.58

edges with exactly

one endpoint in T

(sorted by weight)

5

4

7

1
3

2

6

in MST

min weight edge with

exactly one endpoint in T

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 66

Prim's algorithm

5

4

7

1
3

0

2

6

0-7

MST edges

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 67

Prim's algorithm

5

4

7

1
3

0

2

6

1-7 0.19

0-2 0.26

5-7 0.28

2-7 0.34

4-7 0.37

0-4 0.38

6-0 0.58

in MST

edges with exactly

one endpoint in T

(sorted by weight)

0-7

MST edges

min weight edge with

exactly one endpoint in T

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 68

Prim's algorithm

5

4

7

1
3

0

2

6

0-7 1-7

MST edges

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 69

Prim's algorithm

5

4

7

1
3

0

2

6

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

1-2 0.36

4-7 0.37

0-4 0.38

6-0 0.58

edges with exactly

one endpoint in T

(sorted by weight)

in MST

0-7 1-7

MST edges

min weight edge with

exactly one endpoint in T

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 70

Prim's algorithm

5

4

7

1
3

0

2

6

0-7 1-7 0-2

MST edges

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 71

Prim's algorithm

5

4

7

1
3

0

2

6

2-3 0.17

5-7 0.28

1-3 0.29

1-5 0.32

4-7 0.37

0-4 0.38

6-2 0.40

6-0 0.58

edges with exactly

one endpoint in T

(sorted by weight)

in MST

0-7 1-7 0-2

MST edges

min weight edge with

exactly one endpoint in T

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 72

Prim's algorithm

5

4

7

1
3

0

2

6

0-7 1-7 0-2 2-3

MST edges

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 73

Prim's algorithm

5

4

7

1
3

0

2

6

5-7 0.28

1-5 0.32

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

edges with exactly

one endpoint in T

(sorted by weight)

in MST

0-7 1-7 0-2 2-3

MST edges

min weight edge with

exactly one endpoint in T

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 74

Prim's algorithm

5

4

7

1
3

0

2

6

0-7 1-7 0-2 2-3 5-7

MST edges

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 75

Prim's algorithm

5

4

7

1
3

0

2

6

4-5 0.35

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

edges with exactly

one endpoint in T

(sorted by weight)

in MST

0-7 1-7 0-2 2-3 5-7

MST edges

min weight edge with

exactly one endpoint in T

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 76

Prim's algorithm

5

4

7

1
3

0

2

6

0-7 1-7 0-2 2-3 5-7 4-5

MST edges

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 77

Prim's algorithm

5

4

7

1
3

0

2

6

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

edges with exactly

one endpoint in T

(sorted by weight)

in MST

0-7 1-7 0-2 2-3 5-7 4-5

MST edges

min weight edge with

exactly one endpoint in T

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 78

Prim's algorithm

5

4

7

1
3

0

2

6

0-7 1-7 0-2 2-3 5-7 4-5 6-2

MST edges

Prim’s algorithm: visualization

 79

Proposition. [Jarník 1930, Dijkstra 1957, Prim 1959]  
Prim's algorithm computes the MST.
 
Pf. Prim's algorithm is a special case of the greedy MST algorithm.
• Suppose edge e = min weight edge connecting a vertex on the tree  

to a vertex not on the tree.

• Cut = set of vertices connected on tree.

• No crossing edge is black.

• No crossing edge has lower weight.

 80

Prim's algorithm: proof of correctness

edge e = 7-5 added to tree

 81

Challenge. Find the min weight edge with exactly one endpoint in T.

How difficult?
• E
• V
• log E
• log* E
• l

Prim's algorithm: implementation challenge

try all edges

use a priority queue !

1-7 0.19
0-2 0.26
5-7 0.28
2-7 0.34
4-7 0.37
0-4 0.38
6-0 0.58

priority queue
of crossing edges

1-7 is min weight edge with
exactly one endpoint in T

 82

Challenge. Find the min weight edge with exactly one endpoint in T.
 
Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.

• Key = edge; priority = weight of edge.

• Delete-min to determine next edge e = v–w to add to T.

• Disregard if both endpoints v and w are in T.

• Otherwise, let v be vertex not in T :
- add to PQ any edge incident to v (assuming other endpoint not in T)

- add v to T

Prim's algorithm: lazy implementation

1-7 0.19
0-2 0.26
5-7 0.28
2-7 0.34
4-7 0.37
0-4 0.38
6-0 0.58

priority queue
of crossing edges

1-7 is min weight edge with
exactly one endpoint in T

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 83

Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

an edge-weighted graph

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 84

Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 85

Prim's algorithm - Lazy implementation

0

5

4

7

1
3

2

6

edges on PQ

(sorted by weight)

* 0-7 0.16

* 0-2 0.26

* 0-4 0.38

* 6-0 0.58

add to PQ all edges incident to 0

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 86

Prim's algorithm - Lazy implementation

0

5

4

7

1
3

2

6

edges on PQ

(sorted by weight)

 0-7 0.16

 0-2 0.26

 0-4 0.38

 6-0 0.58

delete 0-7 and add to MST

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 87

Prim's algorithm - Lazy implementation

0

5

4

7

1
3

2

6

edges on PQ

(sorted by weight)

0-7

MST edges

 0-2 0.26

 0-4 0.38

 6-0 0.58

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 88

Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

0-7

MST edges

* 1-7 0.19

 0-2 0.26

* 5-7 0.28

* 2-7 0.34

* 4-7 0.37

 0-4 0.38

 6-0 0.58

edges on PQ

(sorted by weight)

add to PQ all edges incident to 7

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 89

Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

0-7

MST edges

 1-7 0.19

 0-2 0.26

 5-7 0.28

 2-7 0.34

 4-7 0.37

 0-4 0.38

 6-0 0.58

edges on PQ

(sorted by weight)

delete 1-7 and add to MST

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 90

Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

 0-2 0.26

 5-7 0.28

 2-7 0.34

 4-7 0.37

 0-4 0.38

 6-0 0.58

edges on PQ

(sorted by weight)

0-7 1-7

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 91

Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

 0-2 0.26

 5-7 0.28

* 1-3 0.29

* 1-5 0.32

 2-7 0.34

* 1-2 0.36

 4-7 0.37

 0-4 0.38

 6-0 0.58

edges on PQ

(sorted by weight)

add to PQ all edges incident to 1

0-7 1-7

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 92

Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

 0-2 0.26

 5-7 0.28

 1-3 0.29

 1-5 0.32

 2-7 0.34

 1-2 0.36

 4-7 0.37

 0-4 0.38

 6-0 0.58

edges on PQ

(sorted by weight)

delete edge 0-2 and add to MST

0-7 1-7

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 93

Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

 5-7 0.28

 1-3 0.29

 1-5 0.32

 2-7 0.34

 1-2 0.36

 4-7 0.37

 0-4 0.38

 6-0 0.58

edges on PQ

(sorted by weight)

0-7 1-7 0-2

edge becomes obsolete

(lazy implementation leaves on PQ)

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 94

Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

* 2-3 0.17

 5-7 0.28

 1-3 0.29

 1-5 0.32

 2-7 0.34

 1-2 0.36

 4-7 0.37

 0-4 0.38

* 6-2 0.40

 6-0 0.58

edges on PQ

(sorted by weight)

0-7 1-7 0-2

add to PQ all edges incident to 2

 no need to add edge 1-2 or 2-7

because it's already obsolete

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 95

Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

* 2-3 0.17

 5-7 0.28

 1-3 0.29

 1-5 0.32

 2-7 0.34

 1-2 0.36

 4-7 0.37

 0-4 0.38

* 6-2 0.40

 6-0 0.58

edges on PQ

(sorted by weight)

0-7 1-7 0-2

delete 2-3 and add to MST

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 96

Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

 5-7 0.28

 1-3 0.29

 1-5 0.32

 2-7 0.34

 1-2 0.36

 4-7 0.37

 0-4 0.38

 6-2 0.40

 6-0 0.58

edges on PQ

(sorted by weight)

0-7 1-7 0-2 2-3

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 97

Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

 5-7 0.28

 1-3 0.29

 1-5 0.32

 2-7 0.34

 1-2 0.36

 4-7 0.37

 0-4 0.38

 6-2 0.40

* 3-6 0.52

 6-0 0.58

edges on PQ

(sorted by weight)

0-7 1-7 0-2 2-3

add to PQ all edges incident to 3

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 98

Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

 5-7 0.28

 1-3 0.29

 1-5 0.32

 2-7 0.34

 1-2 0.36

 4-7 0.37

 0-4 0.38

 6-2 0.40

 3-6 0.52

 6-0 0.58

edges on PQ

(sorted by weight)

0-7 1-7 0-2 2-3

delete 5-7 and add to MST

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 99

Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

 1-3 0.29

 1-5 0.32

 2-7 0.34

 1-2 0.36

 4-7 0.37

 0-4 0.38

 6-2 0.40

 3-6 0.52

 6-0 0.58

edges on PQ

(sorted by weight)

0-7 1-7 0-2 2-3 5-7

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 100

Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

 1-3 0.29

 1-5 0.32

 2-7 0.34

* 4-5 0.35

 1-2 0.36

 4-7 0.37

 0-4 0.38

 6-2 0.40

 3-6 0.52

 6-0 0.58

edges on PQ

(sorted by weight)

0-7 1-7 0-2 2-3 5-7

add to PQ all edges incident to 5

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 101

Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

 1-3 0.29

 1-5 0.32

 2-7 0.34

 4-5 0.35

 1-2 0.36

 4-7 0.37

 0-4 0.38

 6-2 0.40

 3-6 0.52

 6-0 0.58

edges on PQ

(sorted by weight)

0-7 1-7 0-2 2-3 5-7

delete 1-3 and discard obsolete edge

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 102

Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

 1-5 0.32

 2-7 0.34

 4-5 0.35

 1-2 0.36

 4-7 0.37

 0-4 0.38

 6-2 0.40

 3-6 0.52

 6-0 0.58

edges on PQ

(sorted by weight)

0-7 1-7 0-2 2-3 5-7

delete 1-5 and discard obsolete edge

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 103

Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

 2-7 0.34

 4-5 0.35

 1-2 0.36

 4-7 0.37

 0-4 0.38

 6-2 0.40

 3-6 0.52

 6-0 0.58

edges on PQ

(sorted by weight)

0-7 1-7 0-2 2-3 5-7

delete 2-7 and discard obsolete edge

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 104

Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

 4-5 0.35

 1-2 0.36

 4-7 0.37

 0-4 0.38

 6-2 0.40

 3-6 0.52

 6-0 0.58

edges on PQ

(sorted by weight)

0-7 1-7 0-2 2-3 5-7

delete 4-5 and add to MST

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 105

Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

 1-2 0.36

 4-7 0.37

 0-4 0.38

 6-2 0.40

 3-6 0.52

 6-0 0.58

edges on PQ

(sorted by weight)

0-7 1-7 0-2 2-3 5-7 4-5

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 106

Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

 1-2 0.36

 4-7 0.37

 0-4 0.38

 6-2 0.40

 3-6 0.52

 6-0 0.58

* 6-4 0.93

edges on PQ

(sorted by weight)

0-7 1-7 0-2 2-3 5-7 4-5

add to PQ all edges incident to 4

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 107

Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

 1-2 0.36

 4-7 0.37

 0-4 0.38

 6-2 0.40

 3-6 0.52

 6-0 0.58

 6-4 0.93

edges on PQ

(sorted by weight)

0-7 1-7 0-2 2-3 5-7 4-5

delete 1-2 and discard obsolete edge

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 108

Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

 4-7 0.37

 0-4 0.38

 6-2 0.40

 3-6 0.52

 6-0 0.58

 6-4 0.93

edges on PQ

(sorted by weight)

0-7 1-7 0-2 2-3 5-7 4-5

delete 4-7 and discard obsolete edge

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 109

Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

 0-4 0.38

 6-2 0.40

 3-6 0.52

 6-0 0.58

 6-4 0.93

edges on PQ

(sorted by weight)

0-7 1-7 0-2 2-3 5-7 4-5

delete 0-4 and discard obsolete edge

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 110

Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

 6-2 0.40

 3-6 0.52

 6-0 0.58

 6-4 0.93

edges on PQ

(sorted by weight)

0-7 1-7 0-2 2-3 5-7 4-5

delete 6-2 and add to MST

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 111

Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

 3-6 0.52

 6-0 0.58

 6-4 0.93

edges on PQ

(sorted by weight)

0-7 1-7 0-2 2-3 5-7 4-5 6-2

delete 6-2 and add to MST

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 112

Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

 3-6 0.52

 6-0 0.58

 6-4 0.93

edges on PQ

(sorted by weight)

0-7 1-7 0-2 2-3 5-7 4-5 6-2

stop since V-1 edges

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 113

Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

0-7 1-7 0-2 2-3 5-7 4-5 6-2

public class LazyPrimMST
{
 private boolean[] marked; // MST vertices
 private Queue<Edge> mst; // MST edges
 private MinPQ<Edge> pq; // PQ of edges

 public LazyPrimMST(WeightedGraph G)
 {
 pq = new MinPQ<Edge>();
 mst = new Queue<Edge>();
 marked = new boolean[G.V()];
 visit(G, 0);

 while (!pq.isEmpty())
 {
 Edge e = pq.delMin();
 int v = e.either(), w = e.other(v);
 if (marked[v] && marked[w]) continue;
 mst.enqueue(e);
 if (!marked[v]) visit(G, v);
 if (!marked[w]) visit(G, w);
 }
 }
}

 114

Prim's algorithm: lazy implementation

repeatedly delete the

min weight edge e = v–w from PQ

ignore if both endpoints in T

add v or w to tree

assume G is connected

add edge e to tree

 private void visit(WeightedGraph G, int v)
 {
 marked[v] = true;
 for (Edge e : G.adj(v))
 if (!marked[e.other(v)])
 pq.insert(e);
 }

 public Iterable<Edge> mst()
 { return mst; }

 115

Prim's algorithm: lazy implementation

for each edge e = v–w, add to

PQ if w not already in T

add v to T

 116

Proposition. Lazy Prim's algorithm computes the MST in time proportional  
to E log E and extra space proportional to E (in the worst case).
 
Pf.

Lazy Prim's algorithm: running time

operation frequency binary heap

delete min E log E

insert E log E

 117

Challenge. Find min weight edge with exactly one endpoint in T.
 
 
Eager solution. Maintain a PQ of vertices connected by an edge to T,  
where priority of vertex v = weight of shortest edge connecting v to T.
• Delete min vertex v and add its associated edge e = v–w to T.

• Update PQ by considering all edges e = v–x incident to v
- ignore if x is already in T
- add x to PQ if not already on it
- decrease priority of x if v–x becomes shortest edge connecting x to T

Prim's algorithm: eager implementation

0
1 1-7 0.19
2 0-2 0.26
3 1-3 0.29
4 0-4 0.38
5 5-7 0.28
6 6-0 0.58
7 0-7 0.16

black: on MST

red: on PQ

pq has at most one entry per vertex

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 118

Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

an edge-weighted graph

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 119

Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

v edgeTo[] distTo[]

0 - -

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 120

Prim's algorithm - Eager implementation

0

5

4

7

1
3

2

6

v edgeTo[] distTo[]

0 - -

7 0–7 0.16

2 0–2 0.26

4 0–4 0.38

6 6–0 0.58

vertices on PQ

(sorted by weight)

add vertices 7, 2, 4, and 6 to PQ

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 121

Prim's algorithm - Eager implementation

0

5

4

7

1
3

2

6

v edgeTo[] distTo[]

0 - -

7 0–7 0.16

2 0–2 0.26

4 0–4 0.38

6 6–0 0.58

vertices on PQ

(sorted by weight)

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 122

Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

0-7

MST edges

v edgeTo[] distTo[]

0 - -

7 0–7 0.16

2 0–2 0.26

4 0–4 0.38

6 6–0 0.58

vertices on PQ

(sorted by weight)

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 123

Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

0-7

MST edges

v edgeTo[] distTo[]

0 - -

7 0–7 0.16

1 1–7 0.19

2 0–2 0.26

5 5–7 0.28

4 0–4 0.38

6 6–0 0.58

add vertex 5 to PQ

add vertex 1 to PQ

vertices on PQ

(sorted by weight)

already a better connection

to 2 (discard)

0.374-7

decrease  
key of vertex 4

from 0.38 to 0.37

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 124

Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

0-7 1-7

MST edges

v edgeTo[] distTo[]

0 - -

7 0–7 0.16

1 1–7 0.19

2 0–2 0.26

5 5–7 0.28

4 4–7 0.37

6 6–0 0.58

vertices on PQ

(sorted by weight)

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 125

Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

0-7 1-7

MST edges

v edgeTo[] distTo[]

0 - -

7 0–7 0.16

1 1–7 0.19

2 0–2 0.26

5 5–7 0.28

4 4–7 0.37

6 6–0 0.58

vertices on PQ

(sorted by weight)

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 126

Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

0-7 1-7

MST edges

v edgeTo[] distTo[]

0 - -

7 0–7 0.16

1 1–7 0.19

2 0–2 0.26

5 5–7 0.28

3 1–3 0.29

4 4–7 0.37

6 6–0 0.58

add vertex 3 to PQ

already a better connection

to 5 and 7 (discard)

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 127

Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

0-7 1-7

MST edges

v edgeTo[] distTo[]

0 - -

7 0–7 0.16

1 1–7 0.19

2 0–2 0.26

5 5–7 0.28

3 1–3 0.29

4 4–7 0.37

6 6–0 0.58

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 128

Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

MST edges

v edgeTo[] distTo[]

0 - -

7 0–7 0.16

1 1–7 0.19

2 0–2 0.26

5 5–7 0.28

3 1–3 0.29

4 4–7 0.37

6 6–0 0.58

0-7 1-7 0-2

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 129

Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

0-7 1-7 0-2

MST edges

v edgeTo[] distTo[]

0 - -

7 0–7 0.16

1 1–7 0.19

2 0–2 0.26

3 1–3 0.29

5 5–7 0.28

4 4–7 0.37

6 6–0 0.58

decrease key of vertex 3

from 0.29 to 0.17

decrease key of vertex 6

from 0.58 to 0.40

0.172-3

0.406-2

now better connections

to 0 and 1 (discard)

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 130

Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

MST edges

v edgeTo[] distTo[]

0 - -

7 0–7 0.16

1 1–7 0.19

2 0–2 0.26

3 2–3 0.17

5 5–7 0.28

4 4–7 0.37

6 6–2 0.40

0-7 1-7 0-2 2-3

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 131

Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

MST edges

v edgeTo[] distTo[]

0 - -

7 0–7 0.16

1 1–7 0.19

2 0–2 0.26

3 2–3 0.17

5 5–7 0.28

4 4–7 0.37

6 6–2 0.40

0-7 1-7 0-2 2-3

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 132

Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

MST edges

v edgeTo[] distTo[]

0 - -

7 0–7 0.16

1 1–7 0.19

2 0–2 0.26

3 2–3 0.17

5 5–7 0.28

4 4–7 0.37

6 6–2 0.40

0-7 1-7 0-2 2-3

already a better connection

to 6 (discard)

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 133

Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

MST edges

v edgeTo[] distTo[]

0 - -

7 0–7 0.16

1 1–7 0.19

2 0–2 0.26

3 2–3 0.17

5 5–7 0.28

4 4–7 0.37

6 6–2 0.40

0-7 1-7 0-2 2-3

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 134

Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

MST edges

v edgeTo[] distTo[]

0 - -

7 0–7 0.16

1 1–7 0.19

2 0–2 0.26

3 2–3 0.17

5 5–7 0.28

4 4–7 0.37

6 6–2 0.40

0-7 1-7 0-2 2-3 5-7

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 135

Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

0-7 1-7 0-2 2-3 5-7

MST edges

decrease key of 4

from 0.37 to 0.35

v edgeTo[] distTo[]

0 - -

7 0–7 0.16

1 1–7 0.19

2 0–2 0.26

3 2–3 0.17

5 5–7 0.28

4 4–7 0.37

6 6–2 0.40

0.354-5

now a better connection

to 4 (discard)

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 136

Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

0-7 1-7 0-2 2-3 5-7

MST edges

v edgeTo[] distTo[]

0 - -

7 0–7 0.16

1 1–7 0.19

2 0–2 0.26

3 2–3 0.17

5 5–7 0.28

4 4–5 0.35

6 6–2 0.40

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 137

Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

MST edges

v edgeTo[] distTo[]

0 - -

7 0–7 0.16

1 1–7 0.19

2 0–2 0.26

3 2–3 0.17

5 5–7 0.28

4 4–5 0.35

6 6–2 0.40

0-7 1-7 0-2 2-3 5-7 4-5

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 138

Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

MST edges

v edgeTo[] distTo[]

0 - -

7 0–7 0.16

1 1–7 0.19

2 0–2 0.26

3 2–3 0.17

5 5–7 0.28

4 4–5 0.35

6 6–2 0.40

0-7 1-7 0-2 2-3 5-7 4-5

already a better connection

to 6 (discard)

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 139

Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

MST edges

v edgeTo[] distTo[]

0 - -

7 0–7 0.16

1 1–7 0.19

2 0–2 0.26

3 2–3 0.17

5 5–7 0.28

4 4–5 0.35

6 6–2 0.40

0-7 1-7 0-2 2-3 5-7 4-5

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 140

Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

MST edges

v edgeTo[] distTo[]

0 - -

7 0–7 0.16

1 1–7 0.19

2 0–2 0.26

3 2–3 0.17

5 5–7 0.28

4 4–5 0.35

6 6–2 0.40

0-7 1-7 0-2 2-3 5-7 4-5 6-2

• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 141

Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

0-7 1-7 0-2 2-3 5-7 4-5 6-2

MST edges

v edgeTo[] distTo[]

0 - -

7 0–7 0.16

1 1–7 0.19

2 0–2 0.26

3 2–3 0.17

5 5–7 0.28

4 4–5 0.35

6 6–2 0.40

 142

Associate an index between 0 and N - 1 with each key in a priority queue.
• Client can insert and delete-the-minimum.

• Client can change the key by specifying the index.

Indexed priority queue

 public class IndexMinPQ<Key extends Comparable<Key>>

IndexMinPQ(int N)
create indexed priority queue  

with indices 0, 1, …, N-1

void insert(int k, Key key)
associate key with index k  

void decreaseKey(int k, Key key)
decrease the key associated with index k  

boolean contains() is k an index on the priority queue?

int delMin()
remove a minimal key and return its

associated index

boolean isEmpty() is the priority queue empty?

int size() number of entries in the priority queue

Implementation.
• Start with same code as MinPQ.

• Maintain parallel arrays keys[], pq[], and qp[] so that:
- keys[i] is the priority of i

- pq[i] is the index of the key in heap position i

- qp[i] is the heap position of the key with index i

• Use swim(qp[k]) implement decreaseKey(k, key).

 i 0 1 2 3 4 5 6 7 8
keys[i] A S O R T I N G -
 pq[i] - 0 6 7 2 1 5 4 3
 qp[i] 1 5 4 8 7 6 2 3 -

1

2

4 5 6 7

8

3

R

O

N

S

A

I

G

T

 143

Indexed priority queue implementation

 144

Depends on PQ implementation: V insert, V delete-min, E decrease-key.
 
 
 
 
 
 
 
 
 
 
Bottom line.
• Array implementation optimal for dense graphs.

• Binary heap much faster for sparse graphs.

• 4-way heap worth the trouble in performance-critical situations.

• Fibonacci heap best in theory, but not worth implementing.

Prim's algorithm: running time

† amortized

PQ implementation insert delete-min decrease-key total

array 1 V 1 V2

binary heap log V log V log V E log V

d-way heap 
(Johnson 1975)

d logd V d logd V logd V E logE/V V

Fibonacci heap  
(Fredman-Tarjan 1984)

1 † log V † 1 † E + V log V

MINIMUM SPANNING TREES

‣ Greedy algorithm
‣ Edge-weighted graph API
‣ Kruskal's algorithm
‣ Prim's algorithm
‣ Context

Given N points in the plane, find MST connecting them, where the distances
between point pairs are their Euclidean distances.
 
 
 
 
 
 
 
 
 
 
 
Brute force. Compute ~ N 2 / 2 distances and run Prim's algorithm.

Ingenuity. Exploit geometry and do it in ~ c N log N.
 146

Euclidean MST

 147

k-clustering. Divide a set of objects classify into k coherent groups.
Distance function. Numeric value specifying "closeness" of two objects.
 
Goal. Divide into clusters so that objects in different clusters are far apart.
 
 
 
 
 
 
Applications.
• Routing in mobile ad hoc networks.

• Document categorization for web search.

• Similarity searching in medical image databases.

• Skycat: cluster 109 sky objects into stars, quasars, galaxies.

outbreak of cholera deaths in London in 1850s (Nina Mishra)

Scientific application: clustering

k-clustering. Divide a set of objects classify into k coherent groups.
Distance function. Numeric value specifying "closeness" of two objects.

Single link. Distance between two clusters equals the distance  
between the two closest objects (one in each cluster).

Single-link clustering. Given an integer k, find a k-clustering that
maximizes the distance between two closest clusters.

 148

Single-link clustering

distance between 
two closest clusters

4-clustering

distance between two clusters

 149

“Well-known” algorithm for single-link clustering:
• Form V clusters of one object each.

• Find the closest pair of objects such that each object is in a different cluster, and
merge the two clusters.

• Repeat until there are exactly k clusters.

 
Observation. This is Kruskal's algorithm 
(stop when k connected components).
 
 
 
 
 
 
Alternate solution. Run Prim's algorithm and delete k-1 max weight edges.

Single-link clustering algorithm

 150

Dendrogram. Tree diagram that illustrates arrangement of clusters.

Dendrogram

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html

 151

Dendrogram. Tree diagram that illustrates arrangement of clusters.

Dendrogram

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html

 152

Dendrogram. Tree diagram that illustrates arrangement of clusters.

Dendrogram

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html

 153

Dendrogram. Tree diagram that illustrates arrangement of clusters.

Dendrogram

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html

 154

Dendrogram. Tree diagram that illustrates arrangement of clusters.

Dendrogram

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html

 155

Dendrogram. Tree diagram that illustrates arrangement of clusters.

Dendrogram

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html

 156

Tumors in similar tissues cluster together.

Reference: Botstein & Brown group

Gene 1

Gene n

gene expressed

gene not expressed

Dendrogram of cancers in human

