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Given.  Undirected graph G with positive edge weights (connected).
Def.  A spanning tree of G is a subgraph T that is connected and acyclic.

Goal.  Find a min weight spanning tree.

Minimum spanning tree
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Given.  Undirected graph G with positive edge weights (connected).
Def.  A spanning tree of G is a subgraph T that is connected and acyclic.

Goal.  Find a min weight spanning tree.
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Given.  Undirected graph G with positive edge weights (connected).
Def.  A spanning tree of G is a subgraph T that is connected and acyclic.

Goal.  Find a min weight spanning tree.

Minimum spanning tree

23

10 

21

14

24

 16

4

18
9

7

11

8

5

6

not acyclic



 6

Given.  Undirected graph G with positive edge weights (connected).
Def.  A spanning tree of G is a subgraph T that is connected and acyclic.

Goal.  Find a min weight spanning tree.

Brute force.  Try all spanning trees?

Minimum spanning tree

spanning tree T:  cost = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7
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MST is fundamental problem with diverse applications.
• Dithering.

• Cluster analysis.

• Max bottleneck paths.

• Real-time face verification.

• LDPC codes for error correction.

• Image registration with Renyi entropy.

• Find road networks in satellite and aerial imagery.

• Reducing data storage in sequencing amino acids in a protein.

• Model locality of particle interactions in turbulent fluid flows.

• Autoconfig protocol for Ethernet bridging to avoid cycles in a network.

• Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).

• Network design (communication, electrical, hydraulic, cable, computer, road).

Applications

http://www.ics.uci.edu/~eppstein/gina/mst.html
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Simplifying assumptions.  Edge weights are distinct; graph is connected.

Def.  A cut in a graph is a partition of its vertices into two (nonempty) sets.  
A crossing edge connects a vertex in one set with a vertex in the other.

Cut property.  Given any cut, the crossing edge of min weight is in the MST.

Cut property
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Cut property

minimum-weight crossing edge
 must be in the MST

crossing edges separating
gray from white vertices

are drawn in red

e



Cut property:  correctness proof
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Simplifying assumptions.  Edge weights are distinct; graph is connected.

Def.  A cut in a graph is a partition of its vertices into two (nonempty) sets.  
A crossing edge connects a vertex in one set with a vertex in the other.

Cut property.  Given any cut, the crossing edge of min weight is in the MST.

Pf.  Let e be the min-weight crossing edge in cut.

• Suppose e is not in the MST.

• Adding e to the MST creates a cycle.

• Some other edge f in cycle must be a crossing edge.

• Removing  f and adding e is also a spanning tree.

• Since weight of e is less than the weight of f,  
that spanning tree is lower weight.

• Contradiction.   ▪

Cut property

adding e to MST
creates a cycle

the MST does
not contain e

e

f



• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.
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Greedy MST algorithm
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• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.
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Greedy MST algorithm
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• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.
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Greedy MST algorithm
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• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.
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Greedy MST algorithm
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• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.
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Greedy MST algorithm
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• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.
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Greedy MST algorithm
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• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.
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Greedy MST algorithm
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• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.
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Greedy MST algorithm
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• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.
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Greedy MST algorithm
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• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.
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Greedy MST algorithm
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• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.
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Greedy MST algorithm
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• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.
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Greedy MST algorithm
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• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.
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Greedy MST algorithm
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• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.
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Greedy MST algorithm
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• Start with all edges colored gray.

• Find a cut with no black crossing edges, and color its min-weight edge black.

• Repeat until V - 1 edges are colored black.
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Greedy MST algorithm
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Greedy MST algorithm:  correctness proof

Proposition. The greedy algorithm computes the MST.
 
Pf.  
• Any edge colored black is in the MST (via cut property).

• If fewer than V - 1 black edges, there exists a cut with no black crossing edges.  
(consider cut whose vertices are one connected component)
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fewer than V-1 edges colored black a cut with no black crossing edges



Greedy MST algorithm:  efficient implementations

Proposition. The greedy algorithm computes the MST:
 
Efficient implementations.  Choose cut? Find min-weight edge?
Ex 1.  Kruskal's algorithm.  [stay tuned]
Ex 2.  Prim's algorithm.  [stay tuned]
Ex 3.  Borüvka's algorithm.

 27



 28

Q.  What if edge weights are not all distinct?
A.  Greedy MST algorithm still correct if equal weights are present!  
(our correctness proof fails, but that can be fixed)
 
 
 
 
 
Q.  What if graph is not connected?
A.  Compute minimum spanning forest = MST of each component.

Removing two simplifying assumptions

weights need not be 
proportional to distance
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MINIMUM SPANNING TREES

‣ Greedy algorithm
‣ Edge-weighted graph API
‣ Kruskal's algorithm
‣ Prim's algorithm
‣ Context



 30

Weighted edge API

Edge abstraction needed for weighted edges.

Idiom for processing an edge e:  int v = e.either(), w = e.other(v);

 public class Edge implements Comparable<Edge>

Edge(int v, int w, double weight) create a weighted edge v-w

int either() either endpoint

int other(int v) the endpoint that's not v

int compareTo(Edge that) compare this edge to that edge

double weight() the weight

String toString() string representation

v
weight

w
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public class Edge implements Comparable<Edge> 
{ 
   private final int v, w; 
   private final double weight; 

   public Edge(int v, int w, double weight)  
   { 
      this.v = v; 
      this.w = w; 
      this.weight = weight; 
   } 

   public int either()  
   {  return v;  } 

   public int other(int vertex)  
   { 
      if (vertex == v) return w; 
      else return v;  
   } 

   public int compareTo(Edge that)  
   { 
      if      (this.weight < that.weight) return -1; 
      else if (this.weight > that.weight) return +1; 
      else                                return  0; 
   } 
}

Weighted edge:  Java implementation

constructor

either endpoint

other endpoint

compare edges by weight
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Conventions.  Allow self-loops and parallel edges.

Edge-weighted graph API

      public class EdgeWeightedGraph

EdgeWeightedGraph(int V) create an empty graph with V vertices

EdgeWeightedGraph(In in) create a graph from input stream

void addEdge(Edge e) add weighted edge e to this graph

Iterable<Edge> adj(int v) edges incident to v

Iterable<Edge> edges() all edges in this graph

int V() number of vertices

int E() number of edges

String toString() string representation
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Edge-weighted graph:  adjacency-lists representation

Maintain vertex-indexed array of Edge lists.

Edge-weighted graph representation

adj[]
0

1

2

3

4

5

6

7

6 0 .58 0 2 .26 0 4 .38 0 7 .16 Bag
objects

8
16
4 5  0.35 
4 7  0.37 
5 7  0.28 
0 7  0.16
1 5  0.32 
0 4  0.38
2 3  0.17
1 7  0.19 
0 2  0.26 
1 2  0.36 
1 3  0.29 
2 7  0.34
6 2  0.40 
3 6  0.52
6 0  0.58
6 4  0.93 

1 3 .29 1 2 .36 1 7 .19 1 5 .32

6 2 .40 2 7 .34 1 2 .36 0 2 .26 2 3 .17

3 6 .52 1 3 .29 2 3 .17

6 4 .93 0 4 .38 4 7 .37 4 5 .35

1 5 .32 5 7 .28 4 5 .35

6 4 .93 6 0 .58 3 6 .52 6 2 .40

2 7 .34 1 7 .19 0 7 .16 5 7 .28 5 7 .28

references to the 
same Edge object

tinyEWG.txt
V

E
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public class EdgeWeightedGraph 
{ 
   private final int V;  
   private final Bag<Edge>[] adj; 

   public EdgeWeightedGraph(int V) 
   { 
      this.V = V; 
      adj = (Bag<Edge>[]) new Bag[V]; 
      for (int v = 0; v < V; v++) 
         adj[v] = new Bag<Edge>(); 
   } 

   public void addEdge(Edge e) 
   { 
      int v = e.either(), w = e.other(v); 
      adj[v].add(e); 
      adj[w].add(e); 
   } 

   public Iterable<Edge> adj(int v) 
   {  return adj[v];  } 
}

Edge-weighted graph:  adjacency-lists implementation

add edge to both 

adjacency lists

constructor

same as Graph, but adjacency 

lists of Edges instead of integers



Q.  How to represent the MST?

 35

Minimum spanning tree API

8
16
4 5  0.35 
4 7  0.37 
5 7  0.28 
0 7  0.16
1 5  0.32 
0 4  0.38
2 3  0.17
1 7  0.19 
0 2  0.26 
1 2  0.36 
1 3  0.29 
2 7  0.34
6 2  0.40 
3 6  0.52
6 0  0.58
6 4  0.93 

non-MST edge
(gray)

MST edge
(black)

An edge-weighted graph and its MST

tinyEWG.txt
V

E
% java MST tinyEWG.txt 
0-7 0.16  
1-7 0.19  
0-2 0.26  
2-3 0.17  
5-7 0.28  
4-5 0.35  
6-2 0.40  
1.81

      public class MST

MST(EdgeWeightedGraph G) constructor

Iterable<Edge> edges() edges in MST

double weight() weight of MST



Q.  How to represent the MST?
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Minimum spanning tree API

 public static void main(String[] args) 
 { 
    In in = new In(args[0]); 
    EdgeWeightedGraph G = new EdgeWeightedGraph(in); 
    MST mst = new MST(G); 
    for (Edge e : mst.edges()) 
       StdOut.println(e); 
    StdOut.printf("%.2f\n", mst.weight()); 
 }

% java MST tinyEWG.txt 
0-7 0.16  
1-7 0.19  
0-2 0.26  
2-3 0.17  
5-7 0.28  
4-5 0.35  
6-2 0.40  
1.81

      public class MST

MST(EdgeWeightedGraph G) constructor

Iterable<Edge> edges() edges in MST

double weight() weight of MST



MINIMUM SPANNING TREES

‣ Greedy algorithm
‣ Edge-weighted graph API
‣ Kruskal's algorithm
‣ Prim's algorithm
‣ Context



• Consider edges in ascending order of weight.

• Add next edge to tree T unless doing so would create a cycle.
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Kruskal's algorithm
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Kruskal's algorithm
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Kruskal's algorithm
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Kruskal's algorithm
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Kruskal's algorithm
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Kruskal's algorithm
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Kruskal's algorithm
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Kruskal's algorithm
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Kruskal's algorithm
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Kruskal's algorithm
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Kruskal's algorithm
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Kruskal's algorithm

0-7  0.16 

2-3  0.17 

1-7  0.19 

0-2  0.26 

5-7  0.28 

1-3  0.29 

1-5  0.32 

2-7  0.34 

4-5  0.35 

1-2  0.36 

4-7  0.37

5

4

7

1
3

0

2

6

creates a cycle

not in 

MST

• Consider edges in ascending order of weight.

• Add next edge to tree T unless doing so would create a cycle.



 50

Kruskal's algorithm
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Kruskal's algorithm
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• Consider edges in ascending order of weight.

• Add next edge to tree T unless doing so would create a cycle.
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Kruskal's algorithm
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• Add next edge to tree T unless doing so would create a cycle.
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Kruskal's algorithm
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Kruskal's algorithm
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Kruskal's algorithm
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• Consider edges in ascending order of weight.

• Add next edge to tree T unless doing so would create a cycle.



Kruskal's algorithm:  visualization
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Proposition.  [Kruskal 1956] Kruskal's algorithm computes the MST.
 
Pf.  Kruskal's algorithm is a special case of the greedy MST algorithm.
• Suppose Kruskal's algorithm colors the edge e = v–w black.

• Cut = set of vertices connected to v in tree T.

• No crossing edge is black.

• No crossing edge has lower weight. Why?
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Kruskal's algorithm:  correctness proof

adding edge to tree
would create a cycle

add edge to tree



Challenge.  Would adding edge v–w to tree T create a cycle? If not, add it.

How difficult?
•  E + V
•  V
•  log V
•  log* V
•  1
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Kruskal's algorithm:  implementation challenge

run DFS from v, check if w is reachable  
(T has at most V – 1 edges)

use the union-find data structure !  
(log* function: number of times needed to take the lg of a number until reaching 1)

adding edge to tree
would create a cycle

add edge to tree
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Challenge.  Would adding edge v–w to tree T create a cycle? If not, add it.
 
Efficient solution.  Use the union-find data structure.
• Maintain a set for each connected component in T.

• If v and w are in same set, then adding v–w would create a cycle.

• To add v–w to T, merge sets containing v and w.

Case 1: adding v–w creates a cycle

Kruskal's algorithm:  implementation challenge

v w

Case 2: add v–w to T and merge sets containing v and w

w

v



build priority queue
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Kruskal's algorithm:  Java implementation

public class KruskalMST 
{ 
   private Queue<Edge> mst = new Queue<Edge>(); 

   public KruskalMST(EdgeWeightedGraph G) 
   { 
      MinPQ<Edge> pq = new MinPQ<Edge>(); 
      for (Edge e : G.edges()) 
         pq.insert(e); 

      UF uf = new UF(G.V()); 
      while (!pq.isEmpty() && mst.size() < G.V()-1) 
      { 
         Edge e = pq.delMin(); 
         int v = e.either(), w = e.other(v);  
         if (!uf.connected(v, w)) 
         {   
            uf.union(v, w); 
            mst.enqueue(e); 
         } 
      } 
   } 

   public Iterable<Edge> edges() 
   {  return mst;  } 
}

greedily add edges to MST

edge v–w does not create cycle

merge sets

add edge to MST
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Proposition.  Kruskal's algorithm computes MST in time proportional to 
E log E  (in the worst case).
 
Pf.
 
 
 
 
 
 
 
 
 
 
Remark.  If edges are already sorted, order of growth is E log* V.

†  amortized bound using weighted quick union with path compression

Kruskal's algorithm:  running time

recall:  log* V  ≤  5 in this universe

operation frequency time per op

build pq 1 E

delete-min E log E

union V log* V †

connected E log* V †

log* function:  
number of times needed to take  
the lg of a number until reaching 1



MINIMUM SPANNING TREES

‣ Greedy algorithm
‣ Edge-weighted graph API
‣ Kruskal's algorithm
‣ Prim's algorithm
‣ Context



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm
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an edge-weighted graph



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm
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• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm
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min weight edge with 

exactly one endpoint in T



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm
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MST edges



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm
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• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 68

Prim's algorithm
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• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm
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• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm
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• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm
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• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm
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• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm
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• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm
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• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm
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• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm
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• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm
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• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm
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Prim’s algorithm:  visualization
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Proposition.  [Jarník 1930, Dijkstra 1957, Prim 1959]  
Prim's algorithm computes the MST.
 
Pf.  Prim's algorithm is a special case of the greedy MST algorithm.
• Suppose edge e = min weight edge connecting a vertex on the tree  

to a vertex not on the tree.

• Cut = set of vertices connected on tree.

• No crossing edge is black.

• No crossing edge has lower weight.
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Prim's algorithm: proof of correctness

edge e = 7-5 added to tree
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Challenge.  Find the min weight edge with exactly one endpoint in T.

How difficult?
•  E
•  V
•  log E
•  log* E
•  l

Prim's algorithm:  implementation challenge

try all edges

use a priority queue !

1-7 0.19 
0-2 0.26 
5-7 0.28 
2-7 0.34 
4-7 0.37 
0-4 0.38 
6-0 0.58 

priority queue
of crossing edges

1-7 is min weight edge with
exactly one endpoint in T
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Challenge.  Find the min weight edge with exactly one endpoint in T.
 
Lazy solution.  Maintain a PQ of edges with (at least) one endpoint in T.

• Key = edge; priority = weight of edge.

• Delete-min to determine next edge e = v–w to add to T.

• Disregard if both endpoints v and w are in T.

• Otherwise, let v be vertex not in T :
- add to PQ any edge incident to v (assuming other endpoint not in T)

- add v to T

Prim's algorithm:  lazy implementation

1-7 0.19 
0-2 0.26 
5-7 0.28 
2-7 0.34 
4-7 0.37 
0-4 0.38 
6-0 0.58 

priority queue
of crossing edges

1-7 is min weight edge with
exactly one endpoint in T



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation
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an edge-weighted graph



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation
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• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation
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* 6-0  0.58

add to PQ all edges incident to 0



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation
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  0-4  0.38 
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delete 0-7 and add to MST



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation
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• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

0-7

MST edges

* 1-7  0.19 

  0-2  0.26 

* 5-7  0.28 

* 2-7  0.34 

* 4-7  0.37 

  0-4  0.38 

  6-0  0.58

edges on PQ 

(sorted by weight)

add to PQ all edges incident to 7



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation
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• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation
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• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation
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• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation
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• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation
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• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation
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• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation
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• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation
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• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation
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• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation
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• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation
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• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation
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• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

  1-3  0.29 

  1-5  0.32 

  2-7  0.34 

  4-5  0.35 

  1-2  0.36 

  4-7  0.37 

  0-4  0.38 

  6-2  0.40 

  3-6  0.52 

  6-0  0.58

edges on PQ 

(sorted by weight)

0-7  1-7  0-2  2-3  5-7

delete 1-3 and discard obsolete edge



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

  1-5  0.32 

  2-7  0.34 

  4-5  0.35 

  1-2  0.36 

  4-7  0.37 

  0-4  0.38 

  6-2  0.40 

  3-6  0.52 

  6-0  0.58

edges on PQ 

(sorted by weight)

0-7  1-7  0-2  2-3  5-7

delete 1-5 and discard obsolete edge



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

  2-7  0.34 

  4-5  0.35 

  1-2  0.36 

  4-7  0.37 

  0-4  0.38 

  6-2  0.40 

  3-6  0.52 

  6-0  0.58

edges on PQ 

(sorted by weight)

0-7  1-7  0-2  2-3  5-7

delete 2-7 and discard obsolete edge



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

  4-5  0.35 

  1-2  0.36 

  4-7  0.37 

  0-4  0.38 

  6-2  0.40 

  3-6  0.52 

  6-0  0.58

edges on PQ 

(sorted by weight)

0-7  1-7  0-2  2-3  5-7

delete 4-5 and add to MST



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

  1-2  0.36 

  4-7  0.37 

  0-4  0.38 

  6-2  0.40 

  3-6  0.52 

  6-0  0.58

edges on PQ 

(sorted by weight)

0-7  1-7  0-2  2-3  5-7  4-5



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

  1-2  0.36 

  4-7  0.37 

  0-4  0.38 

  6-2  0.40 

  3-6  0.52 

  6-0  0.58 

* 6-4  0.93

edges on PQ 

(sorted by weight)

0-7  1-7  0-2  2-3  5-7  4-5

add to PQ all edges incident to 4



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

  1-2  0.36 

  4-7  0.37 

  0-4  0.38 

  6-2  0.40 

  3-6  0.52 

  6-0  0.58 

  6-4  0.93

edges on PQ 

(sorted by weight)

0-7  1-7  0-2  2-3  5-7  4-5

delete 1-2 and discard obsolete edge



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

  4-7  0.37 

  0-4  0.38 

  6-2  0.40 

  3-6  0.52 

  6-0  0.58 

  6-4  0.93

edges on PQ 

(sorted by weight)

0-7  1-7  0-2  2-3  5-7  4-5

delete 4-7 and discard obsolete edge



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

  0-4  0.38 

  6-2  0.40 

  3-6  0.52 

  6-0  0.58 

  6-4  0.93

edges on PQ 

(sorted by weight)

0-7  1-7  0-2  2-3  5-7  4-5

delete 0-4 and discard obsolete edge



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

  6-2  0.40 

  3-6  0.52 

  6-0  0.58 

  6-4  0.93

edges on PQ 

(sorted by weight)

0-7  1-7  0-2  2-3  5-7  4-5

delete 6-2 and add to MST



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

  3-6  0.52 

  6-0  0.58 

  6-4  0.93

edges on PQ 

(sorted by weight)

0-7  1-7  0-2  2-3  5-7  4-5  6-2

delete 6-2 and add to MST



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

  3-6  0.52 

  6-0  0.58 

  6-4  0.93

edges on PQ 

(sorted by weight)

0-7  1-7  0-2  2-3  5-7  4-5  6-2

stop since V-1 edges



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Lazy implementation

5

4

7

1
3

0

2

6

MST edges

0-7  1-7  0-2  2-3  5-7  4-5  6-2



public class LazyPrimMST 
{ 
   private boolean[] marked;   // MST vertices 
   private Queue<Edge> mst;    // MST edges 
   private MinPQ<Edge> pq;     // PQ of edges 

    public LazyPrimMST(WeightedGraph G) 
    { 
        pq = new MinPQ<Edge>(); 
        mst = new Queue<Edge>(); 
        marked = new boolean[G.V()]; 
        visit(G, 0); 
    
        while (!pq.isEmpty()) 
        { 
           Edge e = pq.delMin(); 
           int v = e.either(), w = e.other(v); 
           if (marked[v] && marked[w]) continue; 
           mst.enqueue(e); 
           if (!marked[v]) visit(G, v); 
           if (!marked[w]) visit(G, w); 
        } 
   } 
}
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Prim's algorithm:  lazy implementation

repeatedly delete the 

min weight edge e = v–w from PQ

ignore if both endpoints in T

add v or w to tree

assume G is connected

add edge e to tree



   private void visit(WeightedGraph G, int v) 
   { 
      marked[v] = true; 
      for (Edge e : G.adj(v)) 
         if (!marked[e.other(v)]) 
            pq.insert(e); 
   } 

   public Iterable<Edge> mst() 
   {  return mst;  }
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Prim's algorithm:  lazy implementation

for each edge e = v–w, add to 

PQ if w not already in T

add v to T
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Proposition.  Lazy Prim's algorithm computes the MST in time proportional  
to E log E and extra space proportional to E (in the worst case).
 
Pf.

Lazy Prim's algorithm:  running time

operation frequency binary heap

delete min E log E

insert E log E
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Challenge.  Find min weight edge with exactly one endpoint in T.
 
 
Eager solution.  Maintain a PQ of vertices connected by an edge to T,  
where priority of vertex v = weight of shortest edge connecting v to T.
• Delete min vertex v and add its associated edge e = v–w to T.

• Update PQ by considering all edges e = v–x  incident to v
- ignore if x is already in T
- add x to PQ if not already on it 
- decrease priority of x if v–x becomes shortest edge connecting x to T

Prim's algorithm:  eager implementation

0
1 1-7 0.19 
2 0-2 0.26 
3 1-3 0.29
4 0-4 0.38
5 5-7 0.28
6 6-0 0.58
7 0-7 0.16 

black:  on MST

red:  on PQ

pq has at most one entry per vertex



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

0-7  0.16 

2-3  0.17 

1-7  0.19 

0-2  0.26 

5-7  0.28 

1-3  0.29 

1-5  0.32 

2-7  0.34 

4-5  0.35 

1-2  0.36 

4-7  0.37 

0-4  0.38 

6-2  0.40 

3-6  0.52 

6-0  0.58 

6-4  0.93

an edge-weighted graph



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

v   edgeTo[]  distTo[] 

0      -         -



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Eager implementation

0

5

4

7

1
3

2

6

v   edgeTo[]  distTo[] 

0      -         -  

7     0–7       0.16       

2     0–2       0.26                    

4     0–4       0.38        

6     6–0       0.58       

vertices on PQ 

(sorted by weight)

add vertices 7, 2, 4, and 6 to PQ



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 121

Prim's algorithm - Eager implementation

0

5

4

7

1
3

2

6

v   edgeTo[]  distTo[] 

0      -         -  

7     0–7       0.16       

2     0–2       0.26                    

4     0–4       0.38        

6     6–0       0.58       

vertices on PQ 

(sorted by weight)



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

0-7

MST edges

v   edgeTo[]  distTo[] 

0      -         -  

7     0–7       0.16        

2     0–2       0.26                    

4     0–4       0.38        

6     6–0       0.58       

vertices on PQ 

(sorted by weight)



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

0-7

MST edges

v   edgeTo[]  distTo[] 

0      -         - 

7     0–7       0.16        

1     1–7       0.19                    

2     0–2       0.26                    

5     5–7       0.28                    

4     0–4       0.38        

6     6–0       0.58        

add vertex 5 to PQ

add vertex 1 to PQ

vertices on PQ 

(sorted by weight)

already a better connection 

to 2 (discard)

0.374-7

decrease  
key of vertex 4 

from 0.38 to 0.37



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 124

Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

0-7  1-7

MST edges

v   edgeTo[]  distTo[] 

0      -         - 

7     0–7       0.16        

1     1–7       0.19                    

2     0–2       0.26                    

5     5–7       0.28                    

4     4–7       0.37        

6     6–0       0.58        

vertices on PQ 

(sorted by weight)



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

0-7  1-7

MST edges

v   edgeTo[]  distTo[] 

0      -         - 

7     0–7       0.16        

1     1–7       0.19                    

2     0–2       0.26                    

5     5–7       0.28                    

4     4–7       0.37        

6     6–0       0.58        

vertices on PQ 

(sorted by weight)



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

0-7  1-7

MST edges

v   edgeTo[]  distTo[] 

0      -         - 

7     0–7       0.16        

1     1–7       0.19                    

2     0–2       0.26                    

5     5–7       0.28                    

3     1–3       0.29        

4     4–7       0.37        

6     6–0       0.58        

add vertex 3 to PQ

already a better connection 

to 5 and 7 (discard)



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

0-7  1-7

MST edges

v   edgeTo[]  distTo[] 

0      -         - 

7     0–7       0.16        

1     1–7       0.19                    

2     0–2       0.26                    

5     5–7       0.28                    

3     1–3       0.29        

4     4–7       0.37        

6     6–0       0.58        



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

MST edges

v   edgeTo[]  distTo[] 

0      -         - 

7     0–7       0.16        

1     1–7       0.19                    

2     0–2       0.26                    

5     5–7       0.28                    

3     1–3       0.29        

4     4–7       0.37        

6     6–0       0.58        

0-7  1-7  0-2



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

0-7  1-7  0-2

MST edges

v   edgeTo[]  distTo[] 

0      -         - 

7     0–7       0.16        

1     1–7       0.19                    

2     0–2       0.26                    

3     1–3       0.29        

5     5–7       0.28                    

4     4–7       0.37        

6     6–0       0.58        

decrease key of vertex 3 

from 0.29 to 0.17

decrease key of vertex 6 

from 0.58 to 0.40

0.172-3

0.406-2

now better connections 

to 0 and 1 (discard)



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

MST edges

v   edgeTo[]  distTo[] 

0      -         - 

7     0–7       0.16        

1     1–7       0.19                    

2     0–2       0.26                    

3     2–3       0.17        

5     5–7       0.28                    

4     4–7       0.37        

6     6–2       0.40        

0-7  1-7  0-2  2-3



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

MST edges

v   edgeTo[]  distTo[] 

0      -         - 

7     0–7       0.16        

1     1–7       0.19                    

2     0–2       0.26                    

3     2–3       0.17        

5     5–7       0.28                    

4     4–7       0.37        

6     6–2       0.40        

0-7  1-7  0-2  2-3



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

MST edges

v   edgeTo[]  distTo[] 

0      -         - 

7     0–7       0.16        

1     1–7       0.19                    

2     0–2       0.26                    

3     2–3       0.17        

5     5–7       0.28                    

4     4–7       0.37        

6     6–2       0.40        

0-7  1-7  0-2  2-3

already a better connection 

to 6 (discard)



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

MST edges

v   edgeTo[]  distTo[] 

0      -         - 

7     0–7       0.16        

1     1–7       0.19                    

2     0–2       0.26                    

3     2–3       0.17        

5     5–7       0.28                    

4     4–7       0.37        

6     6–2       0.40        

0-7  1-7  0-2  2-3



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 134

Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

MST edges

v   edgeTo[]  distTo[] 

0      -         - 

7     0–7       0.16        

1     1–7       0.19                    

2     0–2       0.26                    

3     2–3       0.17        

5     5–7       0.28                    

4     4–7       0.37        

6     6–2       0.40        

0-7  1-7  0-2  2-3  5-7



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

0-7  1-7  0-2  2-3  5-7

MST edges

decrease key of 4 

from 0.37 to 0.35

v   edgeTo[]  distTo[] 

0      -         - 

7     0–7       0.16        

1     1–7       0.19                    

2     0–2       0.26                    

3     2–3       0.17        

5     5–7       0.28                    

4     4–7       0.37        

6     6–2       0.40        

0.354-5

now a better connection 

to 4 (discard)



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

0-7  1-7  0-2  2-3  5-7

MST edges

v   edgeTo[]  distTo[] 

0      -         - 

7     0–7       0.16        

1     1–7       0.19                    

2     0–2       0.26                    

3     2–3       0.17        

5     5–7       0.28                    

4     4–5       0.35        

6     6–2       0.40        



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

MST edges

v   edgeTo[]  distTo[] 

0      -         - 

7     0–7       0.16        

1     1–7       0.19                    

2     0–2       0.26                    

3     2–3       0.17        

5     5–7       0.28                    

4     4–5       0.35        

6     6–2       0.40        

0-7  1-7  0-2  2-3  5-7  4-5



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

 138

Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

MST edges

v   edgeTo[]  distTo[] 

0      -         - 

7     0–7       0.16        

1     1–7       0.19                    

2     0–2       0.26                    

3     2–3       0.17        

5     5–7       0.28                    

4     4–5       0.35        

6     6–2       0.40        

0-7  1-7  0-2  2-3  5-7  4-5

already a better connection 

to 6 (discard)



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

MST edges

v   edgeTo[]  distTo[] 

0      -         - 

7     0–7       0.16        

1     1–7       0.19                    

2     0–2       0.26                    

3     2–3       0.17        

5     5–7       0.28                    

4     4–5       0.35        

6     6–2       0.40        

0-7  1-7  0-2  2-3  5-7  4-5



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

MST edges

v   edgeTo[]  distTo[] 

0      -         - 

7     0–7       0.16        

1     1–7       0.19                    

2     0–2       0.26                    

3     2–3       0.17        

5     5–7       0.28                    

4     4–5       0.35        

6     6–2       0.40        

0-7  1-7  0-2  2-3  5-7  4-5  6-2



• Start with vertex 0 and greedily grow tree T.

• Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.
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Prim's algorithm - Eager implementation

5

4

7

1
3

0

2

6

0-7  1-7  0-2  2-3  5-7  4-5  6-2

MST edges

v   edgeTo[]  distTo[] 

0      -         - 

7     0–7       0.16        

1     1–7       0.19                    

2     0–2       0.26                    

3     2–3       0.17        

5     5–7       0.28                    

4     4–5       0.35        

6     6–2       0.40        
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Associate an index between 0 and N - 1 with each key in a priority queue.
• Client can insert and delete-the-minimum.

• Client can change the key by specifying the index.

Indexed priority queue

  public class IndexMinPQ<Key extends Comparable<Key>>

IndexMinPQ(int N)
create indexed priority queue  

with indices 0, 1, …, N-1

void insert(int k, Key key)
associate key with index k  

void decreaseKey(int k, Key key)
decrease the key associated with index k  

boolean contains() is k an index on the priority queue?

int delMin()
remove a minimal key and return its 

associated index

boolean isEmpty() is the priority queue empty?

int size() number of entries in the priority queue



Implementation.
• Start with same code as MinPQ. 

• Maintain parallel arrays keys[], pq[], and qp[] so that:
- keys[i] is the priority of i

- pq[i] is the index of the key in heap position i 

- qp[i] is the heap position of the key with index i

• Use swim(qp[k]) implement decreaseKey(k, key).

     i   0  1  2  3  4  5  6  7  8
keys[i]  A  S  O  R  T  I  N  G  -
  pq[i]  -  0  6  7  2  1  5  4  3
  qp[i]  1  5  4  8  7  6  2  3  -

1

2

4 5 6 7

8

3

R

O

N

S

A

I

G

T
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Indexed priority queue implementation
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Depends on PQ implementation:  V insert, V delete-min, E decrease-key.
 
 
 
 
 
 
 
 
 
 
Bottom line.
• Array implementation optimal for dense graphs.

• Binary heap much faster for sparse graphs.

• 4-way heap worth the trouble in performance-critical situations.

• Fibonacci heap best in theory, but not worth implementing.

Prim's algorithm:  running time

† amortized

PQ implementation insert delete-min decrease-key total

array 1 V 1 V2

binary heap log V log V log V E log V

d-way heap 
(Johnson 1975)

d logd V d logd V logd V E logE/V V

Fibonacci heap  
(Fredman-Tarjan 1984)

1 † log V † 1 † E + V log V



MINIMUM SPANNING TREES

‣ Greedy algorithm
‣ Edge-weighted graph API
‣ Kruskal's algorithm
‣ Prim's algorithm
‣ Context



Given N points in the plane, find MST connecting them, where the distances
between point pairs are their Euclidean distances.
 
 
 
 
 
 
 
 
 
 
 
Brute force.  Compute ~ N 2 / 2 distances and run Prim's algorithm.

Ingenuity.  Exploit geometry and do it in ~ c N log N.
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Euclidean MST
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k-clustering.  Divide a set of objects classify into k coherent groups.
Distance function.  Numeric value specifying "closeness" of two objects.
 
Goal.  Divide into clusters so that objects in different clusters are far apart.
 
 
 
 
 
 
Applications. 
• Routing in mobile ad hoc networks.

• Document categorization for web search.

• Similarity searching in medical image databases.

• Skycat: cluster 109 sky objects into stars, quasars, galaxies.

outbreak of cholera deaths in London in 1850s (Nina Mishra)

Scientific application:  clustering



k-clustering.  Divide a set of objects classify into k coherent groups.
Distance function.  Numeric value specifying "closeness" of two objects.

Single link.  Distance between two clusters equals the distance  
between the two closest objects (one in each cluster).

Single-link clustering.  Given an integer k, find a k-clustering that 
maximizes the distance between two closest clusters.
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Single-link clustering

distance between 
two closest clusters

4-clustering

distance between two clusters
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“Well-known” algorithm for single-link clustering:
• Form V clusters of one object each.

• Find the closest pair of objects such that each object is in a different cluster, and 
merge the two clusters.

• Repeat until there are exactly k clusters.

 
Observation.  This is Kruskal's algorithm 
(stop when k connected components).
 
 
 
 
 
 
Alternate solution.  Run Prim's algorithm and delete k-1 max weight edges.

Single-link clustering algorithm
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Dendrogram.  Tree diagram that illustrates arrangement of clusters.

Dendrogram

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html
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Dendrogram.  Tree diagram that illustrates arrangement of clusters.

Dendrogram

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html
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Dendrogram.  Tree diagram that illustrates arrangement of clusters.

Dendrogram

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html
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Dendrogram.  Tree diagram that illustrates arrangement of clusters.

Dendrogram

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html
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Dendrogram.  Tree diagram that illustrates arrangement of clusters.

Dendrogram

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html
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Dendrogram.  Tree diagram that illustrates arrangement of clusters.

Dendrogram

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html
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Tumors in similar tissues cluster together.

Reference:  Botstein & Brown group

Gene 1

Gene n

gene expressed

gene not expressed

Dendrogram of cancers in human


