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TODAY
‣ String sorts
‣ Key-indexed counting
‣ LSD radix sort
‣ MSD radix sort
‣ 3-way radix quicksort
‣ Suffix arrays
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String processing

String.   Sequence of characters.
 
Important fundamental abstraction.
• Information processing.

• Genomic sequences.

• Communication systems (e.g., email).

• Programming systems (e.g., Java programs).

• …

“ The digital information that underlies biochemistry, cell  
   biology, and development can be represented by a simple  
  string of  G's, A's, T's and C's.   This string is the root data 
  structure of an organism's biology.  ”  — M. V. Olson
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The char data type

C char data type.  Typically an 8-bit integer.
• Supports 7-bit ASCII.

• Need more bits to represent certain characters.

 
 
 
 
 
 
 
 
 
Java char data type.  A 16-bit unsigned integer.
• Supports original 16-bit Unicode.

• Supports 21-bit Unicode 3.0 (awkwardly).

6676.5 n Data Compression

ASCII encoding. When you HexDump a bit-
stream that contains ASCII-encoded charac-
ters, the table at right is useful for reference.  
Given a 2-digit hex number, use the first hex 
digit as a row index and the second hex digit 
as a column reference to find the character 
that it encodes. For example, 31 encodes the 
digit 1, 4A encodes the letter J, and so forth. 
This table is for 7-bit ASCII, so the first hex 
digit must be 7 or less. Hex numbers starting 
with 0 and 1 (and the numbers 20 and 7F) 
correspond to non-printing control charac-
ters. Many of the control characters are left over from the days when physical devices 
like typewriters were controlled by ASCII input; the table highlights a few that you 
might see in dumps. For example SP is the space character, NUL is the null character, LF 
is line-feed, and CR is carriage-return. 

In summary, working with data compression requires us to reorient our thinking about 
standard input and standard output to include binary encoding of data. BinaryStdIn 
and BinaryStdOut provide the methods that we need. They provide a way for you to 
make a clear distinction in your client programs between writing out information in-
tended for file storage and data transmission (that will be read by programs) and print-
ing information (that is likely to be read by humans). 

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! “ # $ % & ‘ ( ) * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [ \ ] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

Hexadecimal to ASCII conversion table
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The char data type

C char data type.  Typically an 8-bit integer.

・Supports 7-bit ASCII.

・Can represent only 256 characters.

Java char data type.  A 16-bit unsigned integer.

・Supports original 16-bit Unicode.

・Supports 21-bit Unicode 3.0 (awkwardly).

6676.5 Q Data Compression

ASCII encoding. When you HexDump a bit-
stream that contains ASCII-encoded charac-
ters, the table at right is useful for reference.  
Given a 2-digit hex number, use the first hex 
digit as a row index and the second hex digit 
as a column reference to find the character 
that it encodes. For example, 31 encodes the 
digit 1, 4A encodes the letter J, and so forth. 
This table is for 7-bit ASCII, so the first hex 
digit must be 7 or less. Hex numbers starting 
with 0 and 1 (and the numbers 20 and 7F) 
correspond to non-printing control charac-
ters. Many of the control characters are left over from the days when physical devices 
like typewriters were controlled by ASCII input; the table highlights a few that you 
might see in dumps. For example SP is the space character, NUL is the null character, LF 
is line-feed, and CR is carriage-return. 

In summary, working with data compression requires us to reorient our thinking about 
standard input and standard output to include binary encoding of data. BinaryStdIn 
and BinaryStdOut provide the methods that we need. They provide a way for you to 
make a clear distinction in your client programs between writing out information in-
tended for file storage and data transmission (that will be read by programs) and print-
ing information (that is likely to be read by humans). 

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! “ # $ % & ‘ ( ) * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [ \ ] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

Hexadecimal to ASCII conversion table

U+1D50AU+2202U+00E1U+0041

Unicode characters 



 5

I (heart) Unicode



String data type.  Sequence of characters (immutable).

Length.  Number of characters.
Indexing.  Get the ith character.
Substring extraction.  Get a contiguous sequence of characters.  
String concatenation.  Append one character to end of another string.

 6

The String data type

Fundamental constant-time  String  operations

0  1  2  3  4  5  6  7  8  9 10 11 12

A  T  T  A  C  K  A  T  D  A  W  N  s

s.charAt(3)

s.length()

s.substring(7, 11)
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The String data type:  Java implementation

public final class String implements Comparable<String> 
{ 
   private char[] val;   // characters 
   private int offset;   // index of first char in array 
   private int length;   // length of string 
   private int hash;     // cache of hashCode() 

   public int length() 
   {  return length; } 

   public char charAt(int i) 
   {  return value[i + offset];  } 
    
    
   private String(int offset, int length, char[] val) 
   { 
      this.offset = offset; 
      this.length = length; 
      this.val    = val; 
   } 
   
   public String substring(int from, int to) 
   {  return new String(offset + from, to - from, val);  } 
   …

X X A T T A C K X

0 1 2 3 4 5 6 7 8

val[]

offset

length

copy of reference to 

original char array
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The String data type:  performance

String data type.  Sequence of characters (immutable).
Design Choice.  Immutable, cache or share the backing array
Underlying implementation.  Immutable char[] array, offset, and length.
 
 
 
 
 
 
 
 
 
Memory.  40 + 2N bytes for a virgin String of length N.

can use byte[] or char[] instead of String to save space 

(but lose convenience of String data type)

String

operation guarantee extra space

length() 1 1

charAt() 1 1

substring() 1 1

concat() N N
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The StringBuilder data type

StringBuilder data type.  Sequence of characters (mutable).
Design Choice. Easier to update, can’t cache or share array.
Underlying implementation.  Resizing char[] array and length.

Remark.  StringBuffer data type is similar, but thread safe (and slower).

String StringBuilder

operation guarantee extra space guarantee extra space

length() 1 1 1 1

charAt() 1 1 1 1

substring() 1 1 N N

concat() N N 1 * 1 *

*  amortized

Actually as of Java 

1.7 this is O(n) for 

String as well. Before 

1.7 the initial String 

and substring shared 

the backing array (no 

need to copy!) 
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String vs. StringBuilder

Q.  How to efficiently reverse a string?

A.

B.

  public static String reverse(String s) 
  { 
     String rev = ""; 
     for (int i = s.length() - 1; i >= 0; i--) 
        rev += s.charAt(i); 
     return rev; 
  }

  public static String reverse(String s) 
  { 
     StringBuilder rev = new StringBuilder(); 
     for (int i = s.length() - 1; i >= 0; i--) 
        rev.append(s.charAt(i)); 
     return rev.toString(); 
  }

quadratic time

linear time

String concatenation 
creates a new String 
and all chars in backing 
array are copied to new 
one.

The backing array is 
updated. Sometimes 
may need to expand 
the array but 
amortised cost is O(1) 
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String challenge:  array of suffixes

Q.  How to efficiently form array of suffixes?

a a c a a g t t t a c a a g c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

input string

0 a a c a a g t t t a c a a g c
1 a c a a g t t t a c a a g c
2 c a a g t t t a c a a g c
3 a a g t t t a c a a g c
4 a g t t t a c a a g c
5 g t t t a c a a g c
6 t t t a c a a g c
7 t t a c a a g c
8 t a c a a g c
9 a c a a g c
10 c a a g c
11 a a g c
12 a g c
13 g c
14 c

suffixes
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String vs. StringBuilder

Q.  How to efficiently form array of suffixes?

A.

B.

  public static String[] suffixes(String s) 
  { 
     int N = s.length(); 
     String[] suffixes = new String[N]; 
     for (int i = 0; i < N; i++) 
        suffixes[i] = s.substring(i, N); 
     return suffixes; 
  }

  public static String[] suffixes(String s)  
  { 
     int N = s.length(); 
     StringBuilder sb = new StringBuilder(s); 
     String[] suffixes = new String[N]; 
     for (int i = 0; i < N; i++) 
        suffixes[i] = sb.substring(i, N); 
     return suffixes; 
 }

linear time and 

linear space

quadratic time and 

quadratic space

Since Strings are 
immutable, the backing 
array of larger String can 
be shared with substring. 
In Java 1.7 they changed 
it, now cost is the same as 
below! 

The array of 
StringBuilder can 
change, so can’t share 
with substring.
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Longest common prefix

Q.  How long to compute length of longest common prefix?
 
 
 
 
 
 
 
 
 
 
 
 
Running time.  Proportional to length D of longest common prefix.  
Remark.  Also can compute compareTo() in sublinear time.

 public static int lcp(String s, String t) 
 { 
    int N = Math.min(s.length(), t.length()); 
    for (int i = 0; i < N; i++) 
       if (s.charAt(i) != t.charAt(i)) 
          return i; 
    return N; 
 }

p r e f i x

p r e f e t c h

0 1 2 3 4 5 6 7

linear time (worst case) 

sublinear time (typical case)



Digital key.  Sequence of digits over fixed alphabet.
Radix.  Number of digits R in alphabet.
Complexity of some algorithms will depend on this

Alphabets

 14

604 CHAPTER 6  ! Strings

holds the frequencies in Count is an example of a character-indexed array. With a Java 
String, we have to use an array of size 256; with Alphabet, we just need an array with 
one entry for each alphabet character. This savings might seem modest, but, as you will 
see, our algorithms can produce huge numbers of such arrays, and the space for arrays 
of size 256 can be prohibitive.

Numbers. As you can see from our several of the standard Alphabet examples, we of-
ten represent numbers as strings. The methods toIndices() coverts any String over 
a given Alphabet into a base-R number represented as an int[] array with all values 
between 0 and R!1. In some situations, doing this conversion at the start leads to com-
pact code, because any digit can be used as an index in a character-indexed array. For 
example, if we know that the input consists only of characters from the alphabet, we 
could replace the inner loop in Count with the more compact code

int[] a = alpha.toIndices(s); 
for (int i = 0; i < N; i++) 
   count[a[i]]++;

name R() lgR() characters

BINARY 2 1 01

OCTAL 8 3 01234567

DECIMAL 10 4 0123456789

HEXADECIMAL 16 4 0123456789ABCDEF

DNA 4 2 ACTG

LOWERCASE 26 5 abcdefghijklmnopqrstuvwxyz

UPPERCASE 26 5 ABCDEFGHIJKLMNOPQRSTUVWXYZ

PROTEIN 20 5 ACDEFGHIKLMNPQRSTVWY

BASE64 64 6
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef 
ghijklmnopqrstuvwxyz0123456789+/

ASCII 128 7 ASCII characters

EXTENDED_ASCII 256 8 extended ASCII characters

UNICODE16 65536 16 Unicode characters

Standard alphabets



STRING SORTS 
‣ Key-indexed counting
‣ LSD radix sort
‣ MSD radix sort
‣ 3-way radix quicksort
‣ Suffix arrays



Review:  summary of the performance of sorting 
algorithms

Frequency of operations = key compares.
 
 
 
 
 
 
 
 
 
 
Lower bound.  ~ N lg N compares required by any compare-based algorithm.
Q.  Can we do better (despite the lower bound)?  
A.  Yes, if we don't depend on key compares.
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algorithm guarantee random extra space stable? operations on keys

insertion sort N2 / 2 N2 / 4 1 yes compareTo()

mergesort N lg N N lg N N yes compareTo()

quicksort 1.39 N lg N * 1.39 N lg N c lg N no compareTo()

heapsort 2 N lg N 2 N lg N 1 no compareTo()

*  probabilistic



Key-indexed counting:  assumptions about keys

Assumption.  Keys are integers between 0 and R - 1.

Implication.  Can use key as an array index.
 
Applications.
• Sort string by first letter.

• Sort class roster by section.

• Sort phone numbers by area code.

• Subroutine in a sorting algorithm.  [stay tuned]

 
Remark.  Keys may have associated data  ⇒ 
can't just count up number of keys of each value.
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Anderson  2       Harris    1
Brown     3       Martin    1
Davis     3       Moore     1
Garcia    4       Anderson  2
Harris    1       Martinez  2
Jackson   3       Miller    2
Johnson   4       Robinson  2
Jones     3       White     2
Martin    1       Brown     3
Martinez  2       Davis     3
Miller    2       Jackson   3
Moore     1       Jones     3
Robinson  2       Taylor    3
Smith     4       Williams  3
Taylor    3       Garcia    4
Thomas    4       Johnson   4
Thompson  4       Smith     4
White     2       Thomas    4
Williams  3       Thompson  4
Wilson    4       Wilson    4

Typical candidate for key-indexed counting

input sorted result

keys are
small integers 

section (by section) name



Goal.  Sort an array a[] of N integers between 0 and R - 1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move items.

• Copy back into original array.

 int N = a.length; 
 int[] count = new int[R+1]; 

 for (int i = 0; i < N; i++) 
    count[a[i]+1]++; 

 for (int r = 0; r < R; r++) 
    count[r+1] += count[r]; 

 for (int i = 0; i < N; i++) 
    aux[count[a[i]]++] = a[i]; 

 for (int i = 0; i < N; i++) 
    a[i] = aux[i];
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Key-indexed counting demo (Count Sort)

i  a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

R=6

use  a for 0 
b for 1 
c for 2 
d for 3 
e for 4 

f for 5 



Goal.  Sort an array a[] of N integers between 0 and R - 1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move items.

• Copy back into original array.

 int N = a.length; 
 int[] count = new int[R+1]; 

 for (int i = 0; i < N; i++) 
    count[a[i]+1]++; 

 for (int r = 0; r < R; r++) 
    count[r+1] += count[r]; 

 for (int i = 0; i < N; i++) 
    aux[count[a[i]]++] = a[i]; 

 for (int i = 0; i < N; i++) 
    a[i] = aux[i];

a 0

b 2

c 3

d 1

e 2

f 1

- 3
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Key-indexed counting demo

i  a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

count 

frequencies

offset by 1 

[stay tuned]

r count[r]



Goal.  Sort an array a[] of N integers between 0 and R - 1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move items.

• Copy back into original array.

a 0

b 2

c 5

d 6

e 8

f 9

- 12

 20

Key-indexed counting demo

i  a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

r count[r]

compute  
cumulates 

or prefix-sum

 int N = a.length; 
 int[] count = new int[R+1]; 

 for (int i = 0; i < N; i++) 
    count[a[i]+1]++; 

 for (int r = 0; r < R; r++) 
    count[r+1] += count[r]; 

 for (int i = 0; i < N; i++) 
    aux[count[a[i]]++] = a[i]; 

 for (int i = 0; i < N; i++) 
    a[i] = aux[i];  6 keys < d, 8 keys < e 

so d’s go in a[6] and a[7]



Goal.  Sort an array a[] of N integers between 0 and R - 1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move items.

• Copy back into original array.

a 0

b 2

c 5

d 6

e 8

f 9

- 12
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Key-indexed counting demo

i  a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

r count[r]

0

1

2

3

4

5

6

7

8

9

10

11

i  aux[i]

 int N = a.length; 
 int[] count = new int[R+1]; 

 for (int i = 0; i < N; i++) 
    count[a[i]+1]++; 

 for (int r = 0; r < R; r++) 
    count[r+1] += count[r]; 

 for (int i = 0; i < N; i++) 
    aux[count[a[i]]++] = a[i]; 

 for (int i = 0; i < N; i++) 
    a[i] = aux[i];

move 
items



Goal.  Sort an array a[] of N integers between 0 and R - 1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move items.

• Copy back into original array.

a 0

b 2

c 5

d 7

e 8

f 9

- 12
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Key-indexed counting demo

i  a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

0

1

2

3

4

5

6 d

7

8

9

10

11

r count[r]

 int N = a.length; 
 int[] count = new int[R+1]; 

 for (int i = 0; i < N; i++) 
    count[a[i]+1]++; 

 for (int r = 0; r < R; r++) 
    count[r+1] += count[r]; 

 for (int i = 0; i < N; i++) 
    aux[count[a[i]]++] = a[i]; 

 for (int i = 0; i < N; i++) 
    a[i] = aux[i];

move 
items

i  aux[i]



Goal.  Sort an array a[] of N integers between 0 and R - 1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move items.

• Copy back into original array.

a 1

b 2

c 5

d 7

e 8

f 9

- 12
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Key-indexed counting demo

i  a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

0 a

1

2

3

4

5

6 d

7

8

9

10

11

r count[r]

 int N = a.length; 
 int[] count = new int[R+1]; 

 for (int i = 0; i < N; i++) 
    count[a[i]+1]++; 

 for (int r = 0; r < R; r++) 
    count[r+1] += count[r]; 

 for (int i = 0; i < N; i++) 
    aux[count[a[i]]++] = a[i]; 

 for (int i = 0; i < N; i++) 
    a[i] = aux[i];

move 
items

i  aux[i]



Goal.  Sort an array a[] of N integers between 0 and R - 1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move items.

• Copy back into original array.

a 1

b 2

c 6

d 7

e 8

f 9

- 12
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Key-indexed counting demo

i  a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

0 a

1

2

3

4

5 c

6 d

7

8

9

10

11

r count[r]

 int N = a.length; 
 int[] count = new int[R+1]; 

 for (int i = 0; i < N; i++) 
    count[a[i]+1]++; 

 for (int r = 0; r < R; r++) 
    count[r+1] += count[r]; 

 for (int i = 0; i < N; i++) 
    aux[count[a[i]]++] = a[i]; 

 for (int i = 0; i < N; i++) 
    a[i] = aux[i];

move 
items

i  aux[i]



Goal.  Sort an array a[] of N integers between 0 and R - 1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move items.

• Copy back into original array.

a 1

b 2

c 6

d 7

e 8

f 10

- 12
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Key-indexed counting demo

i  a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

0 a

1

2

3

4

5 c

6 d

7

8

9 f

10

11

r count[r]

 int N = a.length; 
 int[] count = new int[R+1]; 

 for (int i = 0; i < N; i++) 
    count[a[i]+1]++; 

 for (int r = 0; r < R; r++) 
    count[r+1] += count[r]; 

 for (int i = 0; i < N; i++) 
    aux[count[a[i]]++] = a[i]; 

 for (int i = 0; i < N; i++) 
    a[i] = aux[i];

move 
items

i  aux[i]



Goal.  Sort an array a[] of N integers between 0 and R - 1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move items.

• Copy back into original array.

a 1

b 2

c 6

d 7

e 8

f 11

- 12
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Key-indexed counting demo

i  a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

0 a

1

2

3

4

5 c

6 d

7

8

9 f

10 f

11

r count[r]

 int N = a.length; 
 int[] count = new int[R+1]; 

 for (int i = 0; i < N; i++) 
    count[a[i]+1]++; 

 for (int r = 0; r < R; r++) 
    count[r+1] += count[r]; 

 for (int i = 0; i < N; i++) 
    aux[count[a[i]]++] = a[i]; 

 for (int i = 0; i < N; i++) 
    a[i] = aux[i];

move 
items

i  aux[i]



Goal.  Sort an array a[] of N integers between 0 and R - 1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move items.

• Copy back into original array.

a 1

b 3

c 6

d 7

e 8

f 11

- 12
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Key-indexed counting demo

i  a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

0 a

1

2 b

3

4

5 c

6 d

7

8

9 f

10 f

11

r count[r]

 int N = a.length; 
 int[] count = new int[R+1]; 

 for (int i = 0; i < N; i++) 
    count[a[i]+1]++; 

 for (int r = 0; r < R; r++) 
    count[r+1] += count[r]; 

 for (int i = 0; i < N; i++) 
    aux[count[a[i]]++] = a[i]; 

 for (int i = 0; i < N; i++) 
    a[i] = aux[i];

move 
items

i  aux[i]



Goal.  Sort an array a[] of N integers between 0 and R - 1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move items.

• Copy back into original array.

a 1

b 3

c 6

d 8

e 8

f 11

- 12
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Key-indexed counting demo

i  a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

0 a

1

2 b

3

4

5 c

6 d

7 d

8

9 f

10 f

11

 int N = a.length; 
 int[] count = new int[R+1]; 

 for (int i = 0; i < N; i++) 
    count[a[i]+1]++; 

 for (int r = 0; r < R; r++) 
    count[r+1] += count[r]; 

 for (int i = 0; i < N; i++) 
    aux[count[a[i]]++] = a[i]; 

 for (int i = 0; i < N; i++) 
    a[i] = aux[i];

move 
items

i  aux[i]

r count[r]



Goal.  Sort an array a[] of N integers between 0 and R - 1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move items.

• Copy back into original array.

a 1

b 4

c 6

d 8

e 8

f 11

- 12
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Key-indexed counting demo

i  a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

0 a

1

2 b

3 b

4

5 c

6 d

7 d

8

9 f

10 f

11

r count[r]

 int N = a.length; 
 int[] count = new int[R+1]; 

 for (int i = 0; i < N; i++) 
    count[a[i]+1]++; 

 for (int r = 0; r < R; r++) 
    count[r+1] += count[r]; 

 for (int i = 0; i < N; i++) 
    aux[count[a[i]]++] = a[i]; 

 for (int i = 0; i < N; i++) 
    a[i] = aux[i];

move 
items

i  aux[i]



Goal.  Sort an array a[] of N integers between 0 and R - 1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move items.

• Copy back into original array.

a 1

b 4

c 6

d 8

e 8

f 12

- 12
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Key-indexed counting demo

i  a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

0 a

1

2 b

3 b

4

5 c

6 d

7 d

8

9 f

10 f

11 f

r count[r]

 int N = a.length; 
 int[] count = new int[R+1]; 

 for (int i = 0; i < N; i++) 
    count[a[i]+1]++; 

 for (int r = 0; r < R; r++) 
    count[r+1] += count[r]; 

 for (int i = 0; i < N; i++) 
    aux[count[a[i]]++] = a[i]; 

 for (int i = 0; i < N; i++) 
    a[i] = aux[i];

move 
items

i  aux[i]



Goal.  Sort an array a[] of N integers between 0 and R - 1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move items.

• Copy back into original array.

a 1

b 5

c 6

d 8

e 8

f 12

- 12
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Key-indexed counting demo

i  a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

0 a

1

2 b

3 b

4 b

5 c

6 d

7 d

8

9 f

10 f

11 f

r count[r]

 int N = a.length; 
 int[] count = new int[R+1]; 

 for (int i = 0; i < N; i++) 
    count[a[i]+1]++; 

 for (int r = 0; r < R; r++) 
    count[r+1] += count[r]; 

 for (int i = 0; i < N; i++) 
    aux[count[a[i]]++] = a[i]; 

 for (int i = 0; i < N; i++) 
    a[i] = aux[i];

move 
items

i  aux[i]



Goal.  Sort an array a[] of N integers between 0 and R - 1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move items.

• Copy back into original array.

a 1

b 5

c 6

d 8

e 9

f 12

- 12

 32

Key-indexed counting demo

i  a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

0 a

1

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f

r count[r]

 int N = a.length; 
 int[] count = new int[R+1]; 

 for (int i = 0; i < N; i++) 
    count[a[i]+1]++; 

 for (int r = 0; r < R; r++) 
    count[r+1] += count[r]; 

 for (int i = 0; i < N; i++) 
    aux[count[a[i]]++] = a[i]; 

 for (int i = 0; i < N; i++) 
    a[i] = aux[i];

move 
items

i  aux[i]



Goal.  Sort an array a[] of N integers between 0 and R - 1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move items.

• Copy back into original array.

a 2

b 5

c 6

d 8

e 9

f 12

- 12
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Key-indexed counting demo

i  a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

0 a

1 a

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f

r count[r]

 int N = a.length; 
 int[] count = new int[R+1]; 

 for (int i = 0; i < N; i++) 
    count[a[i]+1]++; 

 for (int r = 0; r < R; r++) 
    count[r+1] += count[r]; 

 for (int i = 0; i < N; i++) 
    aux[count[a[i]]++] = a[i]; 

 for (int i = 0; i < N; i++) 
    a[i] = aux[i];

move 
items

i  aux[i]



Goal.  Sort an array a[] of N integers between 0 and R - 1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move items.

• Copy back into original array.

 int N = a.length; 
 int[] count = new int[R+1]; 

 for (int i = 0; i < N; i++) 
    count[a[i]+1]++; 

 for (int r = 0; r < R; r++) 
    count[r+1] += count[r]; 

 for (int i = 0; i < N; i++) 
    aux[count[a[i]]++] = a[i]; 

 for (int i = 0; i < N; i++) 
    a[i] = aux[i];

a 2

b 5

c 6

d 8

e 9

f 12

- 12
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Key-indexed counting demo

i  a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

move 
items

0 a

1 a

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f

r count[r]

i  aux[i]



Goal.  Sort an array a[] of N integers between 0 and R - 1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move items.

• Copy back into original array.

 int N = a.length; 
 int[] count = new int[R+1]; 

 for (int i = 0; i < N; i++) 
    count[a[i]+1]++; 

 for (int r = 0; r < R; r++) 
    count[r+1] += count[r]; 

 for (int i = 0; i < N; i++) 
    aux[count[a[i]]++] = a[i]; 

 for (int i = 0; i < N; i++) 
    a[i] = aux[i];

a 2

b 5

c 6

d 8

e 9

f 12

- 12
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Key-indexed counting demo

i  a[i]

0 a

1 a

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f
copy  
back

0 a

1 a

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f

r count[r]

i  aux[i]



Goal.  Sort an array a[] of N integers between 0 and R - 1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move items.

• Copy back into original array.

 int N = a.length; 
 int[] count = new int[R+1]; 

 for (int i = 0; i < N; i++) 
    count[a[i]+1]++; 

 for (int r = 0; r < R; r++) 
    count[r+1] += count[r]; 

 for (int i = 0; i < N; i++) 
    aux[count[a[i]]++] = a[i]; 

 for (int i = 0; i < N; i++) 
    a[i] = aux[i];

a 0

b 2

c 3

d 1

e 2

f 1

- 3
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Key-indexed counting demo

i  a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

count 

frequencies

offset by 1 

[stay tuned]

r count[r]



Goal.  Sort an array a[] of N integers between 0 and R - 1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move items.

• Copy back into original array.

a 0

b 2

c 5

d 6

e 8

f 9

- 12
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Key-indexed counting demo

i  a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

r count[r]

compute  
cumulates

	int	N	=	a.length;	
	int[]	count	=	new	int[R+1];	

	for	(int	i	=	0;	i	<	N;	i++)	
				count[a[i]+1]++;	

	for	(int	r	=	0;	r	<	R;	r++)	
				count[r+1]	+=	count[r];	

	for	(int	i	=	0;	i	<	N;	i++)	
				aux[count[a[i]]++]	=	a[i];	

	for	(int	i	=	0;	i	<	N;	i++)	
				a[i]	=	aux[i];  6 keys < d, 8 keys < e 

so d’s go in a[6] and a[7]



Goal.  Sort an array a[] of N integers between 0 and R - 1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move items.

• Copy back into original array.

 int N = a.length; 
 int[] count = new int[R+1]; 

 for (int i = 0; i < N; i++) 
    count[a[i]+1]++; 

 for (int r = 0; r < R; r++) 
    count[r+1] += count[r]; 

 for (int i = 0; i < N; i++) 
    aux[count[a[i]]++] = a[i]; 

 for (int i = 0; i < N; i++) 
    a[i] = aux[i];

a 2

b 5

c 6

d 8

e 9

f 12

- 12
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Key-indexed counting demo

i  a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

move 
items

0 a

1 a

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f

r count[r]

i  aux[i]

For the index 

of duplicates



Goal.  Sort an array a[] of N integers between 0 and R - 1.

• Count frequencies of each letter using key as index.

• Compute frequency cumulates which specify destinations.

• Access cumulates using key as index to move items.

• Copy back into original array.

 int N = a.length; 
 int[] count = new int[R+1]; 

 for (int i = 0; i < N; i++) 
    count[a[i]+1]++; 

 for (int r = 0; r < R; r++) 
    count[r+1] += count[r]; 

 for (int i = 0; i < N; i++) 
    aux[count[a[i]]++] = a[i]; 

 for (int i = 0; i < N; i++) 
    a[i] = aux[i];

a 2

b 5

c 6

d 8

e 9

f 12

- 12
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Key-indexed counting demo

i  a[i]

0 a

1 a

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f
copy  
back

0 a

1 a

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f

r count[r]

i  aux[i]



Key-indexed counting:  analysis

Proposition.  Key-indexed counting uses  ~ 11 N + 4 R array accesses to sort 
N items whose keys are integers between 0 and R - 1.
 
Proposition.  Key-indexed counting uses extra space proportional to N + R.
 
Stable?

 40

   
               
               
Anderson  2       Harris    1
Brown     3       Martin    1
Davis     3       Moore     1
Garcia    4       Anderson  2
Harris    1       Martinez  2
Jackson   3       Miller    2
Johnson   4       Robinson  2
Jones     3       White     2
Martin    1       Brown     3
Martinez  2       Davis     3
Miller    2       Jackson   3
Moore     1       Jones     3
Robinson  2       Taylor    3
Smith     4       Williams  3
Taylor    3       Garcia    4
Thomas    4       Johnson   4
Thompson  4       Smith     4
White     2       Thomas    4
Williams  3       Thompson  4
Wilson    4       Wilson    4

Distributing the data (records with key 3 highlighted)

  count[]
1  2  3  4
0  3  8 14
0  4  8 14
0  4  9 14
0  4 10 14
0  4 10 15
1  4 10 15
1  4 11 15
1  4 11 16
1  4 12 16
2  4 12 16
2  5 12 16
2  6 12 16
3  6 12 16
3  7 12 16
3  7 12 17
3  7 13 17
3  7 13 18
3  7 13 19
3  8 13 19
3  8 14 19
3  8 14 20

 a[0]

 a[1]

 a[2]

 a[3]

 a[4]

 a[5]

 a[6]

 a[7]

 a[8]

 a[9]

a[10]

a[11]

a[12]

a[13]

a[14]

a[15]

a[16]

a[17]

a[18]

a[19]

aux[0]

aux[1]

aux[2]

aux[3]

aux[4]

aux[5]

aux[6]

aux[7]

aux[8]

aux[9]

aux[10]

aux[11]

aux[12]

aux[13]

aux[14]

aux[15]

aux[16]

aux[17]

aux[18]

aux[19]

for (int i = 0; i < N; i++)
   aux[count[a[i].key(d)]++] = a[i];

✔

Depends on the  

Alphabet size / Max  

integer value 



STRING SORTS 
‣ Key-indexed counting
‣ LSD radix sort
‣ MSD radix sort
‣ 3-way radix quicksort
‣ Suffix arrays



Least-significant-digit-first string sort

LSD string (radix) sort.
• Consider characters from right to left.

• Stably sort using dth character as the key (using key-indexed counting).
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0 d a b

1 a d d

2 c a b

3 f a d

4 f e e

5 b a d

6 d a d

7 b e e

8 f e d

9 b e d

10 e b b

11 a c e

0 d a b

1 c a b

2 f a d

3 b a d

4 d a d

5 e b b

6 a c e

7 a d d

8 f e d

9 b e d

10 f e e

11 b e e

sort key (d=1)

0 a c e

1 a d d

2 b a d

3 b e d

4 b e e

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e d

11 f e e

sort key (d=0)

0 d a b

1 c a b

2 e b b

3 a d d

4 f a d

5 b a d

6 d a d

7 f e d

8 b e d

9 f e e

10 b e e

11 a c e

sort must be stable 

(arrows do not cross)

sort key (d=2)
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LSD string sort:  correctness proof

Proposition.  LSD sorts fixed-length strings in ascending order.
 
Pf.  [by induction on i]
After pass i, strings are sorted by last i characters.

• If two strings differ on sort key,  
key-indexed sort puts them in proper relative order.

• If two strings agree on sort key,  
stability keeps them in proper relative order.

• [Thinking about the future]
- If the characters not yet examined differ, it doesn’t matter  

what we do now

- If the characters not yet examined agree, stability ensures 
later pass won’t affect order.

0 d a b

1 c a b

2 f a d

3 b a d

4 d a d

5 e b b

6 a c e

7 a d d

8 f e d

9 b e d

10 f e e

11 b e e

0 a c e

1 a d d

2 b a d

3 b e d

4 b e e

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e d

11 f e e

sorted from 

previous passes 

(by induction)

sort key
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LSD string sort:  Java implementation

key-indexed 

counting 

(count sort)

public class LSD 
{ 
   public static void sort(String[] a, int W) 
   { 
      int R = 256; 
      int N = a.length; 
      String[] aux = new String[N]; 

      for (int d = W-1; d >= 0; d--) 
      { 
         int[] count = new int[R+1]; 
         for (int i = 0; i < N; i++) 
            count[a[i].charAt(d) + 1]++; 
         for (int r = 0; r < R; r++) 
            count[r+1] += count[r]; 
         for (int i = 0; i < N; i++) 
            aux[count[a[i].charAt(d)]++] = a[i]; 
         for (int i = 0; i < N; i++) 
            a[i] = aux[i]; 
      } 
   } 
}

do key-indexed counting 
for each digit from right to left

radix R

fixed-length W strings



Summary of the performance of sorting algorithms

Frequency of operations.
 
 
 
 
 
 
 
 
 
 
 
 
 
Q.  What if strings do not have same length?
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algorithm guarantee random extra space stable? operations on keys

insertion sort N2 / 2 N2 / 4 1 yes compareTo()

mergesort N lg N N lg N N yes compareTo()

quicksort 1.39 N lg N * 1.39 N lg N c lg N no compareTo()

heapsort 2 N lg N 2 N lg N 1 no compareTo()

LSD † 2 W N 2 W N N + R yes charAt()

*  probabilistic 

†  fixed-length W keys



Problem.  Sort a huge commercial database on a fixed-length key.
Ex.  Account number, date, Social Security number, ...

Which sorting method to use?
• Insertion sort.

• Mergesort.

• Quicksort.

• Heapsort.

• LSD string sort.

 46

String sorting challenge 1

B14-99-8765

756-12-AD46

CX6-92-0112

332-WX-9877

375-99-QWAX

CV2-59-0221

387-SS-0321

KJ-00-12388

715-YT-013C

MJ0-PP-983F

908-KK-33TY

BBN-63-23RE

48G-BM-912D

982-ER-9P1B

WBL-37-PB81

810-F4-J87Q

LE9-N8-XX76

908-KK-33TY

B14-99-8765

CX6-92-0112

CV2-59-0221

332-WX-23SQ

332-6A-9877

✓

256 (or 65,536) counters; 

Fixed-length strings sort in W passes.
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String sorting challenge 2a

Problem.  Sort one million 32-bit integers.
Ex.  Google (or presidential) interview. Obama answered “Bubble Sort is 
not the way to go”

Which sorting method to use?
• Insertion sort.

• Mergesort.

• Quicksort.

• Heapsort.

• LSD string sort.

Google CEO Eric Schmidt interviews Barack Obama
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String sorting challenge 2a

Problem.  Sort one million 32-bit integers.

Can view 32-bit integers as:

• Strings of length W=1 over alphabet of size R=232

• Strings of length W=2 over alphabet of size R=216

• Strings of length W=3 over alphabet of size R=28

…

• Each LSD sort out of W takes N+R

• If R=216 then we can ignore R, and reduce to O(N)
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String sorting challenge 2b

Problem.  Sort huge array of random 128-bit numbers.
Ex.  Supercomputer sort, internet router.

Which sorting method to use?
• Insertion sort.

• Mergesort.

• Quicksort.

• Heapsort.

• LSD string sort.

01110110111011011101...1011101
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String sorting challenge 2b

Problem.  Sort huge array of random 128-bit numbers.
Ex.  Supercomputer sort, internet router.

Which sorting method to use?
• Insertion sort.

• Mergesort.

• Quicksort.

• Heapsort.

• LSD string sort.✓

Divide each word into eight 16-bit “chars” 

216 = 65,536 counters. 

Sort in 8 passes.

01110110111011011101...1011101
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String sorting challenge 2b

Problem.  Sort huge array of random 128-bit numbers.
Ex.  Supercomputer sort, internet router.

Which sorting method to use?
• Insertion sort.

• Mergesort.

• Quicksort.

• Heapsort.

• LSD string sort.✓

Divide each word into eight 16-bit “chars” 

216 = 65,536 counters 

LSD sort on leading 32 bits in 2 passes 

Finish with insertion sort 

Examines only ~25% of the data

✓
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How to take a census in 1900s?

1880 Census.  Took 1,500 people 7 years to manually process data.
 
Herman Hollerith.  Developed counting and sorting machine to automate.
• Use punch cards to record data (e.g., gender, age).

• Machine sorts one column at a time (into one of 12 bins).

• Typical question:  how many women of age 20 to 30?

 
 
 
 
 
 
 
 
 
1890 Census.  Finished months early and under budget!

punch card (12 holes per column)Hollerith tabulating machine and sorter
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How to get rich sorting in 1900s?

Punch cards.  [1900s to 1950s]
• Also useful for accounting, inventory, and business processes.

• Primary medium for data entry, storage, and processing.

 
Hollerith's company later merged with 3 others to form Computing 
Tabulating Recording Corporation (CTRC); the company was renamed in 
1924.

IBM 80 Series Card Sorter (650 cards per minute)



LSD string sort:  a moment in history (1960s)
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card punch punched cards card reader mainframe line printer

To sort a card deck 

   -  start on right column 

   -  put cards into hopper 

   -  machine distributes into bins 

   -  pick up cards (stable) 

   -  move left one column 

   -  continue until sorted

card sorter



STRING SORTS 
‣ Key-indexed counting
‣ LSD radix sort
‣ MSD radix sort
‣ 3-way radix quicksort
‣ Suffix arrays
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MSD string (radix) sort.
• Partition array into R pieces according to first character 

(use key-indexed counting).

• Recursively sort all strings that start with each character 
(key-indexed counts delineate subarrays to sort).

Most-significant-digit-first string sort

0 d a b

1 a d d

2 c a b

3 f a d

4 f e e

5 b a d

6 d a d

7 b e e

8 f e d

9 b e d

10 e b b

11 a c e

0 a d d

1 a c e

2 b a d

3 b e e

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

sort key

0 a d d

1 a c e

2 b a d

3 b e e

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

sort subarrays 

recursively

count[]

a 0

b 2

c 5

d 6

e 8

f 9

- 12
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MSD string sort:  example

she
sells
seashells
by
the
sea
shore
the
shells
she
sells
are
surely
seashells
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she
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seashells
sea
shore
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Trace of recursive calls for MSD string sort (no cutoff for small subarrays, subarrays of size 0 and 1 omitted)

end-of-string
goes before any

char value

need to examine
every character
in equal keys

d

lo

hi



Variable-length strings

Treat strings as if they had an extra char at end (smaller than any char).
 
 
 
 
 
 
 
 
 
 
 
 
 
C strings.  Have extra char '\0' at end  ⇒  no extra work needed.
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0 s e a -1

1 s e a s h e l l s -1

2 s e l l s -1

3 s h e -1

4 s h e -1

5 s h e l l s -1

6 s h o r e -1

7 s u r e l y -1

she before shells

private static int charAt(String s, int d) 
{ 
   if (d < s.length()) return s.charAt(d); 
   else return -1; 
}

why smaller?
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MSD string sort:  Java implementation

public static void sort(String[] a) 
{ 
   aux = new String[a.length];  
   sort(a, aux, 0, a.length, 0); 
} 

private static void sort(String[] a, String[] aux, int lo, int hi, int d) 
{ 
   if (hi <= lo) return; 
   int[] count = new int[R+2]; 
   for (int i = lo; i <= hi; i++) 
      count[charAt(a[i], d) + 2]++; 
   for (int r = 0; r < R+1; r++) 
      count[r+1] += count[r]; 
   for (int i = lo; i <= hi; i++) 
      aux[count[charAt(a[i], d) + 1]++] = a[i]; 
   for (int i = lo; i <= hi; i++) 
      a[i] = aux[i - lo]; 
    
   for (int r = 0; r < R; r++) 
      sort(a, aux, lo + count[r], lo + count[r+1] - 1, d+1); 
}

key-indexed counting

sort R subarrays recursively

can recycle aux[] array 

but not count[] array
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 MSD string sort:  potential for disastrous performance

Observation 1.  Much too slow for small subarrays.
• Each function call needs its own count[] array.

• ASCII (256 counts):  100x slower than copy pass for N = 2.

• Unicode (65,536 counts):  32,000x slower for N = 2.

 
Observation 2.  Huge number of small subarrays 
because of recursion.

a[]

0 b

1 a

count[]

aux[]

0 a

1 b
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Cutoff to insertion sort

Solution.  Cutoff to insertion sort for small subarrays.
• Insertion sort, but start at dth character.

• Implement less() so that it compares starting at dth character.

   public static void sort(String[] a, int lo, int hi, int d) 
   { 
      for (int i = lo; i <= hi; i++) 
         for (int j = i; j > lo && less(a[j], a[j-1], d); j--) 
            exch(a, j, j-1); 
   } 

   private static boolean less(String v, String w, int d) 
   {  return v.substring(d).compareTo(w.substring(d)) < 0;  }

in Java, forming and comparing 

substrings is faster than directly 

comparing chars with charAt()



Number of characters examined.
• MSD examines just enough characters to sort the keys.

• Number of characters examined depends on keys.

• Can be sublinear in input size!
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 MSD string sort:  performance

1EIO402
1HYL490
1ROZ572
2HXE734
2IYE230
2XOR846
3CDB573
3CVP720
3IGJ319
3KNA382
3TAV879
4CQP781
4QGI284
4YHV229

1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377

Non-random
with duplicates
(nearly linear)

Random
(sublinear)

Worst case
(linear)

Characters examined by MSD string sort

are
by
sea
seashells
seashells
sells
sells
she
she
shells
shore
surely
the
the

compareTo() based sorts 

can also be sublinear!



Summary of the performance of sorting algorithms

Frequency of operations.
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algorithm guarantee random extra space stable? operations on keys

insertion sort N2 / 2 N2 / 4 1 yes compareTo()

mergesort N lg N N lg N N yes compareTo()

quicksort 1.39 N lg N * 1.39 N lg N c lg N no compareTo()

heapsort 2 N lg N 2 N lg N 1 no compareTo()

LSD † 2 N W 2 N W N + R yes charAt()

MSD ‡ 2 N W N log R N N + D R yes charAt()

*  probabilistic  
†  fixed-length W keys 
‡  average-length W keys

D = function-call stack depth 

(length of longest prefix match)
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MSD string sort vs. quicksort for strings

Disadvantages of MSD string sort.
• Accesses memory "randomly" (cache inefficient).

• Inner loop has a lot of instructions.

• Extra space for count[].

• Extra space for aux[].

 
Disadvantage of quicksort.
• Linearithmic number of string compares (not linear).

• Has to rescan many characters in keys with long prefix matches.

 
 
 
Goal.  Combine advantages of MSD and quicksort.



STRING SORTS 
‣ Key-indexed counting
‣ LSD radix sort
‣ MSD radix sort
‣ 3-way radix quicksort
‣ Suffix arrays



she 

sells 

seashells 

by 

the 

sea 

shore 

the 

shells 

she 

sells 

are 

surely 

seashells

Overview.  Do 3-way partitioning on the dth character.

• Less overhead than R-way partitioning in MSD string sort.

• Does not re-examine characters equal to the partitioning char 
(but does re-examine characters not equal to the partitioning char).
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3-way string quicksort (Bentley and Sedgewick, 1997)

partitioning item 

use first character to 

partition into 

"less", "equal", and "greater" 

subarrays
recursively sort subarrays,  
excluding first character  

for middle subarray

by 

are 

seashells 

she 

seashells 

sea 

shore 

surely 

shells 

she 

sells 

sells 

the 

the



she 

sells 

seashells 

by 

the 

sea 

shore 

the 

shells 

she 

sells 

are 

surely 

seashells
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3-way string quicksort:  trace of recursive calls

by 

are 

seashells 

she 

seashells 

sea 

shore 

surely 

shells 

she 

sells 

sells 

the 

the

Trace of first few recursive calls for 3-way string quicksort (subarrays of size 1 not shown)

partitioning item

are 

by 

seashells 

she 

seashells 

sea 

shore 

surely 

shells 

she 

sells 

sells 

the 

the

are 

by 

seashells  

sea 

seashells 

sells 

sells 

shells 

she 

surely 

shore 

she 

the 

the

are 

by 

seashells 

sells 

seashells  

sea 

sells 

shells 

she 

surely 

shore 

she 

the 

the
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3-way string quicksort:  Java implementation

 private static void sort(String[] a) 
 {  sort(a, 0, a.length - 1, 0);  } 

 private static void sort(String[] a, int lo, int hi, int d) 
 {  
    if (hi <= lo) return; 
    int lt = lo, gt = hi; 
    int v = charAt(a[lo], d); 
    int i = lo + 1; 
    while (i <= gt) 
    { 
       int t = charAt(a[i], d); 
       if      (t < v) exch(a, lt++, i++); 
       else if (t > v) exch(a, i, gt--); 
       else            i++; 
    } 

    sort(a, lo, lt-1, d); 
    if (v >= 0) sort(a, lt, gt, d+1); 
    sort(a, gt+1, hi, d); 
 }

3-way partitioning 
(using dth character)

sort 3 subarrays recursively

to handle variable-length strings



Standard quicksort.
• Uses ~ 2 N ln N string compares on average.

• Costly for keys with long common prefixes (and this is a common case!)

 
3-way string (radix) quicksort.
• Uses ~ 2 N ln N character compares on average for random strings.

• Avoids re-comparing long common prefixes.
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3-way string quicksort vs. standard quicksort

Jon L. Bentley* Robert Sedgewick# 

Abstract 
We present theoretical algorithms for sorting and 

searching multikey data, and derive from them practical C 
implementations for applications in which keys are charac- 
ter strings. The sorting algorithm blends Quicksort and 
radix sort; it is competitive with the best known C sort 
codes. The searching algorithm blends tries and binary 
search trees; it is faster than hashing and other commonly 
used search methods. The basic ideas behind the algo- 
rithms date back at least to the 1960s but their practical 
utility has been overlooked. We also present extensions to 
more complex string problems, such as partial-match 
searching. 

1. Introduction 
Section 2 briefly reviews Hoare’s [9] Quicksort and 

binary search trees. We emphasize a well-known isomor- 
phism relating the two, and summarize other basic facts. 

The multikey algorithms and data structures are pre- 
sented in Section 3. Multikey Quicksort orders a set of II 
vectors with k components each. Like regular Quicksort, it 
partitions its input into sets less than and greater than a 
given value; like radix sort, it moves on to the next field 
once the current input is known to be equal in the given 
field. A node in a ternary search tree represents a subset of 
vectors with a partitioning value and three pointers: one to 
lesser elements and one to greater elements (as in a binary 
search tree) and one to equal elements, which are then pro- 
cessed on later fields (as in tries). Many of the structures 
and analyses have appeared in previous work, but typically 
as complex theoretical constructions, far removed from 
practical applications. Our simple framework opens the 
door for later implementations. 

The algorithms are analyzed in Section 4. Many of the 
analyses are simple derivations of old results. 

Section 5 describes efficient C programs derived from 
the algorithms. The first program is a sorting algorithm 

Fast Algorithms for Sorting and Searching Strings 

that is competitive with the most efficient string sorting 
programs known. The second program is a symbol table 
implementation that is faster than hashing, which is com- 
monly regarded as the fastest symbol table implementa- 
tion. The symbol table implementation is much more 
space-efficient than multiway trees, and supports more 
advanced searches. 

In many application programs, sorts use a Quicksort 
implementation based on an abstract compare operation, 
and searches use hashing or binary search trees. These do 
not take advantage of the properties of string keys, which 
are widely used in practice. Our algorithms provide a nat- 
ural and elegant way to adapt classical algorithms to this 
important class of applications. 

Section 6 turns to more difficult string-searching prob- 
lems. Partial-match queries allow “don’t care” characters 
(the pattern “so.a”, for instance, matches soda and sofa). 
The primary result in this section is a ternary search tree 
implementation of Rivest’s partial-match searching algo- 
rithm, and experiments on its performance. “Near neigh- 
bor” queries locate all words within a given Hamming dis- 
tance of a query word (for instance, code is distance 2 
from soda). We give a new algorithm for near neighbor 
searching in strings, present a simple C implementation, 
and describe experiments on its efficiency. 

Conclusions are offered in Section 7. 

2. Background 
Quicksort is a textbook divide-and-conquer algorithm. 

To sort an array, choose a partitioning element, permute 
the elements such that lesser elements are on one side and 
greater elements are on the other, and then recursively sort 
the two subarrays. But what happens to elements equal to 
the partitioning value? Hoare’s partitioning method is 
binary: it places lesser elements on the left and greater ele- 
ments on the right, but equal elements may appear on 
either side. 

* Bell Labs, Lucent Technologies, 700 Mountam Avenue, Murray Hill. 
NJ 07974; jlb@research.bell-labs.com. 

# Princeton University. Princeron. NJ. 08514: rs@cs.princeton.edu. 

Algorithm designers have long recognized the desir- 
irbility and difficulty of a ternary partitioning method. 
Sedgewick [22] observes on page 244: “Ideally, we would 
llke to get all [equal keys1 into position in the file, with all 

360 
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3-way string quicksort vs. MSD string sort

MSD string sort.
• Is cache-inefficient.

• Too much memory storing count[].

• Too much overhead reinitializing count[] and aux[].

 
 
3-way string quicksort.
• Has a short inner loop.

• Is cache-friendly.

• Is in-place.

 
 
 
 
Bottom line.  3-way string quicksort is the method of choice for sorting 
strings.

library of Congress call numbers



Summary of the performance of sorting algorithms

Frequency of operations.
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algorithm guarantee random extra space stable? operations on keys

insertion sort N2 / 2 N2 / 4 1 yes compareTo()

mergesort N lg N N lg N N yes compareTo()

quicksort 1.39 N lg N * 1.39 N lg N c lg N no compareTo()

heapsort 2 N lg N 2 N lg N 1 no compareTo()

LSD † 2 N W 2 N W N + R yes charAt()

MSD ‡ 2 N W N log R N N + D R yes charAt()

3-way string 
quicksort

1.39 W N lg N * 1.39 N lg N log N + W no charAt()

*  probabilistic  
†  fixed-length W keys 
‡  average-length W keys



STRING SORTS 
‣ Key-indexed counting
‣ LSD radix sort
‣ MSD radix sort
‣ 3-way radix quicksort
‣ Suffix arrays



% more tale.txt 
it was the best of times 
it was the worst of times 
it was the age of wisdom 
it was the age of foolishness 
it was the epoch of belief 
it was the epoch of incredulity 
it was the season of light 
it was the season of darkness 
it was the spring of hope 
it was the winter of despair 
...
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Keyword-in-context search

Given a text of N characters, preprocess it to enable fast substring search 
(find all occurrences of query string context).

Applications.  Linguistics, databases, web search, word processing, ….

% java KWIC tale.txt 15 
search 
o st giless to search for contraband 
her unavailing search for your fathe 
le and gone in search of her husband 
t provinces in search of impoverishe 
 dispersing in search of other carri 
n that bed and search the straw hold 

better thing 
t is a far far better thing that i do than 
 some sense of better things else forgotte 
was capable of better things mr carton ent 

characters of 

surrounding context
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Suffix sort

a a c a a g t t t a c a a g c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

input string

0 a a c a a g t t t a c a a g c
1 a c a a g t t t a c a a g c
2 c a a g t t t a c a a g c
3 a a g t t t a c a a g c
4 a g t t t a c a a g c
5 g t t t a c a a g c
6 t t t a c a a g c
7 t t a c a a g c
8 t a c a a g c
9 a c a a g c
10 c a a g c
11 a a g c
12 a g c
13 g c
14 c

form suffixes

0 a a c a a g t t t a c a a g c
11 a a g c
3 a a g t t t a c a a g c
9 a c a a g c
1 a c a a g t t t a c a a g c
12 a g c
4 a g t t t a c a a g c
14 c
10 c a a g c
2 c a a g t t t a c a a g c
13 g c
5 g t t t a c a a g c
8 t a c a a g c
7 t t a c a a g c
6 t t t a c a a g c

sort suffixes to bring repeated substrings together



• Preprocess:  suffix sort the text.

• Query:  binary search for query; scan until mismatch.
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Keyword-in-context search:  suffix-sorting solution

⋮
632698 s e a l e d _ m y _ l e t t e r _ a n d _ …

713727 s e a m s t r e s s _ i s _ l i f t e d _ …

660598 s e a m s t r e s s _ o f _ t w e n t y _ …

67610 s e a m s t r e s s _ w h o _ w a s _ w i …

4430 s e a r c h _ f o r _ c o n t r a b a n d …

42705 s e a r c h _ f o r _ y o u r _ f a t h e …

499797 s e a r c h _ o f _ h e r _ h u s b a n d …

182045 s e a r c h _ o f _ i m p o v e r i s h e …

143399 s e a r c h _ o f _ o t h e r _ c a r r i …

411801 s e a r c h _ t h e _ s t r a w _ h o l d …

158410 s e a r e d _ m a r k i n g _ a b o u t _ …

691536 s e a s _ a n d _ m a d a m e _ d e f a r …

536569 s e a s e _ a _ t e r r i b l e _ p a s s …

484763 s e a s e _ t h a t _ h a d _ b r o u g h …
⋮

KWIC search for "search" in Tale of Two Cities
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Longest repeated substring

Given a string of N characters, find the longest repeated substring. 

Applications.  Bioinformatics, cryptanalysis, data compression, ...

a a c a a g t t t a c a a g c a t g a t g c t g t a c t a 
g g a g a g t t a t a c t g g t c g t c a a a c c t g a a 
c c t a a t c c t t g t g t g t a c a c a c a c t a c t a 
c t g t c g t c g t c a t a t a t c g a g a t c a t c g a 
a c c g g a a g g c c g g a c a a g g c g g g g g g t a t 
a g a t a g a t a g a c c c c t a g a t a c a c a t a c a 
t a g a t c t a g c t a g c t a g c t c a t c g a t a c a 
c a c t c t c a c a c t c a a g a g t t a t a c t g g t c 
a a c a c a c t a c t a c g a c a g a c g a c c a a c c a 
g a c a g a a a a a a a a c t c t a t a t c t a t a a a a
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Longest repeated substring:  a musical application

Visualize repetitions in music.  http://www.bewitched.com

        

Mary Had a Little Lamb

Bach's Goldberg Variations
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Longest repeated substring

Given a string of N characters, find the longest repeated substring. 
 
 
Brute-force algorithm.
• Try all indices i and j for start of possible match.

• Compute longest common prefix (LCP) for each pair.

 
 
 
 
 
 
 
 
Analysis.  Running time ≤ D N 2 , where D is length of longest match.

i

a a c a a g t t t a c a a g c

j
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Longest repeated substring:  a sorting solution

a a c a a g t t t a c a a g c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

input string

0 a a c a a g t t t a c a a g c
1 a c a a g t t t a c a a g c
2 c a a g t t t a c a a g c
3 a a g t t t a c a a g c
4 a g t t t a c a a g c
5 g t t t a c a a g c
6 t t t a c a a g c
7 t t a c a a g c
8 t a c a a g c
9 a c a a g c
10 c a a g c
11 a a g c
12 a g c
13 g c
14 c

form suffixes

0 a a c a a g t t t a c a a g c
11 a a g c
3 a a g t t t a c a a g c
9 a c a a g c
1 a c a a g t t t a c a a g c
12 a g c
4 a g t t t a c a a g c
14 c
10 c a a g c
2 c a a g t t t a c a a g c
13 g c
5 g t t t a c a a g c
8 t a c a a g c
7 t t a c a a g c
6 t t t a c a a g c

sort suffixes to bring repeated substrings together

compute longest prefix between adjacent suffixes

a a c a a g t t t a c a a g c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14



  public String lrs(String s)  
  { 
    int N = s.length(); 

    String[] suffixes = new String[N]; 
    for (int i = 0; i < N; i++) 
       suffixes[i] = s.substring(i, N); 

    Arrays.sort(suffixes); 

    String lrs = ""; 
    for (int i = 0; i < N-1; i++)  
    { 
       int len = lcp(suffixes[i], suffixes[i+1]); 
       if (len > lrs.length()) 
          lrs = suffixes[i].substring(0, len); 
    } 
    return lrs; 
 }
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Longest repeated substring:  Java implementation

% java LRS < mobydick.txt 
,- Such a funny, sporty, gamy, jesty, joky, hoky-poky lad, is the Ocean, oh! Th

create suffixes 
(linear time and space)

sort suffixes

find LCP between 
adjacent suffixes in 

sorted order
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Sorting challenge

Problem.  Five scientists A, B, C, D, and E are looking for long repeated 
substring in a genome with over 1 billion nucleotides.

• A has a grad student do it by hand.

• B uses brute force (check all pairs).

• C uses suffix sorting solution with insertion sort.

• D uses suffix sorting solution with LSD string sort.

• E uses suffix sorting solution with 3-way string quicksort.

Q.  Which one is more likely to lead to a cure cancer?

but only if LRS is not long (!)

✓



input file characters brute suffix sort length of LRS

LRS.java 2.162 0.6 sec 0.14 sec 73

amendments.txt 18.369 37 sec 0.25 sec 216

aesop.txt 191.945 1.2 hours 1.0 sec 58

mobydick.txt 1.2 million 43 hours † 7.6 sec 79

chromosome11.txt 7.1 million 2 months † 61 sec 12.567

pi.txt 10 million 4 months † 84 sec 14

pipi.txt 20 million forever † ??? 10 million
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Longest repeated substring:  empirical analysis

 †  estimated



Bad input:  longest repeated substring very long.
• Ex:  same letter repeated N times. 

• Ex:  two copies of the same Java codebase.

LRS needs at least 1 + 2 +3 + ... + D character compares,  
where D = length of longest match

Running time.  Quadratic (or worse) in the length of the longest match.
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Suffix sorting:  worst-case input

0 t w i n s t w i n s
1 w i n s t w i n s
2 i n s t w i n s
3 n s t w i n s
4 s t w i n s
5 t w i n s
6 w i n s
7 i n s
8 n s
9 s

form suffixes

9 i n s
8 i n s t w i n s
7 n s  
6 n s t w i n s
5 s     
4 s t w i n s
3 t w i n s   
2 t w i n s t w i n s
1 w i n s      
0 w i n s t w i n s  

sorted suffixes
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Suffix sorting challenge

Problem.  Suffix sort an arbitrary string of length N.

Q.  What is worst-case running time of best algorithm for problem?
• Quadratic.

• Linearithmic.

• Linear.

• Nobody knows.
suffix trees (beyond our scope)✓
Manber's algorithm✓
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Suffix sorting in linearithmic time

Manber's MSD algorithm overview. 
• Phase 0:  sort on first character using key-indexed counting sort.

• Phase i:  given array of suffixes sorted on first 2i-1 characters,  
create array of suffixes sorted on first 2i characters.

 
Worst-case running time.  N lg N.

• Finishes after lg N phases.

• Can perform a phase in linear time. (!)   [ahead]



17 0
1 a b a a a a b c b a b a a a a a 0
16 a 0
3 a a a a b c b a b a a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
6 a b c b a b a a a a a 0
15 a a 0
14 a a a 0
13 a a a a 0
12 a a a a a 0
10 a b a a a a a 0
0 b a b a a a a b c b a b a a a a a 0
9 b a b a a a a a 0
11 b a a a a a 0
7 b c b a b a a a a a 0
2 b a a a a b c b a b a a a a a 0
8 c b a b a a a a a 0
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Linearithmic suffix sort example:  phase 0

0 b a b a a a a b c b a b a a a a a 0
1 a b a a a a b c b a b a a a a a 0
2 b a a a a b c b a b a a a a a 0
3 a a a a b c b a b a a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
6 a b c b a b a a a a a 0
7 b c b a b a a a a a 0
8 c b a b a a a a a 0
9 b a b a a a a a 0
10 a b a a a a a 0
11 b a a a a a 0
12 a a a a a 0
13 a a a a 0
14 a a a 0
15 a a 0
16 a 0
17 0

key-indexed counting sort (first character)

sorted

original suffixes
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Linearithmic suffix sort example:  phase 1

17 0
16 a 0
12 a a a a a 0
3 a a a a b c b a b a a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
13 a a a a 0
15 a a 0
14 a a a 0
6 a b c b a b a a a a a 0
1 a b a a a a b c b a b a a a a a 0
10 a b a a a a a 0
0 b a b a a a a b c b a b a a a a a 0
9 b a b a a a a a 0
11 b a a a a a 0
2 b a a a a b c b a b a a a a a 0
7 b c b a b a a a a a 0
8 c b a b a a a a a 0

0 b a b a a a a b c b a b a a a a a 0
1 a b a a a a b c b a b a a a a a 0
2 b a a a a b c b a b a a a a a 0
3 a a a a b c b a b a a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
6 a b c b a b a a a a a 0
7 b c b a b a a a a a 0
8 c b a b a a a a a 0
9 b a b a a a a a 0
10 a b a a a a a 0
11 b a a a a a 0
12 a a a a a 0
13 a a a a 0
14 a a a 0
15 a a 0
16 a 0
17 0

sorted

index sort (first two characters)original suffixes
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Linearithmic suffix sort example:  phase 2

17 0
16 a 0
15 a a 0
14 a a a 0
3 a a a a b c b a b a a a a a 0
12 a a a a a 0
13 a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
1 a b a a a a b c b a b a a a a a 0
10 a b a a a a a 0
6 a b c b a b a a a a a 0
2 b a a a a b c b a b a a a a a 0 0 0
11 b a a a a a 0
0 b a b a a a a b c b a b a a a a a 0
9 b a b a a a a a 0
7 b c b a b a a a a a 0
8 c b a b a a a a a 0

0 b a b a a a a b c b a b a a a a a 0
1 a b a a a a b c b a b a a a a a 0
2 b a a a a b c b a b a a a a a 0
3 a a a a b c b a b a a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
6 a b c b a b a a a a a 0
7 b c b a b a a a a a 0
8 c b a b a a a a a 0
9 b a b a a a a a 0
10 a b a a a a a 0
11 b a a a a a 0
12 a a a a a 0
13 a a a a 0
14 a a a 0
15 a a 0
16 a 0
17 0

sorted

index sort (first four characters)original suffixes
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Linearithmic suffix sort example:  phase 3

17 0
16 a 0
15 a a 0
14 a a a 0
13 a a a a 0
12 a a a a a 0
3 a a a a b c b a b a a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
10 a b a a a a a 0
1 a b a a a a b c b a b a a a a a 0
6 a b c b a b a a a a a 0
11 b a a a a a 0
2 b a a a a b c b a b a a a a a 0 0 0
9 b a b a a a a a 0
0 b a b a a a a b c b a b a a a a a 0
7 b c b a b a a a a a 0
8 c b a b a a a a a 0

0 b a b a a a a b c b a b a a a a a 0
1 a b a a a a b c b a b a a a a a 0
2 b a a a a b c b a b a a a a a 0
3 a a a a b c b a b a a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
6 a b c b a b a a a a a 0
7 b c b a b a a a a a 0
8 c b a b a a a a a 0
9 b a b a a a a a 0
10 a b a a a a a 0
11 b a a a a a 0
12 a a a a a 0
13 a a a a 0
14 a a a 0
15 a a 0
16 a 0
17 0

finished (no equal keys)

index sort (first eight characters)original suffixes



17 0
16 a 0
15 a a 0
14 a a a 0
3 a a a a b c b a b a a a a a 0
12 a a a a a 0
13 a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
1 a b a a a a b c b a b a a a a a 0
10 a b a a a a a 0
6 a b c b a b a a a a a 0
2 b a a a a b c b a b a a a a a 0 0 0
11 b a a a a a 0
0 b a b a a a a b c b a b a a a a a 0
9 b a b a a a a a 0
7 b c b a b a a a a a 0
8 c b a b a a a a a 0

0 b a b a a a a b c b a b a a a a a 0
1 a b a a a a b c b a b a a a a a 0
2 b a a a a b c b a b a a a a a 0
3 a a a a b c b a b a a a a a 0
4 a a a b c b a b a a a a a 0
5 a a b c b a b a a a a a 0
6 a b c b a b a a a a a 0
7 b c b a b a a a a a 0
8 c b a b a a a a a 0
9 b a b a a a a a 0
10 a b a a a a a 0
11 b a a a a a 0
12 a a a a a 0
13 a a a a 0
14 a a a 0
15 a a 0
16 a 0
17 0
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Constant-time string compare by indexing into inverse

0 + 4 = 4

9 + 4 = 13

suffixes4[13] ≤ suffixes4[4]  (because inverse[13] < inverse[4]) 
so suffixes8[9] ≤ suffixes8[0]

0 14

1 9

2 12

3 4

4 7

5 8

6 11

7 16

8 17

9 15

10 10

11 13

12 5

13 6

14 3

15 2

16 1

17 0

inverse 
frequencies

index sort (first four characters)original suffixes

Find the index of 

prefix, shifted 4 times

To do this, inverse-index should be 

computed for the previous phase. May 

use for only the last phase 
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Suffix sort:  experimental results

 †  estimated

algorithm mobydick.txt aesopaesop.txt

brute-force 36.000 † 4000 †

quicksort 9,5 167

LSD not fixed length not fixed length

MSD 395 out of memory

MSD with cutoff 6,8 162

3-way string quicksort 2,8 400

Manber MSD 17 8,5

time to suffix sort (seconds)



String sorting summary

We can develop linear-time sorts.
• Key compares not necessary for string keys.

• Use characters as index in an array.

 
We can develop sublinear-time sorts.
• Should measure amount of data in keys, not number of keys.

• Not all of the data has to be examined.

 
3-way string quicksort is asymptotically optimal.
• 1.39 N lg N chars for random data.

 
Long strings are rarely random in practice.
• Goal is often to learn the structure!

• May need specialized algorithms.

 92


