
BBM 202 - ALGORITHMS

ANALYSIS OF ALGORITHMS 

 
DEPT. OF COMPUTER ENGINEERING 

 

Acknowledgement: The course slides are adapted from the slides prepared by R. 
Sedgewick and K. Wayne of Princeton University.



TODAY

‣ Analysis of Algorithms
‣ Observations
‣ Mathematical models
‣ Order-of-growth classifications
‣ Dependencies on inputs
‣ Memory



Cast of characters

�3

Programmer needs to develop
a working solution.

Client wants to solve  
problem efficiently.

Theoretician wants 
to understand.

Basic blocking and tackling
is sometimes necessary.
[this lecture]

Student might play
any or all of these
roles someday.



�4

Running time

Analytic Engine

how many times do you 
have to turn the crank?

“ As soon as an Analytic Engine exists, it will necessarily guide the future  
   course of the science.  Whenever any result is sought by its aid, the question  
   will arise—By what course of calculation can these results be arrived at by  
   the machine in the shortest time? ”    —  Charles Babbage (1864)



Predict performance.

Compare algorithms.

Provide guarantees.

Understand theoretical basis.

Primary practical reason:  avoid performance bugs. 

Reasons to analyse algorithms

�5

this course (BBM 202)

Analysis of algorithms (BBM 408)

client gets poor performance because programmer 
did not understand performance characteristics



�6

Some algorithmic successes

Discrete Fourier transform.
• Break down waveform of N samples into periodic components.

• Applications:  DVD, JPEG, MRI, astrophysics, ….

• Brute force:  N 2 steps.

• FFT algorithm:  N log N steps, enables new technology.  

• sFFT: Sparse Fast Fourier Transform algorithm (Hassanieh et al., 2012) 
- A faster Fourier Transform: k log N  steps (with k sparse coefficients)

Friedrich Gauss
1805

8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear



�7

Some algorithmic successes

N-body simulation.
• Simulate gravitational interactions among N bodies.

• Brute force:  N 2 steps.

• Barnes-Hut algorithm:  N log N steps, enables new research.
Andrew Appel  

PU '81 

8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear



Q.  Will my program be able to solve a large practical input?

Key insight. [Knuth 1970s]  Use scientific method to understand 
performance.

The challenge

�8

Why is my program so slow ? Why does it run out of memory ?



�9

Scientific method applied to analysis of algorithms

A framework for predicting performance and comparing algorithms.

Scientific method.
• Observe some feature of the natural world.

• Hypothesize a model that is consistent with the observations.

• Predict events using the hypothesis.

• Verify the predictions by making further observations.

• Validate by repeating until the hypothesis and observations agree.

Principles.
Experiments must be reproducible.
Hypotheses must be falsifiable.

Feature of the natural world = computer itself.



ANALYSIS OF ALGORITHMS

‣ Observations
‣ Mathematical models
‣ Order-of-growth classifications
‣ Dependencies on inputs
‣ Memory



 11

Example:  3-sum

3-sum.  Given N distinct integers, how many triples sum to exactly zero?

Context.  Deeply related to problems in computational geometry.

% more 8ints.txt 
8 
30 -40 -20 -10 40 0 10 5 

% java ThreeSum 8ints.txt 
4

a[i] a[j] a[k] sum

30 -40 10 0

30 -20 -10 0

-40 40 0 0

-10 0 10 0

1

2

3

4



public class ThreeSum 
{ 
   public static int count(int[] a) 
   { 
      int N = a.length; 
      int count = 0; 
      for (int i = 0; i < N; i++)    
         for (int j = i+1; j < N; j++) 
            for (int k = j+1; k < N; k++) 
               if (a[i] + a[j] + a[k] == 0) 
                  count++; 
      return count; 
   } 

   public static void main(String[] args) 
   { 
      int[] a = In.readInts(args[0]); 
      StdOut.println(count(a)); 
   } 
} 

 12

3-sum:  brute-force algorithm

check each triple

for simplicity, ignore 
integer overflow



Q.  How to time a program?
A.  Manual.

�13

Measuring the running time
% java ThreeSum 1Kints.txt

70

% java ThreeSum 2Kints.txt

% java ThreeSum 4Kints.txt

528

4039

tick tick tick

Observing the running time of a program

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick



Q.  How to time a program?
A.  Automatic.

 14

Measuring the running time

client code

  public class Stopwatch

Stopwatch() create a new stopwatch

double elapsedTime() time since creation (in seconds)

(part of stdlib.jar )

public static void main(String[] args) 
{ 
   int[] a = In.readInts(args[0]);   
   Stopwatch stopwatch = new Stopwatch(); 
   StdOut.println(ThreeSum.count(a)); 
   double time = stopwatch.elapsedTime(); 
}



public class Stopwatch  
{  
   private final long start = System.currentTimeMillis(); 

   public double elapsedTime()  
   {   
      long now = System.currentTimeMillis(); 
      return (now - start) / 1000.0; 
   } 
}

Q.  How to time a program?
A.  Automatic.

 15

Measuring the running time

implementation (part of stdlib.jar)

  public class Stopwatch

Stopwatch() create a new stopwatch

double elapsedTime() time since creation (in seconds)

(part of stdlib.jar )



Run the program for various input sizes and measure running time.

�16

Empirical analysis

N time (seconds)  †

250 0

500 0

1.000 0,1

2.000 0,8

4.000 6,4

8.000 51,1

16.000 ?



Standard plot.  Plot running time T (N) vs. input size N.

�17

Data analysis

1K

.1

.2

.4

.8

1.6

3.2

6.4

12.8

25.6

51.2

Analysis of experimental data (the running time of ThreeSum)

log-log plotstandard plot

lgNproblem size N
2K 4K 8K

lg
(T

(N
))

ru
nn

in
g 

ti
m

e 
T

(N
)

1K

10

20

30

40

50

2K 4K 8K

straight line
of slope 3



Log-log plot.  Plot running time T (N) vs. input size N using log-log scale.

Regression.  Fit straight line through data points:  a N b.
Hypothesis.  The running time is about 1.006 × 10 –10 × N 2.999  seconds.

�18

Data analysis

slope

power law

1K

.1

.2

.4

.8

1.6

3.2

6.4

12.8

25.6

51.2

Analysis of experimental data (the running time of ThreeSum)

log-log plotstandard plot

lgNproblem size N
2K 4K 8K

lg
(T

(N
))

ru
nn

in
g 

ti
m

e 
T

(N
)

1K

10

20

30

40

50

2K 4K 8K

straight line
of slope 3

lg(T (N)) =  b lg N  + c 
b = 2.999 
c = -33.2103 

T (N) =  a N b, where a = 2 c 



�19

Prediction and validation

Hypothesis.  The running time is about 1.006 × 10 –10 × N 2.999  seconds.

Predictions.
• 51.0 seconds for N = 8,000.

• 408.1 seconds for N = 16,000.

Observations.

validates hypothesis!

N time (seconds)  †

8.000 51,1

8.000 51

8.000 51,1

16.000 410,8

"order of growth" of running  
time is about N3  [stay tuned]



Doubling hypothesis.  Quick way to estimate b in a power-law relationship.

Run program, doubling the size of the input.

Hypothesis.  Running time is about a N b with b = lg ratio. 
Caveat.  Cannot identify logarithmic factors with doubling hypothesis.

N time (seconds)  † ratio lg ratio

250 0 –

500 0 4,8 2,3

1.000 0,1 6,9 2,8

2.000 0,8 7,7 2,9

4.000 6,4 8 3

8.000 51,1 8 3

�20

Doubling hypothesis

seems to converge to a constant b ≈ 3



�21

Doubling hypothesis

Doubling hypothesis.  Quick way to estimate b in a power-law hypothesis.

Q.  How to estimate a  (assuming we know b) ?

A.  Run the program (for a sufficient large value of N) and solve for a.

Hypothesis.  Running time is about 0.998 × 10 –10 × N 3  seconds. 

N time (seconds)  †

8.000 51,1

8.000 51

8.000 51,1

51.1  =  a × 80003

⇒   a  =  0.998 × 10 –10

almost identical hypothesis

to one obtained via linear regression



�22

Experimental algorithmics

System independent effects.
• Algorithm.

• Input data.

System dependent effects.
• Hardware:  CPU, memory, cache, …

• Software:  compiler, interpreter, garbage collector, …

• System:  operating system, network, other applications, …

Bad news.  Difficult to get precise measurements.
Good news.  Much easier and cheaper than other sciences.

e.g., can run huge number of experiments

determines exponent b

in power law

determines constant a

in power law



�23

In practice, constant factors matter too!

Q.  How long does this program take as a function of N ?

 String s = StdIn.readString(); 
 int N = s.length(); 
 ... 
 for (int i = 0; i < N; i++) 
    for (int j = 0; j < N; j++) 
       distance[i][j] = ... 
 ... 

N time

1.000 0,11

2.000 0,35

4.000 1,6

8.000 6,5

N time

250 0,5

500 1,1

1.000 1,9

2.000 3,9

Jenny ~ c1 N2  seconds Kenny  ~ c2 N  seconds



ANALYSIS OF ALGORITHMS

‣ Observations
‣ Mathematical models
‣ Order-of-growth classifications
‣ Dependencies on inputs
‣ Memory



�25

Mathematical models for running time

Total running time:  sum of cost × frequency for all operations.

• Need to analyze program to determine set of operations.

• Cost depends on machine, compiler.

• Frequency depends on algorithm, input data.

In principle, accurate mathematical models are available. 

Donald Knuth  
1974 Turing Award



Cost of basic operations

operation example nanoseconds  †

integer add a + b 2,1

integer multiply a * b 2,4

integer divide a / b 5,4

floating-point add a + b 4,6

floating-point multiply a * b 4,2

floating-point divide a / b 13,5

sine Math.sin(theta) 91,3

arctangent Math.atan2(y, x) 129

... ... ...

�26

† Running OS X on Macbook Pro 2.2GHz with 2GB RAM



Novice mistake.  Abusive string concatenation.

Cost of basic operations

�27

operation example nanoseconds  †

variable declaration int a c1

assignment statement a = b c2

integer compare a < b c3

array element access a[i] c4

array length a.length c5

1D array allocation new int[N] c6  N

2D array allocation new int[N][N] c7  N 2

string length s.length() c8

substring extraction s.substring(N/2, N) c9

string concatenation s + t c10  N



Q.  How many instructions as a function of input size N ?

 28

Example:  1-sum

operation frequency

variable declaration 2

assignment statement 2

less than compare N + 1

equal to compare N

array access N

increment N to 2 N

int count = 0; 
for (int i = 0; i < N; i++) 
   if (a[i] == 0) 
      count++;



int count = 0; 
for (int i = 0; i < N; i++) 
   for (int j = i+1; j < N; j++) 
      if (a[i] + a[j] == 0) 
         count++;

 29

Example:  2-sum

Q.  How many instructions as a function of input size N ?

operation frequency

variable declaration N + 2

assignment statement N + 2

less than compare ½ (N + 1) (N + 2)

equal to compare ½ N (N − 1)

array access N (N − 1)

increment ½ N (N − 1) to N (N − 1) 

tedious to count exactly

0 + 1 + 2 + . . . + (N � 1) =
1
2

N (N � 1)

=
�

N

2

⇥



�30

Simplifying the calculations

“ It is convenient to have a measure of the amount of work involved 
   in a computing process, even though it be a very crude one. We may 
   count up the number of times that various elementary operations are 
   applied in the whole process and then given them various weights. 
   We might, for instance, count the number of additions, subtractions, 
   multiplications, divisions, recording of numbers, and extractions 
   of figures from tables. In the case of computing with matrices most 
   of the work consists of multiplications and writing down numbers, 
   and we shall therefore only attempt to count the number of 
   multiplications and recordings.  ”    —  Alan Turing

ROUNDING-OFF ERRORS IN MATRIX PROCESSES
By A. M. TURING

{National Physical Laboratory, Teddington, Middlesex)
[Received 4 November 1947]

SUMMARY
A number of methods of solving sets of linear equations and inverting matrices

are discussed. The theory of the rounding-off errors involved is investigated for
some of the methods. In all cases examined, including the well-known 'Gauss
elimination process', it is found that the errors are normally quite moderate: no
exponential build-up need occur.

Included amongst the methods considered is a generalization of Choleski's method
which appears to have advantages over other known methods both as regards
accuracy and convenience. This method may also be regarded as a rearrangement
of the elimination process.
THIS paper contains descriptions of a number of methods for solving sets
of linear simultaneous equations and for inverting matrices, but its main
concern is with the theoretical limits of accuracy that may be obtained in
the application of these methods, due to rounding-off errors.

The best known method for the solution of linear equations is Gauss's
elimination method. This is the method almost universally taught in
schools. It has, unfortunately, recently come into disrepute on the ground
that rounding off will give rise to very large errors. It has, for instance,
been argued by HoteUing (ref. 5) that in solving a set of n equations we
should keep nlog104 extra or 'guarding' figures. Actually, although
examples can be constructed where as many as «log102 extra figures
would be required, these are exceptional. In the present paper the
magnitude of the error is described in terms of quantities not considered
in HoteUing's analysis; from the inequalities proved here it can imme-
diately be seen that in all normal cases the Hotelling estimate is far too
pessimistic.

The belief that the elimination method and other 'direct' methods of
solution lead to large errors has been responsible for a recent search for
other methods which would be free from this weakness. These were
mainly methods of successive approximation and considerably more
laborious than the direct ones. There now appears to be no real advantage
in the indirect methods, except in connexion with matrices having special
properties, for example, where the vast majority of the coefficients are
very small, but there is at least one large one in each row.

The writer was prompted to cany out this research largely by the
practical work of L. Fox in applying the elimination method (ref. 2). Fox

 at Princeton U
niversity Library on Septem

ber 20, 2011
qjm

am
.oxfordjournals.org

D
ow

nloaded from
 



int count = 0; 
for (int i = 0; i < N; i++) 
   for (int j = i+1; j < N; j++) 
      if (a[i] + a[j] == 0) 
         count++;

operation frequency

variable declaration N + 2

assignment statement N + 2

less than compare ½ (N + 1) (N + 2)

equal to compare ½ N (N − 1)

array access N (N − 1)

increment ½ N (N − 1) to N (N − 1) 

 31

Simplification 1:  cost model

Cost model.  Use some basic operation as a proxy for running time.

cost model = array accesses

0 + 1 + 2 + . . . + (N � 1) =
1
2

N (N � 1)

=
�

N

2

⇥



• Estimate running time (or memory) as a function of input size N.

• Ignore lower order terms.
- when N is large, terms are negligible

- when N is small, we don't care

Ex 1. ⅙ N 3   +  20 N   +  16 ~   ⅙ N 3

Ex 2. ⅙ N 3   +  100 N 4/3  +  56 ~   ⅙ N 3

Ex 3. ⅙ N 3   -  ½ N  2   +  ⅓  N ~   ⅙ N 3

�32

Simplification 2:  tilde notation

discard lower-order terms 

(e.g., N = 1000: 500 thousand vs. 166 million)

Technical definition.   f(N) ~ g(N)  means

� 

lim
N→ ∞

 f (N)
g(N)

 =  1

Leading-term approximation

N 3/6 

N 3/6 ! N 2/2 + N /3

166,167,000

1,000

166,666,667

N 



• Estimate running time (or memory) as a function of input size N.

• Ignore lower order terms.
- when N is large, terms are negligible

- when N is small, we don't care

�33

Simplification 2:  tilde notation

operation frequency tilde notation

variable declaration N + 2 ~ N

assignment statement N + 2 ~ N

less than compare ½ (N + 1) (N + 2) ~ ½ N2

equal to compare ½ N (N − 1) ~ ½ N2

array access N (N − 1) ~ N2

increment ½ N (N − 1) to N (N − 1) ~ ½ N2  to  ~ N2



int count = 0; 
for (int i = 0; i < N; i++) 
   for (int j = i+1; j < N; j++) 
      if (a[i] + a[j] == 0) 
         count++;

Q.  Approximately how many array accesses as a function of input size N ?

A.  ~  N 2 array accesses.

Bottom line.  Use cost model and tilde notation to simplify frequency 
counts.

 34

Example:  2-sum

"inner loop"

0 + 1 + 2 + . . . + (N � 1) =
1
2

N (N � 1)

=
�

N

2

⇥



int count = 0; 
for (int i = 0; i < N; i++) 
   for (int j = i+1; j < N; j++) 
      for (int k = j+1; k < N; k++) 
         if (a[i] + a[j] + a[k] == 0) 
            count++;

Q.  Approximately how many array accesses as a function of input size N ?

A.  ~ ½ N 3 array accesses.

Bottom line.  Use cost model and tilde notation to simplify frequency 
counts.

 35

Example:  3-sum

�
N

3

⇥
=

N(N � 1)(N � 2)
3!

⇥ 1
6
N3

"inner loop"



�36

Estimating a discrete sum

Q.  How to estimate a discrete sum?
A1.  Take discrete mathematics course.
A2.  Replace the sum with an integral, and use calculus!

Ex 1.  1 + 2 + … + N.

Ex 2.   1 + 1/2 + 1/3 + … + 1/N. 

Ex 3.  3-sum triple loop.

N�

i=1

1
i
�

⇥ N

x=1

1
x

dx = lnN

N�

i=1

i �
⇥ N

x=1
x dx � 1

2
N2

N�

i=1

N�

j=i

N�

k=j

1 �
⇥ N

x=1

⇥ N

y=x

⇥ N

z=y
dz dy dx � 1

6
N3



In principle, accurate mathematical models are available.

In practice,
• Formulas can be complicated.

• Advanced mathematics might be required.

• Exact models best left for experts.

Bottom line.  We use approximate models in this course:  T(N)  ~  c N 3.

TN  =  c1 A  +  c2 B  +  c3 C  +  c4 D  +  c5 E 
A = array access  
B = integer add 
C = integer compare 
D = increment 
E = variable assignment

Mathematical models for running time

�37

frequencies
 (depend on algorithm, input)

costs (depend on machine, compiler)



ANALYSIS OF ALGORITHMS

‣ Observations
‣ Mathematical models
‣ Order-of-growth classifications
‣ Dependencies on inputs
‣ Memory



Good news.  the small set of functions
                1,  log N,  N,  N log N,  N 2,  N 3, and 2N

suffices to describe order-of-growth of typical algorithms.

Common order-of-growth classifications

�39

1K

T

2T

4T

8T

64T

512T

logarithmic

ex
po

ne
nt

ia
l

constant

lin
ea

rit
hmic

lin
ea

r

qu
ad

ra
tic

cu
bi

c

2K 4K 8K 512K

100T

200T

500T

logarithmic

exponential

constant

size

size

lin
ea

rit
hmic

lin
ea

r

100K 200K 500K

ti
m

e
ti

m
e

Typical orders of growth

log-log plot

standard plot

cubic
quadratic

order of growth discards
leading coefficient



Common order-of-growth classifications

�40

order of 
growth

name typical code framework description example   T(2N) / T(N)

1 constant a = b + c; statement
add two 

numbers
1

log N logarithmic while (N > 1)  
{   N = N / 2;  ...   } divide in half binary search ~ 1 

N linear for (int i = 0; i < N; i++) 
{  ...       } loop

find the 

maximum
2

N log N linearithmic [see mergesort lecture]
divide

and conquer
mergesort ~ 2

N2 quadratic
for (int i = 0; i < N; i++) 

   for (int j = 0; j < N; j++) 
   {  ...       }

double loop check all pairs 4

N3 cubic

for (int i = 0; i < N; i++) 
   for (int j = 0; j < N; j++) 
      for (int k = 0; k < N; k+

+) 
      {  ...       }

triple loop
check all 

triples
8

2N exponential [see combinatorial search lecture]
exhaustive

search

check all 

subsets
T(N)



Practical implications of order-of-growth

�41

growth
rate

problem size solvable in minutes

1970s 1980s 1990s 2000s

1 any any any any

log N any any any any

N millions
tens of
millions

hundreds of
millions

billions

N log N
hundreds of
thousands

millions millions
hundreds of

millions

N2 hundreds thousand thousands
tens of

thousands

N3 hundred hundreds thousand thousands

2N 20 20s 20s 30



Practical implications of order-of-growth

�42

growth

rate

problem size solvable in minutes time to process millions of inputs

1970s 1980s 1990s 2000s 1970s 1980s 1990s 2000s

1 any any any any instant instant instant instant

log N any any any any instant instant instant instant

N millions tens of
millions

hundreds of
millions billions minutes seconds second instant

N log N hundreds of
thousands millions millions hundreds of

millions hour minutes tens of
seconds seconds

N2 hundreds thousand thousands tens of
thousands decades years months weeks

N3 hundred hundreds thousand thousands never never never millennia



Practical implications of order-of-growth

�43

growth
rate

name description

effect on a program that
runs for a few seconds

time for 100x
more data

size for 100x
faster computer

1 constant independent of input size – –

log N logarithmic nearly independent of input size – –

N linear optimal for N inputs a few minutes 100x

N log N linearithmic nearly optimal for N inputs a few minutes 100x

N2 quadratic not practical for large problems several hours 10x

N3 cubic not practical for medium problems several weeks 4–5x

2N exponential useful only for tiny problems forever 1x



�44

Binary search

Goal.  Given a sorted array and a key, find index of the key in the array?

Binary search.  Compare key against middle entry.
• Too small, go left.

• Too big, go right.

• Equal, found.

lo

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

himid



 45

Binary search demo

Goal.  Given a sorted array and a key, find index of the key in the array?

Successful search.  Binary search for 33.

lo

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

himid



 46

Binary search demo

Goal.  Given a sorted array and a key, find index of the key in the array?

Successful search.  Binary search for 33.

lo

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

himid



 47

Binary search demo

Goal.  Given a sorted array and a key, find index of the key in the array?

Successful search.  Binary search for 33.

lo

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

himid



 48

Binary search demo

Goal.  Given a sorted array and a key, find index of the key in the array?

Successful search.  Binary search for 33.

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

lo = hi

mid
return 4



 49

Binary search demo

Goal.  Given a sorted array and a key, find index of the key in the array?

Unsuccessful search.  Binary search for 34.

lo

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

himid



 50

Binary search demo

Goal.  Given a sorted array and a key, find index of the key in the array?

Unsuccessful search.  Binary search for 34.

lo

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

himid



 51

Binary search demo

Goal.  Given a sorted array and a key, find index of the key in the array?

Unsuccessful search.  Binary search for 34.

lo

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

himid



 52

Binary search demo

Goal.  Given a sorted array and a key, find index of the key in the array?

Unsuccessful search.  Binary search for 34.

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

lo = hi

mid
return -1



�53

Binary search:  Java implementation

Trivial to implement?
• First binary search published in 1946; first bug-free one published in 1962.

• Bug in Java's Arrays.binarySearch() discovered in 2006.

Invariant.  If key appears in the array a[], then a[lo] ≤ key ≤ a[hi].

  public static int binarySearch(int[] a, int key) 
  { 
     int lo = 0, hi = a.length-1; 
     while (lo <= hi) 
     { 
         int mid = lo + (hi - lo) / 2; 
         if      (key < a[mid]) hi = mid - 1; 
         else if (key > a[mid]) lo = mid + 1; 
         else return mid; 
    } 
    return -1; 
 }

one "3-way compare"



�54

Binary search:  mathematical analysis

Proposition.  Binary search uses at most 1 + lg N  compares to search in a 
sorted array of size N.

Def.  T (N)  ≡  # compares to binary search in a sorted subarray of size at most N.  

Binary search recurrence.  T (N)  ≤  T (N / 2)  +  1  for N  > 1, with T (1) = 1.  
 

Pf sketch. 

left or right half

  T (N)    ≤  T (N / 2)  +  1 

              ≤  T (N / 4)  +  1  +  1 

              ≤  T (N / 8)  +  1  +  1  +  1 

            . . . 

              ≤  T (N / N)  +  1  +  1  +  …  +  1 

              =  1 +  lg N 

given

apply recurrence to first term

apply recurrence to first term 

stop applying, T(1) = 1

possible to implement with one
2-way compare (instead of 3-way)



�55

Binary search:  mathematical analysis

Proposition.  Binary search uses at most 1 + lg N  compares to search in a 
sorted array of size N.

Def.  T (N)  ≡  # compares to binary search in a sorted subarray of size at most N.

Binary search recurrence.  T (N)  ≤  T (⎣N / 2⎦)  +  1  for N  > 1, with T (0) = 0.

For simplicity, we prove when N  =  2n  - 1 for some n, so ⎣N / 2⎦  =  2n-1  - 1. 

T (2n - 1)   ≤  T (2n-1 - 1)  +  1 

                  ≤  T (2n-2 - 1)  +  1  +  1 

                  ≤  T (2n-3 - 1)  +  1  +  1  +  1 

                  . . . 

                  ≤  T (20 - 1)  +  1  +  1  +  …  +  1 

                  =  n 

given

apply recurrence to first term

apply recurrence to first term 

stop applying, T(0) = 1



Algorithm. 
• Sort the N (distinct) numbers.

• For each pair of numbers a[i] and a[j],  
binary search for -(a[i] + a[j]).

 
 
 
 
 
 
 

Analysis.  Order of growth is N 2 log N.

• Step 1:  N 2 with insertion sort.

• Step 2:   N 2 log N with binary search.

input
  30 -40 -20 -10 40  0 10  5 

sort
 -40 -20 -10   0  5 10 30 40 

binary search
(-40, -20)    60 
(-40, -10)    50 
(-40,   0)    40 
(-40,   5)    35 
(-40,  10)    30 
  ⋮            ⋮ 
(-40,  40)     0 
  ⋮            ⋮ 

(-10,   0)    10 
  ⋮            ⋮ 

(-20,  10)    10 
  ⋮            ⋮ 
( 10,  30)   -40 
( 10,  40)   -50 
( 30,  40)   -70

An N2 log N algorithm for 3-sum

�56

only count if
a[i] < a[j] < a[k]

to avoid
double counting



Comparing programs

Hypothesis.  The N 2 log N three-sum algorithm is significantly faster 
in practice than the brute-force N 3  algorithm.

Guiding principle.  Typically, better order of growth  ⇒  faster in practice.
�57

N time (seconds)  

1.000 0,14

2.000 0,18

4.000 0,34

8.000 0,96

16.000 3,67

32.000 14,88

64.000 59,16

N time (seconds)

1.000 0,1

2.000 0,8

4.000 6,4

8.000 51,1

ThreeSum.java

ThreeSumDeluxe.java



ANALYSIS OF ALGORITHMS

‣ Observations
‣ Mathematical models
‣ Order-of-growth classifications
‣ Dependencies on inputs
‣ Memory



Best case.  Lower bound on cost.
• Determined by “easiest” input.

• Provides a goal for all inputs.  

Worst case.  Upper bound on cost.
• Determined by “most difficult” input.

• Provides a guarantee for all inputs.  

Average case.  Expected cost for random input.
• Need a model for “random” input.

• Provides a way to predict performance.

Types of analyses

�59

Ex 1.  Array accesses for brute-force 3 sum.   
Best:          ~ ½ N 3 
Average:    ~ ½ N 3

Worst:        ~ ½ N 3

Ex 2.  Compares for binary search.
Best:          ~  1 
Average:    ~  lg N
Worst:        ~  lg N



Best case.  Lower bound on cost.
Worst case.  Upper bound on cost.
Average case.  “Expected” cost.

Actual data might not match input model?
• Need to understand input to effectively process it.

• Approach 1: design for the worst case.

• Approach 2: randomize, depend on probabilistic guarantee.

Types of analyses

�60



Theory of Algorithms

Goals.
• Establish “difficulty” of a problem.

• Develop “optimal” algorithms.  

Approach.
• Suppress details in analysis: analyze “to within a constant factor”.

• Eliminate variability in input model by focusing on the worst case.  

Optimal algorithm.
• Performance guarantee (to within a constant factor) for any input.

• No algorithm can provide a better performance guarantee.

�61



Common mistake.  Interpreting big-Oh as an approximate model.

�62

Commonly-used notations

notation provides example shorthand for used to

Tilde leading term ~ 10 N2

10 N2

10 N2 + 22 N log N

10 N2 + 2 N + 37

provide

approximate model

Big Theta
asymptotic 

growth rate
Θ(N2)

½ N2

10 N2

 5 N2 + 22 N log N + 3N

classify

algorithms

Big Oh Θ(N2) and smaller O(N2)

10 N2

100 N

 22 N log N + 3 N

develop

upper bounds

Big Omega Θ(N2) and larger Ω(N2)

½ N2

N5

 N3 + 22 N log N + 3 N

develop

lower bounds



Tilde notation vs. big-Oh notation

We use tilde notation whenever possible.
• Big-Oh notation suppresses leading constant.

• Big-Oh notation only provides upper bound (not lower bound).

�63

time/memory

input size

f(N)
values represented

by O(f(N))

input size

c f(N)

values represented
by ~ c f(N)

time/memory



Theory of algorithms: example 1

Goals.
• Establish “difficulty” of a problem and develop “optimal” algorithms.

• Ex. 1-SUM = “Is there a 0 in the array? ”  

Upper bound.   A specific algorithm.
• Ex. Brute-force algorithm for 1-SUM: Look at every array entry.

• Running time of the optimal algorithm for 1-SUM is O(N).  

Lower bound.   Proof that no algorithm can do better.
• Ex. Have to examine all N entries (any unexamined one might be 0).

• Running time of the optimal algorithm for 1-SUM is Ω(N). 

Optimal algorithm.
• Lower bound equals upper bound (to within a constant factor).

• Ex. Brute-force algorithm for 1-SUM is optimal: its running time is Θ(N).

�64



Theory of algorithms: example 2

Goals.
• Establish “difficulty” of a problem and develop “optimal” algorithms.

• Ex. 3-SUM  

Upper bound.   A specific algorithm.
• Ex. Brute-force algorithm for 3-SUM

• Running time of the optimal algorithm for 3-SUM is O(N3).  

�65



Theory of algorithms: example 2

Goals.
• Establish “difficulty” of a problem and develop “optimal” algorithms.

• Ex. 3-SUM  

Upper bound.   A specific algorithm.
• Ex. Improved algorithm for 3-SUM

• Running time of the optimal algorithm for 3-SUM is O(N2 logN).  

Lower bound.   Proof that no algorithm can do better.
• Ex. Have to examine all N entries to solve 3-SUM.

• Running time of the optimal algorithm for solving 3-SUM is Ω(N). 

Open problems.
• Optimal algorithm for 3-SUM?

• Subquadratic algorithm for 3-SUM?

• Quadratic lower bound for 3-SUM?

�66



Algorithm design approach

Start.
• Develop an algorithm.

• Prove a lower bound.  

Gap?
• Lower the upper bound (discover a new algorithm).

• Raise the lower bound (more difficult).  

Golden Age of Algorithm Design.
• 1970s-.

• Steadily decreasing upper bounds for many important problems.

• Many known optimal algorithms.  

Caveats.
• Overly pessimistic to focus on worst case?

• Need better than “to within a constant factor” to predict performance.

�67



ANALYSIS OF ALGORITHMS

‣ Observations
‣ Mathematical models
‣ Order-of-growth classifications
‣ Dependencies on inputs
‣ Memory



�69

Basics

Bit.  0 or 1.
Byte.  8 bits.
Megabyte (MB).  1 million or 220 bytes.
Gigabyte (GB).    1 billion or 230 bytes.
 
 
Old machine.  We used to assume a 32-bit machine with 4 byte pointers.
 
Modern machine.  We now assume a 64-bit machine with 8 byte pointers.
• Can address more memory.

• Pointers use more space.

some JVMs "compress" ordinary object
pointers to 4 bytes to avoid this cost

NIST most computer scientists



�70

Typical memory usage for primitive types and arrays

Primitive types.                                           Array overhead.  24 bytes.

type bytes

boolean 1

byte 1

char 2

int 4

float 4

long 8

double 8

for primitive types

type bytes

char[] 2N + 24

int[] 4N + 24

double[] 8N + 24

type bytes

char[][] ~ 2 M N

int[][] ~ 4 M N

double[][] ~ 8 M N

for one-dimensional arrays

for two-dimensional arrays



Object overhead.  16 bytes.
Reference.  8 bytes.
Padding.  Each object uses a multiple of 8 bytes.
 
 
Ex 1.  A Date object uses 32 bytes of memory.

public class Integer
{
   private int x;
...
}

Typical object memory requirements

object
overhead

public class Node
{
   private Item item;
   private Node next;
...
}

public class Counter
{
   private String name;
   private int count;
...
}

24 bytesinteger wrapper object 

counter object

node object (inner class)

32 bytes

int
value

int
value

String
reference

public class Date
{
   private int day;
   private int month;
   private int year;
...
}

date object

x

object
overhead

name

count

40 bytes

references

object
overhead

extra
overhead

item

next

32 bytes

int
values

object
overhead

year
month
day

padding

padding

padding

 71

Typical memory usage for objects in Java

4 bytes (int)
4 bytes (int)

16 bytes (object overhead)

32 bytes

4 bytes (int)

4 bytes (padding)



Object overhead.  16 bytes.
Reference.  8 bytes.
Padding.  Each object uses a multiple of 8 bytes.

Ex 2.  A virgin String of length N uses ~ 2N bytes of memory.

A String and a substring

String genome = "CGCCTGGCGTCTGTAC";
String codon  = genome.substring(6, 3);

 16 

object
overhead

char
values

C  G
C  C
T  G
G  C
G  T
C  T
G  T
A  C

        0
16

object
overhead

genome

        6
3

object
overhead

 codon

hash

hash

...

        value

public class String
{
   private char[] value;
   private int offset;
   private int count;
   private int hash;
...
}         offset

        count
        hash

object
overhead

40  bytes

40  bytes

40  bytes

36 bytes

String object (Java library)

substring example

reference

int
values

padding

padding

padding

padding

        value

        value

 72

Typical memory usage for objects in Java

8 bytes (reference to array)

4 bytes (int)
4 bytes (int)

2N + 24 bytes (char[] array)

16 bytes (object overhead)

2N + 64 bytes

4 bytes (int)
4 bytes (padding)



Total memory usage for a data type value:
• Primitive type:  4 bytes for int, 8 bytes for double, …

• Object reference:  8 bytes.

• Array:  24 bytes + memory for each array entry.

• Object:  16 bytes +  memory for each instance variable + 8 if inner class.

Shallow memory usage:  Don't count referenced objects.

Deep memory usage:  If array entry or instance variable is a reference,
add memory (recursively) for referenced object.

 73

Typical memory usage summary

extra pointer to
enclosing class

padding:  round up
to multiple of 8



Classmexer library.  Measure memory usage of a Java object by querying JVM.

Memory profiler

http://www.javamex.com/classmexer

 import com.javamex.classmexer.MemoryUtil; 

 public class Memory { 
    public static void main(String[] args) { 
       Date date = new Date(12, 31, 1999); 
       StdOut.println(MemoryUtil.memoryUsageOf(date));       
       String s = "Hello, World"; 
       StdOut.println(MemoryUtil.memoryUsageOf(s)); 
       StdOut.println(MemoryUtil.deepMemoryUsageOf(s)); 
    }             
 }

deep

shallow

% javac -cp .:classmexer.jar Memory.java 
% java  -cp .:classmexer.jar -javaagent:classmexer.jar Memory 
32 
40 
88 2N + 64

use -XX:-UseCompressedOops
on OS X to match our model

don't count char[]

http://www.javamex.com/classmexer


Turning the crank:  summary

Empirical analysis.
• Execute program to perform experiments.

• Assume power law and formulate a hypothesis for running time.

• Model enables us to make predictions.

Mathematical analysis.
• Analyze algorithm to count frequency of operations.

• Use tilde notation to simplify analysis.

• Model enables us to explain behaviour.

Scientific method.
• Mathematical model is independent of a particular system; 

applies to machines not yet built.

• Empirical analysis is necessary to validate mathematical models 
and to make predictions.

�75


