
BBM 202 - ALGORITHMS

ELEMENTARY 
SORTING ALGORITHMS

 
DEPT. OF COMPUTER ENGINEERING

Acknowledgement: The course slides are adapted from the slides prepared by  
R. Sedgewick and K. Wayne of Princeton University.

ELEMENTARY SORTING ALGORITHMS

‣ Sorting review
‣ Rules of the game
‣ Selection sort
‣ Insertion sort
‣ Shellsort

ELEMENTARY SORTING ALGORITHMS

‣ Sorting review
‣ Rules of the game
‣ Selection sort
‣ Insertion sort
‣ Shellsort

Ex. Student records in a university.

Sort. Rearrange array of N items into ascending order.

 4

Sorting problem

item

key

Chen 3 A 991-878-4944 308 Blair

Rohde 2 A 232-343-5555 343 Forbes

Gazsi 4 B 766-093-9873 101 Brown

Furia 1 A 766-093-9873 101 Brown

Kanaga 3 B 898-122-9643 22 Brown

Andrews 3 A 664-480-0023 097 Little

Battle 4 C 874-088-1212 121 Whitman

Andrews 3 A 664-480-0023 097 Little

Battle 4 C 874-088-1212 121 Whitman

Chen 3 A 991-878-4944 308 Blair

Furia 1 A 766-093-9873 101 Brown

Gazsi 4 B 766-093-9873 101 Brown

Kanaga 3 B 898-122-9643 22 Brown

Rohde 2 A 232-343-5555 343 Forbes

Goal. Sort any type of data.
Ex 1. Sort random real numbers in ascending order.

 5

Sample sort client

% java Experiment 10
0.08614716385210452
0.09054270895414829
0.10708746304898642
0.21166190071646818
0.363292849257276
0.460954145685913
0.5340026311350087
0.7216129793703496
0.9003500354411443
0.9293994908845686

public class Experiment
{
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 Double[] a = new Double[N];
 for (int i = 0; i < N; i++)
 a[i] = StdRandom.uniform();
 Insertion.sort(a);
 for (int i = 0; i < N; i++)
 StdOut.println(a[i]);
 }
}

seems artificial, but stay tuned for an application

Goal. Sort any type of data.
Ex 2. Sort strings from file in alphabetical order.

 6

Sample sort client

% more words3.txt
bed bug dad yet zoo ... all bad yes

% java StringSorter words3.txt
all bad bed bug dad ... yes yet zoo

public class StringSorter
{
 public static void main(String[] args)
 {
 String[] a = In.readStrings(args[0]);
 Insertion.sort(a);
 for (int i = 0; i < a.length; i++)
 StdOut.println(a[i]);
 }
}

Goal. Sort any type of data.
Ex 3. Sort the files in a given directory by filename.

 7

% java FileSorter .
Insertion.class
Insertion.java
InsertionX.class
InsertionX.java
Selection.class
Selection.java
Shell.class
Shell.java
ShellX.class
ShellX.java

Sample sort client

import java.io.File;
public class FileSorter
{
 public static void main(String[] args)
 {
 File directory = new File(args[0]);
 File[] files = directory.listFiles();
 Insertion.sort(files);
 for (int i = 0; i < files.length; i++)
 StdOut.println(files[i].getName());
 }
}

 8

Callbacks

Goal. Sort any type of data.

Q. How can sort() know how to compare data of type Double, String, and
java.io.File without any information about the type of an item's key?

Callback = reference to executable code.
• Client passes array of objects to sort() function.

• The sort() function calls back object's compareTo() method as needed.

Implementing callbacks.
• Java: interfaces.

• C: function pointers.

• C++: class-type functors.

• C#: delegates.

• Python, Perl, ML, Javascript: first-class functions.

Callbacks: roadmap

 9

sort implementation

client object implementation

import java.io.File;
public class FileSorter
{
 public static void main(String[] args)
 {
 File directory = new File(args[0]);
 File[] files = directory.listFiles();
 Insertion.sort(files);
 for (int i = 0; i < files.length; i++)
 StdOut.println(files[i].getName());
 }
}

key point: no dependence  
on File data type

public static void sort(Comparable[] a)
{
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0; j--)
 if (a[j].compareTo(a[j-1]) < 0)
 exch(a, j, j-1);
 else break;
}

public class File
implements Comparable<File>
{
 ...
 public int compareTo(File b)
 {
 ...
 return -1;
 ...
 return +1;
 ...
 return 0;
 }
}

Comparable interface (built in to Java)

public interface Comparable<Item>
{
 public int compareTo(Item that);
}

A total order is a binary relation ≤ that satisfies

• Antisymmetry: if v ≤ w and w ≤ v, then v = w.

• Transitivity: if v ≤ w and w ≤ x, then v ≤ x.

• Totality: either v ≤ w or w ≤ v or both.

Ex.
• Standard order for natural and real numbers.

• Alphabetical order for strings.

• Chronological order for dates.

• ...

 10

Total order

an intransitive relation

Implement compareTo() so that v.compareTo(w)
• Is a total order.

• Returns a negative integer, zero, or positive integer  
if v is less than, equal to, or greater than w, respectively.

• Throws an exception if incompatible types (or either is null).

Built-in comparable types. Integer, Double, String, Date, File, ...
User-defined comparable types. Implement the Comparable interface.

 11

Comparable API

less than (return -1) equal to (return 0) greater than (return +1)

v

w v
w

v w

Date data type. Simplified version of java.util.Date.

public class Date implements Comparable<Date> 
{
 private final int month, day, year;

 public Date(int m, int d, int y)  
 {
 month = m;
 day = d;
 year = y;
 }

 public int compareTo(Date that)  
 {
 if (this.year < that.year) return -1;
 if (this.year > that.year) return +1;
 if (this.month < that.month) return -1;
 if (this.month > that.month) return +1;
 if (this.day < that.day) return -1;
 if (this.day > that.day) return +1;
 return 0;
 }
}

 12

Implementing the Comparable interface

only compare dates 
to other dates

Helper functions. Refer to data through compares and exchanges.

Less. Is item v less than w ?

Exchange. Swap item in array a[] at index i with the one at index j.

 13

Two useful sorting abstractions

private static boolean less(Comparable v, Comparable w)
{ return v.compareTo(w) < 0; }

private static void exch(Comparable[] a, int i, int j)
{
 Comparable swap = a[i];
 a[i] = a[j];
 a[j] = swap;
}

ELEMENTARY SORTING ALGORITHMS

‣ Sorting review
‣ Rules of the game
‣ Selection sort
‣ Insertion sort
‣ Shellsort

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 15

remaining entries

i

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 16

i min

remaining entries

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 17

i min

remaining entries

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 18

remaining entriesin final order

i

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 19

remaining entries

i min

in final order

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 20

in final order remaining entries

i min

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 21

remaining entriesin final order

i

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 22

remaining entries

i min

in final order

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 23

in final order remaining entries

i min

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 24

remaining entriesin final order

i

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 25

remaining entries

i min

in final order

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 26

in final order remaining entries

i min

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 27

in final order remaining entries

i

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 28

in final order remaining entries

i min

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 29

in final order remaining entries

i min

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 30

in final order remaining entries

i

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 31

in final order remaining entries

i min

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 32

in final order remaining entries

i min

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 33

in final order remaining entries

i

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 34

in final order remaining entries

i min

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 35

in final order remaining entries

i min

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 36

in final order remaining entries

i

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 37

in final order remaining entries

i min

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 38

in final order remaining entries

i min

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 39

in final order remaining entries

i

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 40

in final order remaining entries

i min

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 41

in final order remaining entries

i min

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 42

in final order

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

 43

sorted

 44

Selection sort: Java implementation

public class Selection
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 {
 int min = i;  
 for (int j = i+1; j < N; j++)
 if (less(a[j], a[min]))
 min = j;
 exch(a, i, min);
 }
 }

 private static boolean less(Comparable v, Comparable w)
 { /* as before */ }

 private static void exch(Comparable[] a, int i, int j)
 { /* as before */ }
}

Selection sort: mathematical analysis

Proposition. Selection sort uses (N – 1) + (N – 2) + ... + 1 + 0 ~ N 2 / 2

compares and N exchanges.

Running time insensitive to input. Quadratic time, even if input array is sorted.
Data movement is minimal. Linear number of exchanges.

 45

Trace of selection sort (array contents just after each exchange)

 a[]
 i min 0 1 2 3 4 5 6 7 8 9 10

 S O R T E X A M P L E

 0 6 S O R T E X A M P L E
 1 4 A O R T E X S M P L E
 2 10 A E R T O X S M P L E
 3 9 A E E T O X S M P L R
 4 7 A E E L O X S M P T R
 5 7 A E E L M X S O P T R
 6 8 A E E L M O S X P T R
 7 10 A E E L M O P X S T R
 8 8 A E E L M O P R S T X
 9 9 A E E L M O P R S T X
10 10 A E E L M O P R S T X

 A E E L M O P R S T X

entries in gray are
in final position

entries in black
are examined to find

the minimum

entries in red
are a[min]

Selection sort: animations

 46

http://www.sorting-algorithms.com/selection-sort

20 random items

in final order
not in final order

algorithm position

Selection sort: animations

 47

in final order
not in final order

algorithm position

http://www.sorting-algorithms.com/selection-sort

20 partially-sorted items

ELEMENTARY SORTING ALGORITHMS

‣ Sorting review
‣ Rules of the game
‣ Selection sort
‣ Insertion sort
‣ Shellsort

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 49

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 50

i

not yet seen

• In iteration i, swap a[i] with each larger entry to its left.

Selection sort

 51

in ascending order not yet seen

ij

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 52

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 53

not yet seenin ascending order

ij

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 54

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 55

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 56

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 57

i

not yet seenin ascending order

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 58

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 59

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 60

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 61

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 62

i

not yet seenin ascending order

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 63

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 64

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 65

i

not yet seenin ascending order

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 66

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 67

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 68

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 69

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 70

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 71

i

not yet seenin ascending order

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 72

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 73

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 74

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 75

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 76

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 77

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 78

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 79

i

not yet seenin ascending order

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 80

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 81

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 82

i

not yet seenin ascending order

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 83

ij

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 84

ij

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 85

ij

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 86

ij

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 87

ij

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

 88

sorted

Insertion sort: Java implementation

 89

public class Insertion
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0; j--)
 if (less(a[j], a[j-1]))
 exch(a, j, j-1);
 else break;
 }

 private static boolean less(Comparable v, Comparable w)
 { /* as before */ }

 private static void exch(Comparable[] a, int i, int j)
 { /* as before */ }
}

Proposition. To sort a randomly-ordered array with distinct keys,  
insertion sort uses ~ ¼ N 2 compares and ~ ¼ N 2 exchanges on average.

Pf. Expect each entry to move halfway back.

Insertion sort: mathematical analysis

 90

Trace of insertion sort (array contents just after each insertion)

 a[]
 i j 0 1 2 3 4 5 6 7 8 9 10

 S O R T E X A M P L E

 1 0 O S R T E X A M P L E
 2 1 O R S T E X A M P L E
 3 3 O R S T E X A M P L E
 4 0 E O R S T X A M P L E
 5 5 E O R S T X A M P L E
 6 0 A E O R S T X M P L E
 7 2 A E M O R S T X P L E
 8 4 A E M O P R S T X L E
 9 2 A E L M O P R S T X E
10 2 A E E L M O P R S T X

 A E E L M O P R S T X

entries in black
moved one position
right for insertion

entries in gray
do not move

entry in red
is a[j]

Insertion sort: animation

 91

in order
not yet seen

algorithm position

http://www.sorting-algorithms.com/insertion-sort

40 random items

Best case. If the array is in ascending order, insertion sort makes 
N - 1 compares and 0 exchanges.

Worst case. If the array is in descending order (and no duplicates),  
insertion sort makes ~ ½ N 2 compares and ~ ½ N 2 exchanges.

Insertion sort: best and worst case

 92

 X T S R P O M L E E A

 A E E L M O P R S T X

Insertion sort: animation

 93

http://www.sorting-algorithms.com/insertion-sort

40 reverse-sorted items

in order
not yet seen

algorithm position

Def. An inversion is a pair of keys that are out of order.

Def. An array is partially sorted if the number of inversions is ≤ c N.

• Ex 1. A subarray of size 10 appended to a sorted subarray of size N.

• Ex 2. An array of size N with only 10 entries out of place.

Proposition. For partially-sorted arrays, insertion sort runs in linear time.
Pf. Number of exchanges equals the number of inversions.

Insertion sort: partially-sorted arrays

 94

 A E E L M O T R X P S

•T-R T-P T-S R-P X-P X-S

(6 inversions)

number of compares = exchanges + (N – 1)

Insertion sort: animation

 95

http://www.sorting-algorithms.com/insertion-sort

40 partially-sorted items

in order
not yet seen

algorithm position

ELEMENTARY SORTING ALGORITHMS

‣ Sorting review
‣ Rules of the game
‣ Selection sort
‣ Insertion sort
‣ Shellsort

Idea. Move entries more than one position at a time by h-sorting the array.

Shellsort. [Shell 1959] h-sort the array for decreasing seq. of values of h.

Shellsort overview

an h-sorted array is h interleaved sorted subsequences

 97

L E E A M H L E P S O L T S X R
L M P T
 E H S S
 E L O X
 A E L R

P H E L L S O R T E X A M S L E
P S
 H L
 E E
 L
 L

h = 4

h = 13

An h-sorted file is h interleaved sorted files

(8 additional files of size 1)

Shellsort trace (array contents after each pass)

P H E L L S O R T E X A M S L E

A E E E H L L L M O P R S S T X

L E E A M H L E P S O L T S X R

S H E L L S O R T E X A M P L Einput

13-sort

4-sort

1-sort

How to h-sort an array? Insertion sort, with stride length h.

Why insertion sort?

• Big increments ⇒ small subarray.

• Small increments ⇒ nearly in order. [stay tuned]

h-sorting

M O L E E X A S P R T
E O L M E X A S P R T
E E L M O X A S P R T
E E L M O X A S P R T
A E L E O X M S P R T
A E L E O X M S P R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T

3-sorting an array

 98

Shellsort example: increments 7, 3, 1

S O R T E X A M P L E

input

S O R T E X A M P L E
M O R T E X A S P L E
M O R T E X A S P L E
M O L T E X A S P R E
M O L E E X A S P R T

7-sort

M O L E E X A S P R T
E O L M E X A S P R T
E E L M O X A S P R T
E E L M O X A S P R T
A E L E O X M S P R T
A E L E O X M S P R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T

3-sort

A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T
A E E L O P M S X R T
A E E L O P M S X R T
A E E L O P M S X R T
A E E L M O P S X R T
A E E L M O P S X R T
A E E L M O P S X R T
A E E L M O P R S X T
A E E L M O P R S T X

1-sort

A E E L M O P R S T X

result

 99

 100

Shellsort: intuition

Proposition. A g-sorted array remains g-sorted after h-sorting it.

Challenge. Prove this fact—it's more subtle than you'd think!

M O R T E X A S P L E
M O R T E X A S P L E
M O L T E X A S P R E
M O L E E X A S P R T
M O L E E X A S P R T

7-sort

M O L E E X A S P R T
E O L M E X A S P R T
E E L M O X A S P R T
E E L M O X A S P R T
A E L E O X M S P R T
A E L E O X M S P R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T

3-sort

still 7-sorted

Shellsort: which increment sequence to use?

Powers of two. 1, 2, 4, 8, 16, 32, ...
No.

Powers of two minus one. 1, 3, 7, 15, 31, 63, ...
Maybe.

3x + 1. 1, 4, 13, 40, 121, 364, ...
OK. Easy to compute.

Sedgewick. 1, 5, 19, 41, 109, 209, 505, 929, 2161, 3905, ...
Good. Tough to beat in empirical studies.
=
Interested in learning more?
• See Section 6.8 of Algs, 3rd edition or Volume 3 of Knuth for details.

• Do a JP on the topic.

 101

merging of (9 ⨉ 4i) – (9 ⨉ 2i) + 1 and 4i – (3 ⨉ 2i) + 1

public class Shell  
{  
 public static void sort(Comparable[] a)  
 {  
 int N = a.length;

 int h = 1;
 while (h < N/3) h = 3*h + 1; // 1, 4, 13, 40, 121, 364, 1093, ...

 while (h >= 1)  
 { // h-sort the array.
 for (int i = h; i < N; i++)  
 {  
 for (int j = i; j >= h && less(a[j], a[j-h]); j -= h) 
 exch(a, j, j-h);  
 }

 h = h/3;
 }  
 }  

 private static boolean less(Comparable v, Comparable w) 
 { /* as before */ }
 private static boolean void(Comparable[] a, int i, int j)
 { /* as before */ }
}

Shellsort: Java implementation

 102

insertion sort

3x+1 increment
sequence

move to next
increment

Shellsort: visual trace

 103
Visual trace of shellsort

input

40-sorted

13-sorted

4-sorted

result

Shellsort: animation

 104

h-sorted
current subsequence

algorithm position

50 random items

other elementshttp://www.sorting-algorithms.com/shell-sort

Shellsort: animation

 105

http://www.sorting-algorithms.com/shell-sort

50 partially-sorted items

h-sorted
current subsequence

algorithm position

other elements

Proposition. The worst-case number of compares used by shellsort with
the 3x+1 increments is O(N 3/2).

Property. The number of compares used by shellsort with the 3x+1
increments is at most by a small multiple of N times the # of increments

used.

Remark. Accurate model has not yet been discovered (!)
 106

Shellsort: analysis

measured in thousands

N compares N1.289 2.5 N lg N

5.000 93 58 106

10.000 209 143 230

20.000 467 349 495

40.000 1022 855 1059

80.000 2266 2089 2257

Why are we interested in shellsort?

Example of simple idea leading to substantial performance gains.

Useful in practice.
• Fast unless array size is huge.

• Tiny, fixed footprint for code (used in embedded systems).

• Hardware sort prototype.

Simple algorithm, nontrivial performance, interesting questions.
• Asymptotic growth rate?

• Best sequence of increments?

• Average-case performance?

Lesson. Some good algorithms are still waiting discovery.

 107

open problem: find a better increment sequence

