BBM 202 - ALGORITHMS

DEPT. OF COMPUTER ENGINEERING

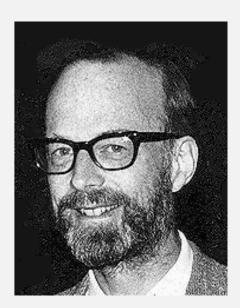
QUICKSORT

Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton University.

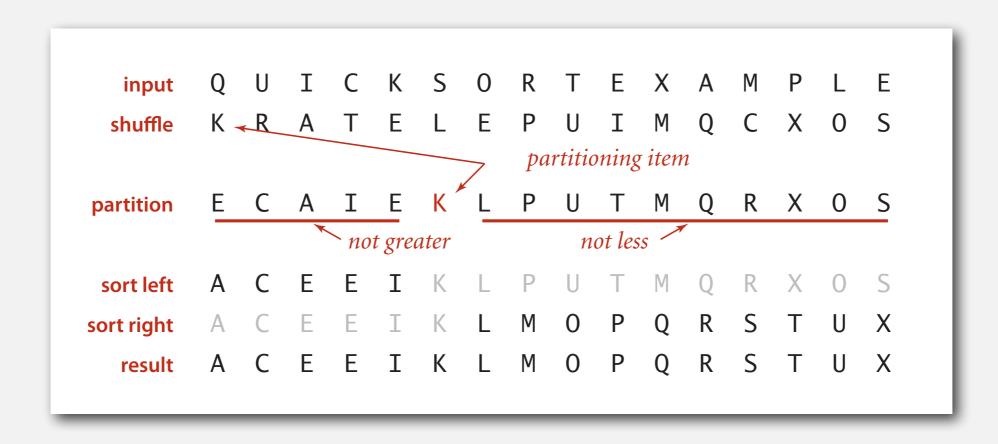
Quicksort

Basic plan.

- Shuffle the array.
- Partition so that, for some j
 - entry a[j] is in place
 - no larger entry to the left of j
 - no smaller entry to the right of j
- Sort each piece recursively.



Sir Charles Antony Richard Hoare 1980 Turing Award



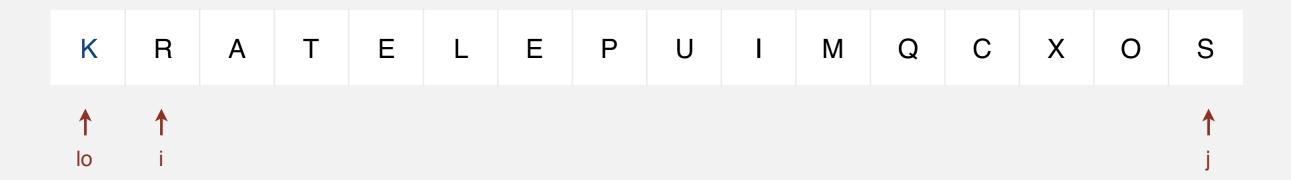
Shuffling

Shuffling

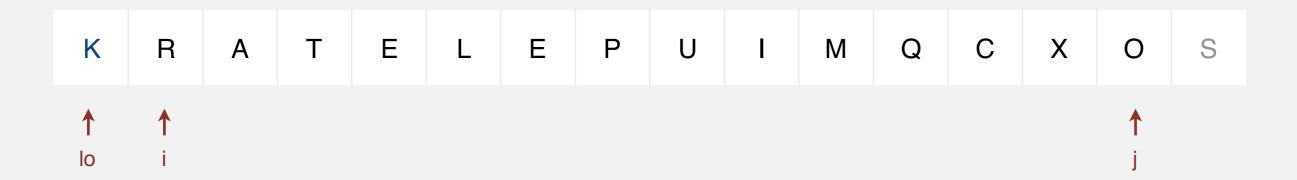
- Shuffling is the process of rearranging an array of elements randomly.
- A good shuffling algorithm is unbiased, where every ordering is equally likely.
- e.g. the Fisher–Yates shuffle (aka. the Knuth shuffle)

http://bl.ocks.org/mbostock/39566aca95eb03ddd526

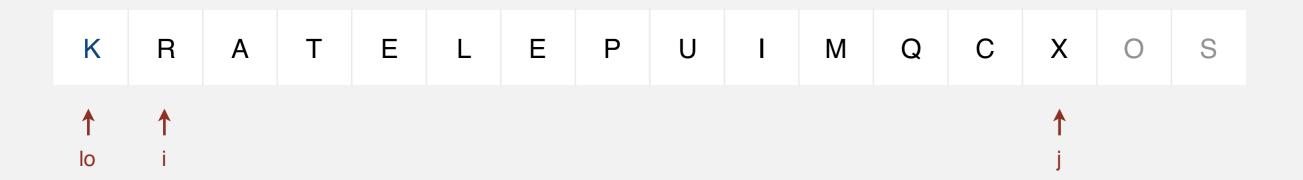
- Scan i from left to right so long as a[i] < a[lo].
- Scan j from right to left so long as a[j] > a[lo].
- Exchange a[i] with a[j].



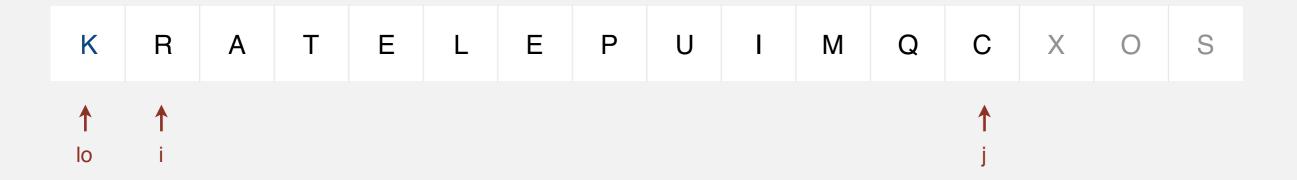
- Scan i from left to right so long as a[i] < a[lo].
- Scan j from right to left so long as a[j] > a[lo].
- Exchange a[i] with a[j].



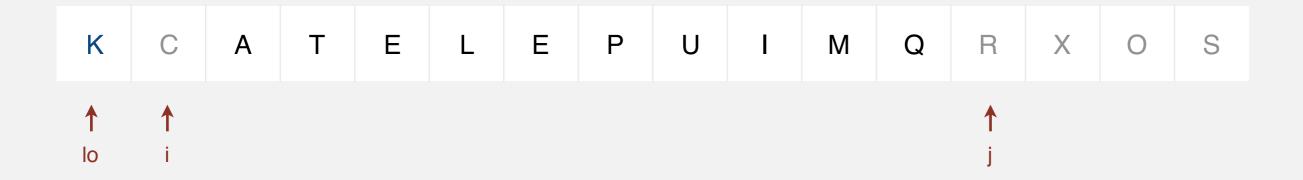
- Scan i from left to right so long as a[i] < a[lo].
- Scan j from right to left so long as a[j] > a[lo].
- Exchange a[i] with a[j].



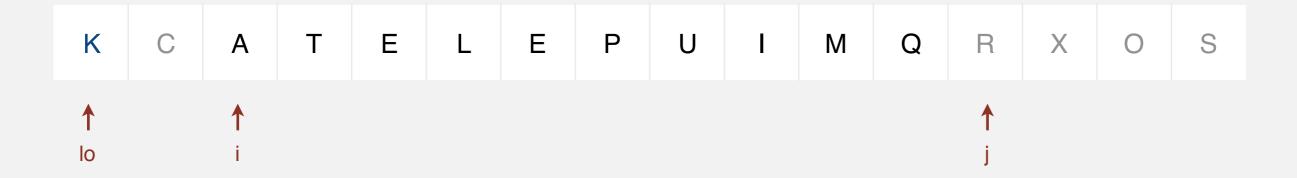
- Scan i from left to right so long as a[i] < a[lo].
- Scan j from right to left so long as a[j] > a[lo].
- Exchange a[i] with a[j].



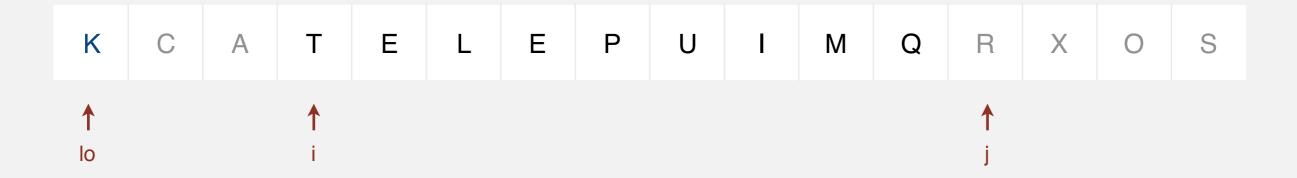
- Scan i from left to right so long as a[i] < a[lo].
- Scan j from right to left so long as a[j] > a[lo].
- Exchange a[i] with a[j].



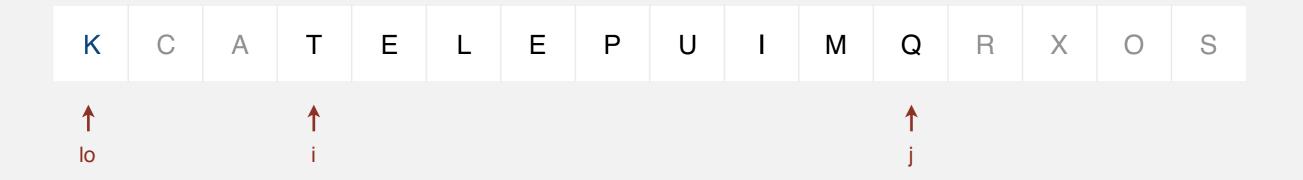
- Scan i from left to right so long as a[i] < a[lo].
- Scan j from right to left so long as a[j] > a[lo].
- Exchange a[i] with a[j].



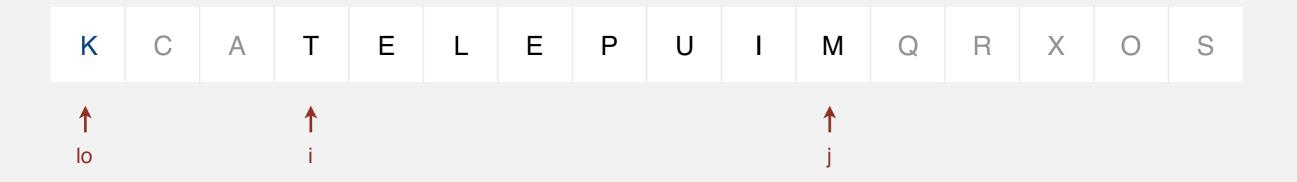
- Scan i from left to right so long as a[i] < a[lo].
- Scan j from right to left so long as a[j] > a[lo].
- Exchange a[i] with a[j].



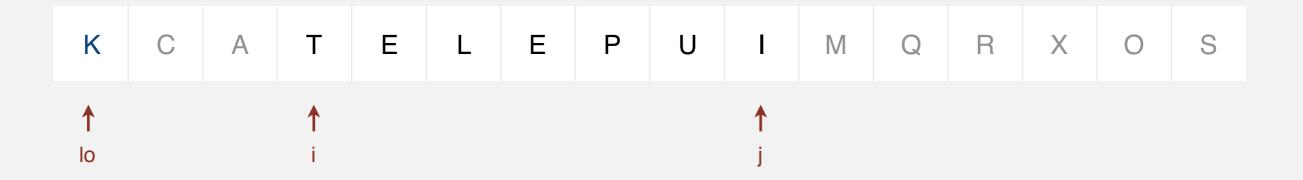
- Scan i from left to right so long as a[i] < a[lo].
- Scan j from right to left so long as a[j] > a[lo].
- Exchange a[i] with a[j].



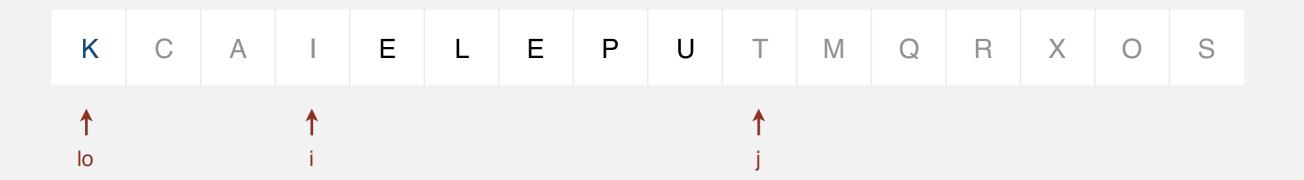
- Scan i from left to right so long as a[i] < a[lo].
- Scan j from right to left so long as a[j] > a[lo].
- Exchange a[i] with a[j].



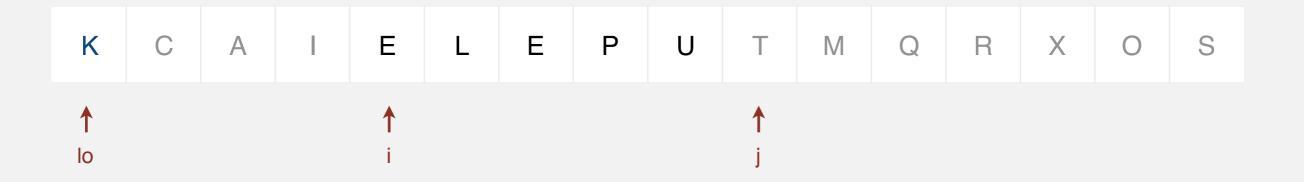
- Scan i from left to right so long as a[i] < a[lo].
- Scan j from right to left so long as a[j] > a[lo].
- Exchange a[i] with a[j].



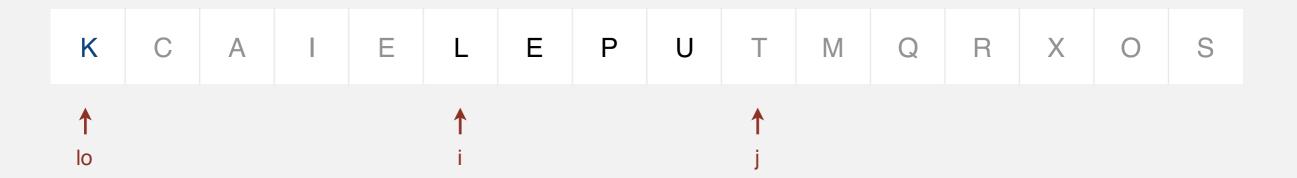
- Scan i from left to right so long as a[i] < a[lo].
- Scan j from right to left so long as a[j] > a[lo].
- Exchange a[i] with a[j].



- Scan i from left to right so long as a[i] < a[lo].
- Scan j from right to left so long as a[j] > a[lo].
- Exchange a[i] with a[j].



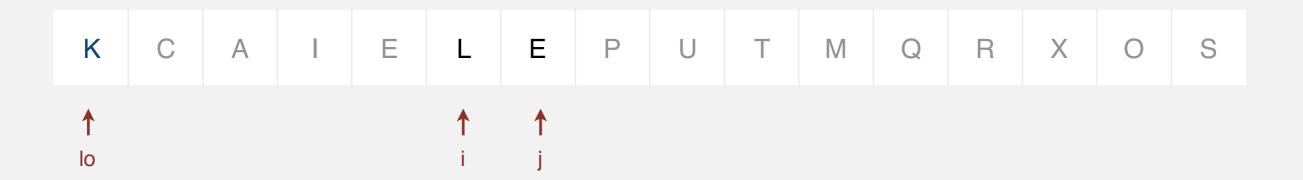
- Scan i from left to right so long as a[i] < a[lo].
- Scan j from right to left so long as a[j] > a[lo].
- Exchange a[i] with a[j].



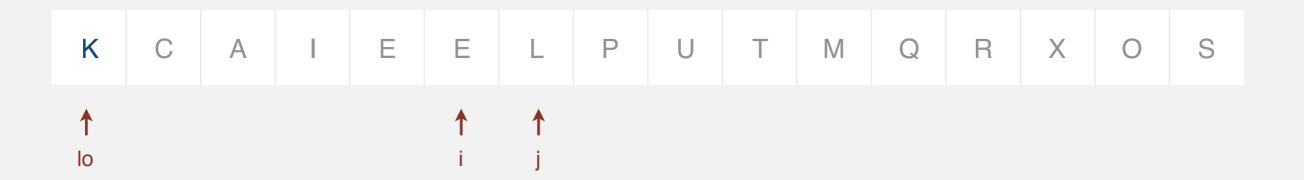
- Scan i from left to right so long as a[i] < a[lo].
- Scan j from right to left so long as a[j] > a[lo].
- Exchange a[i] with a[j].

- Scan i from left to right so long as a[i] < a[lo].
- Scan j from right to left so long as a[j] > a[lo].
- Exchange a[i] with a[j].

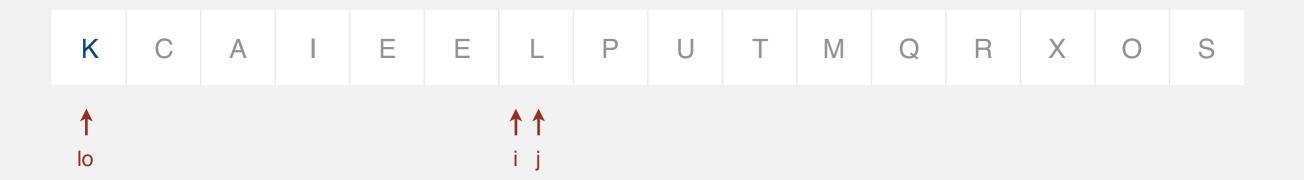
- Scan i from left to right so long as a[i] < a[lo].
- Scan j from right to left so long as a[j] > a[lo].
- Exchange a[i] with a[j].



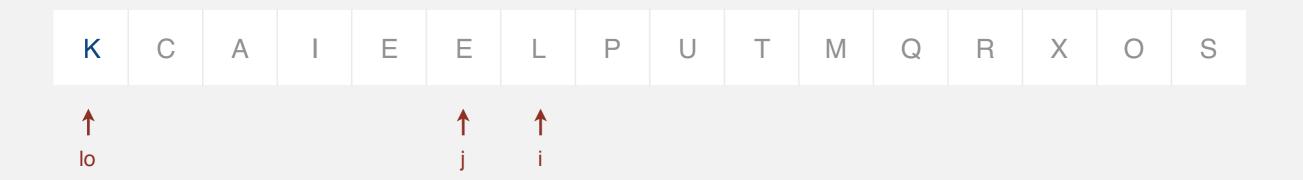
- Scan i from left to right so long as a[i] < a[lo].
- Scan j from right to left so long as a[j] > a[lo].
- Exchange a[i] with a[j].



- Scan i from left to right so long as a[i] < a[lo].
- Scan j from right to left so long as a[j] > a[lo].
- Exchange a[i] with a[j].



- Scan i from left to right so long as a[i] < a[lo].
- Scan j from right to left so long as a[j] > a[lo].
- Exchange a[i] with a[j].

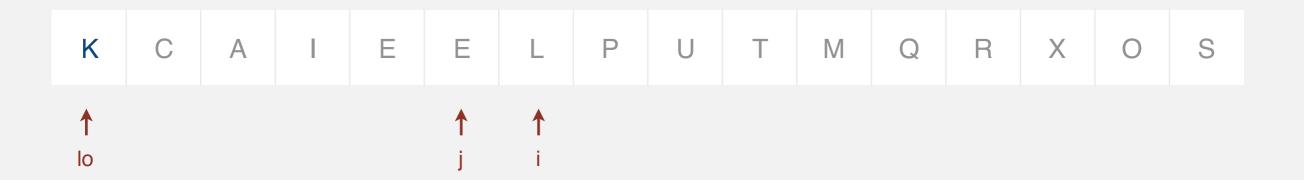


Repeat until i and j pointers cross.

- Scan i from left to right so long as a[i] < a[lo].
- Scan j from right to left so long as a[j] > a[lo].
- Exchange a[i] with a[j].

When pointers cross.

• Exchange a[lo] with a[j].

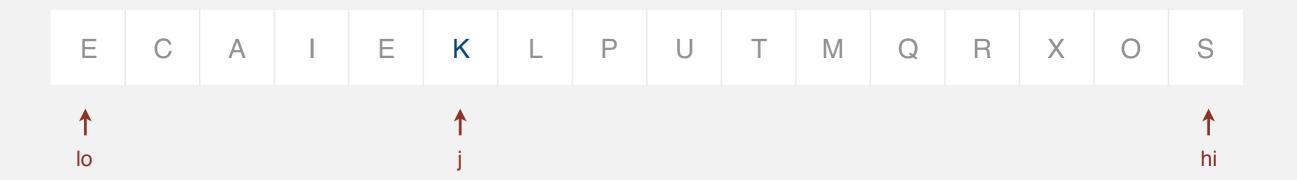


Repeat until i and j pointers cross.

- Scan i from left to right so long as a[i] < a[lo].
- Scan j from right to left so long as a[j] > a[lo].
- Exchange a[i] with a[j].

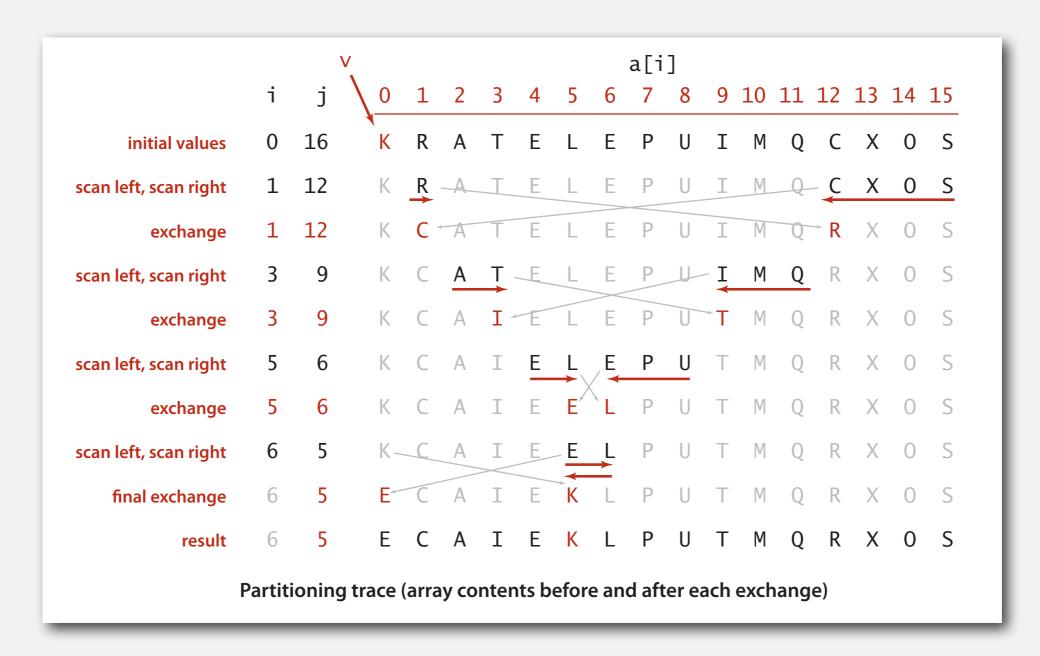
When pointers cross.

• Exchange a[lo] with a[j].



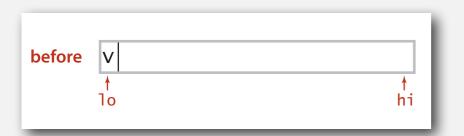
Basic plan.

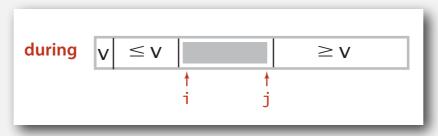
- Scan i from left for an item that belongs on the right.
- Scan j from right for an item that belongs on the left.
- Exchange a[i] and a[j].
- Repeat until pointers cross.

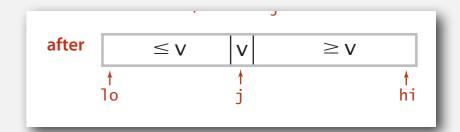


Quicksort: Java code for partitioning

```
private static int partition(Comparable[] a, int lo, int hi)
   int i = lo, j = hi+1;
   while (true)
       while (less(a[++i], a[lo]))
                                                 find item on left to swap
          if (i == hi) break;
       while (less(a[lo], a[--j]))
                                                find item on right to swap
          if (j == lo) break;
                                                  check if pointers cross
       if (i \ge j) break;
       exch(a, i, j);
                                                               swap
   exch(a, lo, j);
                                               swap with partitioning item
   return j;
                                return index of item now known to be in place
```





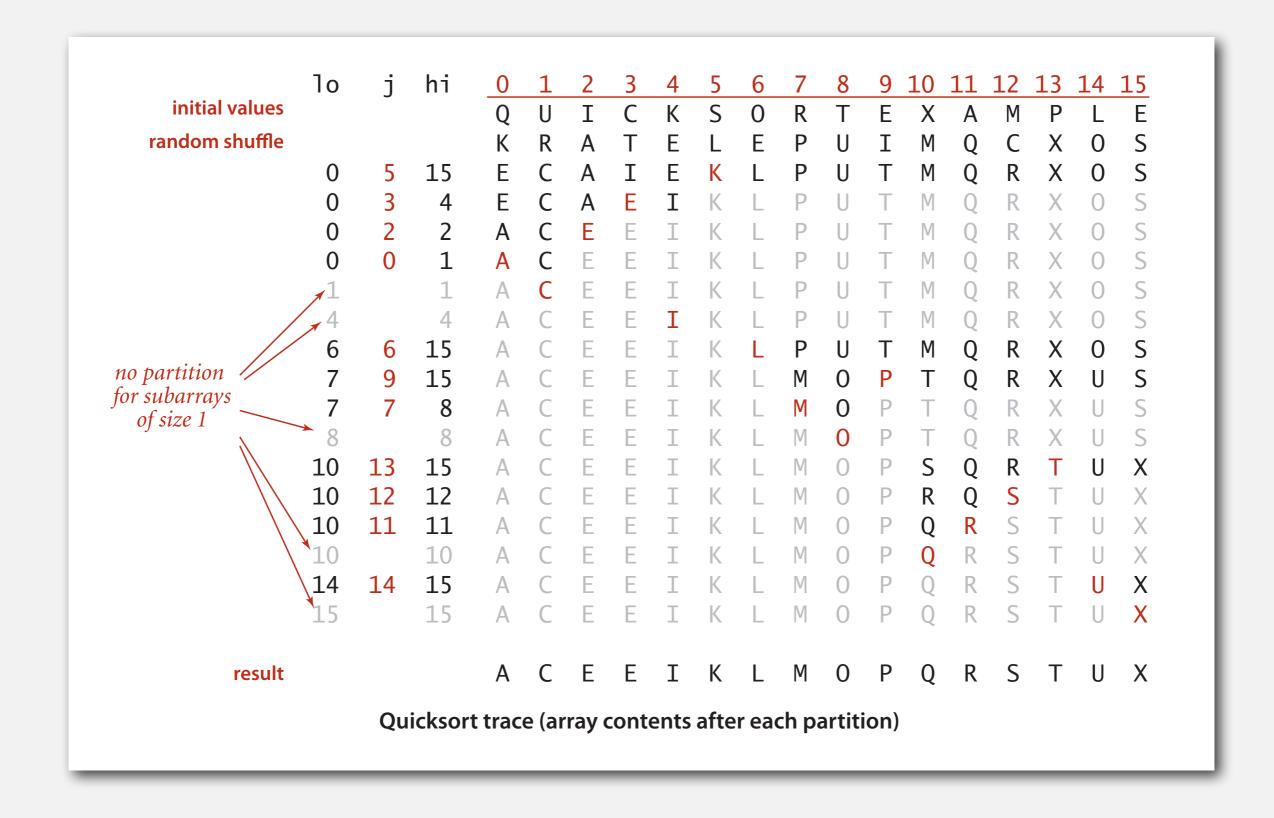


Quicksort: Java implementation

```
public class Quick
   private static int partition(Comparable[] a, int lo, int hi)
   { /* see previous slide */ }
   public static void sort(Comparable[] a)
      StdRandom.shuffle(a);
      sort(a, 0, a.length - 1);
   private static void sort(Comparable[] a, int lo, int hi)
      if (hi <= lo) return;</pre>
      int j = partition(a, lo, hi);
      sort(a, lo, j-1);
      sort(a, j+1, hi);
```

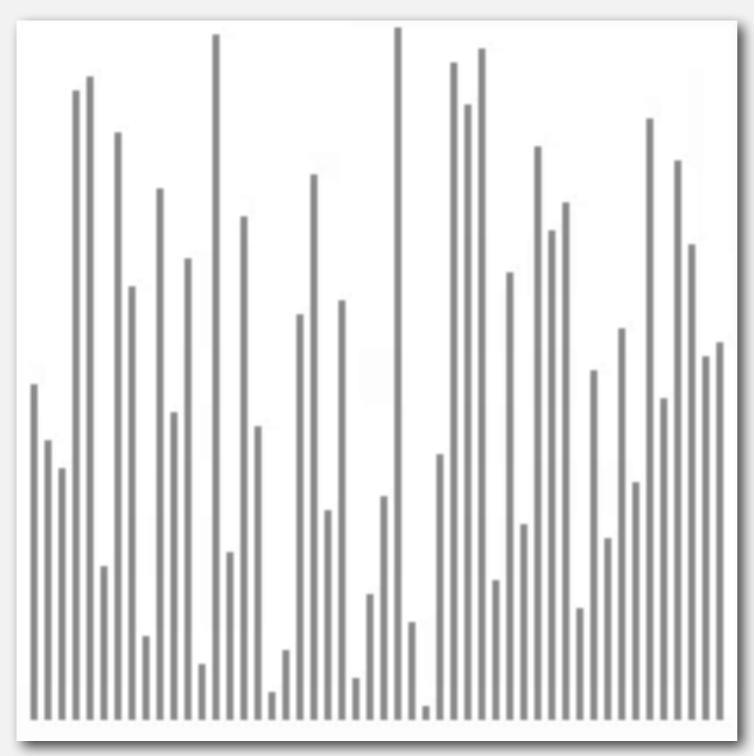
shuffle needed for performance guarantee (stay tuned)

Quicksort trace



Quicksort animation

50 random items



algorithm position in order current subarray not in order

Quicksort: implementation details

Partitioning in-place. Using an extra array makes partitioning easier (and stable), but is not worth the cost.

Terminating the loop. Testing whether the pointers cross is a bit trickier than it might seem.

Staying in bounds. The (j == 10) test is redundant (why?), but the (i == hi) test is not.

Preserving randomness. Shuffling is needed for performance guarantee.

Equal keys. When duplicates are present, it is (counter-intuitively) better to stop on keys equal to the partitioning item's key.

Quicksort: empirical analysis

Running time estimates:

- Home PC executes 108 compares/second.
- Supercomputer executes 10¹² compares/second.

	insertion sort (N²)			mergesort (N log N)			quicksort (N log N)		
computer	thousand	million	billion	thousand	million	billion	thousand	million	billion
home	instant	2.8 hours	317 years	instant	1 second	18 min	instant	0.6 sec	12 min
super	instant	1 second	1 week	instant	instant	instant	instant	instant	instant

- Lesson 1. Good algorithms are better than supercomputers.
- Lesson 2. Great algorithms are better than good ones.

Quicksort: best-case analysis

Best case. Number of compares is $\sim N \lg N$.

Each partitioning process splits the array exactly in half.

```
a[]
        0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
                     EGDLI
initial values
random shuffle
         B A C D F E G
12
14
           BCDEFGH
```

Quicksort: worst-case analysis

Worst case. Number of compares is $\sim \frac{1}{2} N^2$.

One of the subarrays is empty for every partition.

```
a[]
                           7 8
                                9 10 11 12 13 14
               CDEFGH
initial values
random shuffle
               C D
                   E F G
                 D
                         G
  11 14
     14
14
                 DEFGH
```

Quicksort: average-case analysis

Proposition. The average number of compares C_N to quicksort an array of N distinct keys is $\sim 2N \ln N$ (and the number of exchanges is $\sim \frac{1}{3} N \ln N$).

Pf. C_N satisfies the recurrence $C_0 = C_1 = 0$ and for $N \ge 2$:

partitioning
$$C_N = (N+1) + \left(\frac{C_0 + C_{N-1}}{N}\right) + \left(\frac{C_1 + C_{N-2}}{N}\right) + \dots + \left(\frac{C_{N-1} + C_0}{N}\right)$$

Multiply both sides by N and collect terms:

partitioning probability

$$NC_N = N(N+1) + 2(C_0 + C_1 + \dots + C_{N-1})$$

• Subtract this from the same equation for N-1:

$$NC_N - (N-1)C_{N-1} = 2N + 2C_{N-1}$$

• Rearrange terms and divide by N(N+1):

$$\frac{C_N}{N+1} = \frac{C_{N-1}}{N} + \frac{2}{N+1}$$

Quicksort: average-case analysis

Repeatedly apply above equation:

$$\frac{C_N}{N+1} = \frac{C_{N-1}}{N} + \frac{2}{N+1}$$

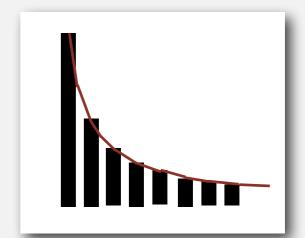
$$= \frac{C_{N-2}}{N-1} + \frac{2}{N} + \frac{2}{N+1}$$
 substitute previous equation
$$= \frac{C_{N-3}}{N-2} + \frac{2}{N-1} + \frac{2}{N} + \frac{2}{N+1}$$

$$= \frac{2}{3} + \frac{2}{4} + \frac{2}{5} + \ldots + \frac{2}{N+1}$$

Approximate sum by an integral:

$$C_N = 2(N+1)\left(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{N+1}\right)$$

$$\sim 2(N+1)\int_3^{N+1} \frac{1}{x} dx$$



$$C_N \sim 2(N+1) \ln N \approx 1.39N \lg N$$

Quicksort: summary of performance characteristics

Worst case. Number of compares is quadratic.

- $N + (N-1) + (N-2) + ... + 1 \sim \frac{1}{2} N^2$.
- More likely that your computer is struck by lightning bolt.

Average case. Number of compares is $\sim N \lg N$.

- more compares than mergesort.
- But faster than mergesort in practice because of less data movement.

Random shuffle.

- Probabilistic guarantee against worst case.
- Basis for math model that can be validated with experiments.

Caveat emptor. Many textbook implementations go quadratic if array

- Is sorted or reverse sorted.
- Has many duplicates (even if randomized!)

Quicksort properties

Proposition. Quicksort is an in-place sorting algorithm. Pf.

- Partitioning: constant extra space.
- Depth of recursion: logarithmic extra space (with high probability).

can guarantee logarithmic depth by recurring on smaller subarray before larger subarray

Proposition. Quicksort is not stable.

Pf.

i	j	0	1	2	3
		B ₁	C_1	C ₂	A ₁
1	3	B ₁	C_1	C_2	A_1
1	3	B ₁	A_1	C_2	C_1
0	1	A ₁	B ₁	C_2	C_1

Quicksort: practical improvements

Insertion sort small subarrays.

- Even quicksort has too much overhead for tiny subarrays.
- Cutoff to insertion sort for ≈ 10 items.
- Note: could delay insertion sort until one pass at end.

```
private static void sort(Comparable[] a, int lo, int hi)
{
   if (hi <= lo + CUTOFF - 1)
   {
      Insertion.sort(a, lo, hi);
      return;
   }
   int j = partition(a, lo, hi);
   sort(a, lo, j-1);
   sort(a, j+1, hi);
}</pre>
```

Quicksort: practical improvements

Median of sample.

- Best choice of pivot item = median.
- Estimate true median by taking median of sample.
- Median-of-3 (random) items.

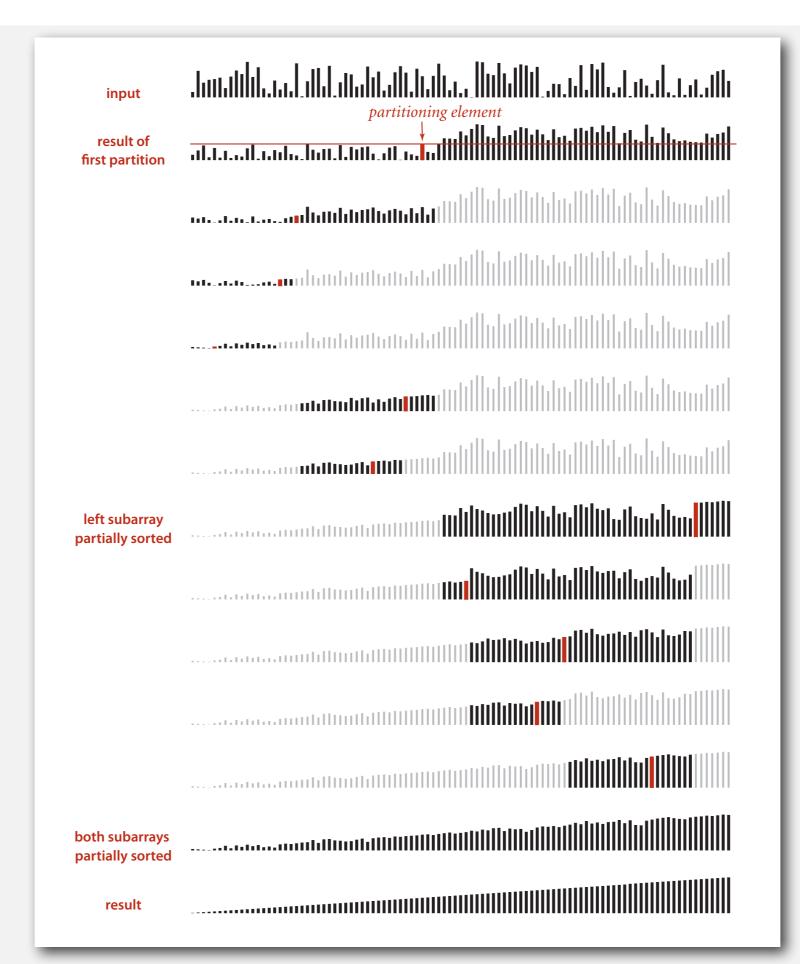
```
~ 12/7 N In N compares (slightly fewer)
~ 12/35 N In N exchanges (slightly more)
```

```
private static void sort(Comparable[] a, int lo, int hi)
{
   if (hi <= lo) return;

   int m = medianOf3(a, lo, lo + (hi - lo)/2, hi);
   swap(a, lo, m);

   int j = partition(a, lo, hi);
   sort(a, lo, j-1);
   sort(a, j+1, hi);
}</pre>
```

Quicksort with median-of-3 and cutoff to insertion sort: visualization



Selection

Goal. Given an array of N items, find the k^{th} largest.

Ex. Min (k = 0), max (k = N - 1), median (k = N/2).

Applications.

- Order statistics.
- Find the "top *k*."

Use theory as a guide.

- Easy $N \log N$ upper bound. How?
- Easy N upper bound for k = 1, 2, 3. How?
- Easy N lower bound. Why?

Which is true?

N log N lower bound?
 is selection as hard as sorting?

■ N upper bound?
 is there a linear-time algorithm for each k?

Quick-select

Partition array so that:

- Entry a[j] is in place.
- No larger entry to the left of j.
- No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

```
public static Comparable select(Comparable[] a, int k)
                                                              if a[k] is here
                                                                            if a [k] is here
    StdRandom.shuffle(a);
                                                               set hi to j-1
                                                                             set 10 t0 j+1
    int lo = 0, hi = a.length - 1;
    while (hi > lo)
       int j = partition(a, lo, hi);
                                                                \leq V
                                                                       V
                                                                               \geq V
       if (j < k) lo = j + 1;
       else if (j > k) hi = j - 1;
               return a[k];
       else
    return a[k];
```

Quick-select: mathematical analysis

Proposition. Quick-select takes linear time on average.

Pf sketch.

- Intuitively, each partitioning step splits array approximately in half: $N+N/2+N/4+...+1\sim 2N$ compares.
- Formal analysis similar to quicksort analysis yields:

$$C_N = 2 N + k \ln (N/k) + (N-k) \ln (N/(N-k))$$
(2 + 2 ln 2) N to find the median

Remark. Quick-select uses $\sim 1/2 \, N^2$ compares in the worst case, but (as with quicksort) the random shuffle provides a probabilistic guarantee.

Duplicate keys

Often, purpose of sort is to bring items with equal keys together.

- Sort population by age.
- Find collinear points.
- Remove duplicates from mailing list.
- Sort job applicants by college attended.

Typical characteristics of such applications.

- Huge array.
- Small number of key values.

```
Chicago 09:25:52
Chicago 09:03:13
Chicago 09:21:05
Chicago 09:19:46
Chicago 09:19:32
Chicago 09:00:00
Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54
  key
```

Duplicate keys

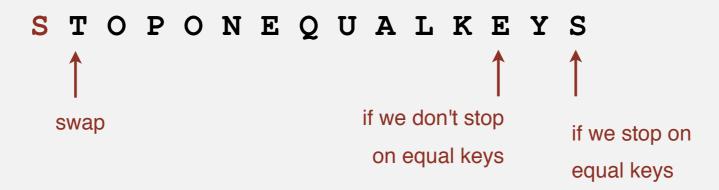
Mergesort with duplicate keys.

Always between $\frac{1}{2}N \lg N$ and $N \lg N$ compares.

Quicksort with duplicate keys.

- Algorithm goes quadratic unless partitioning stops on equal keys!
- 1990s C user found this defect in qsort().

several textbook and system implementation also have this defect



Duplicate keys: the problem

Mistake. Put all items equal to the partitioning item on one side. Consequence. $\sim \frac{1}{2} N^2$ compares when all keys equal.

BAABABBCCC

AAAAAAAAAA

Recommended. Stop scans on items equal to the partitioning item. Consequence. $\sim N \lg N$ compares when all keys equal.

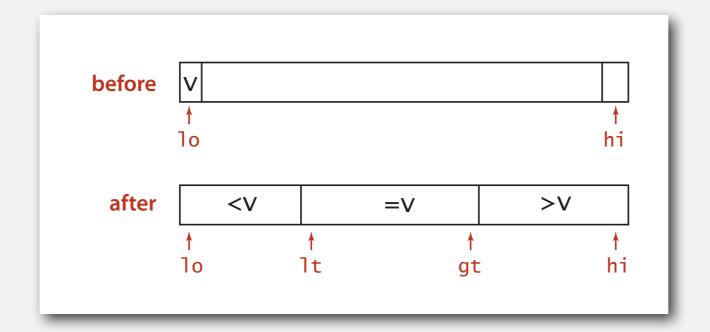
BAABACCBC AAAAAAAAAAA

Desirable. Put all items equal to the partitioning item in place.

3-way partitioning

Goal. Partition array into 3 parts so that:

- Entries between 1t and gt equal to partition item v.
- No larger entries to left of 1t.
- No smaller entries to right of gt.

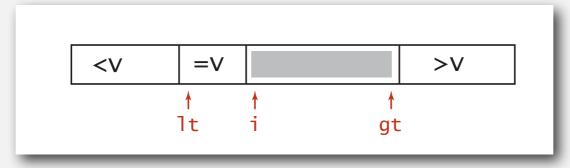




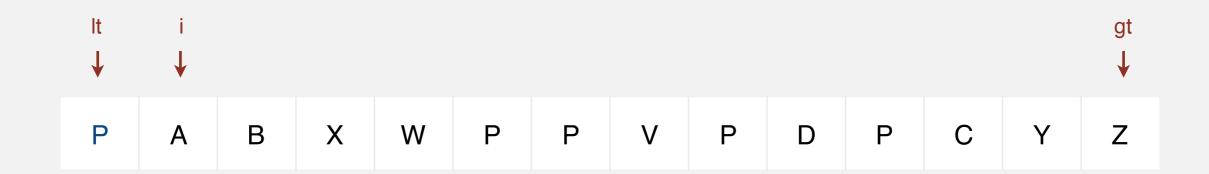
Dutch national flag problem. [Edsger Dijkstra]

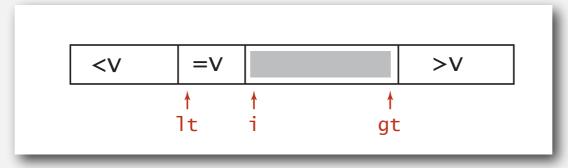
- Conventional wisdom until mid 1990s: not worth doing.
- New approach discovered when fixing mistake in C library qsort().
- Now incorporated into qsort() and Java system sort.

- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i

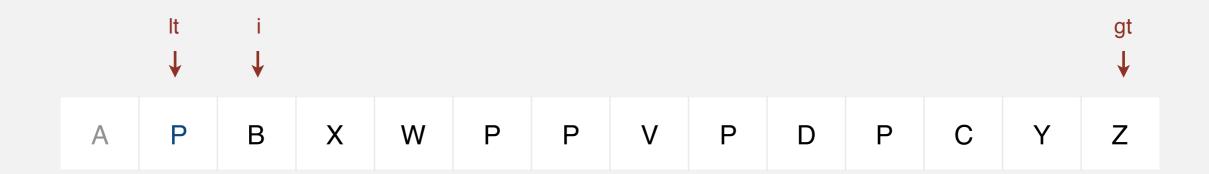


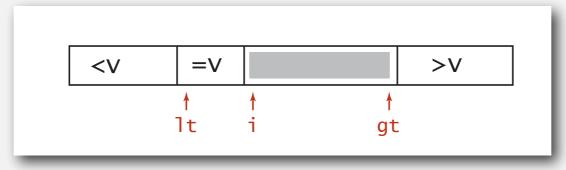
- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i





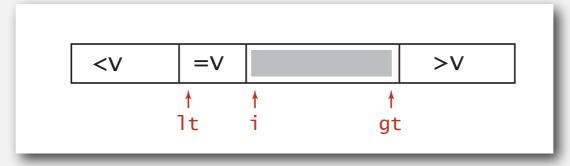
- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i



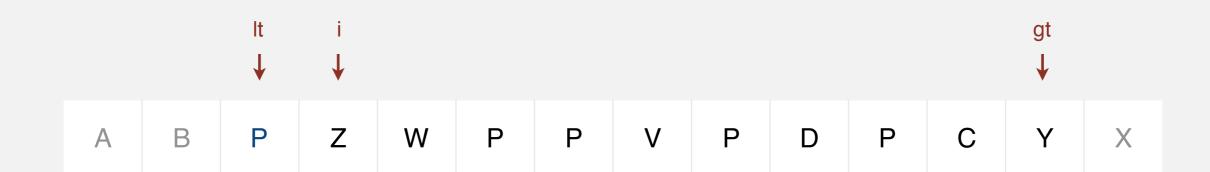


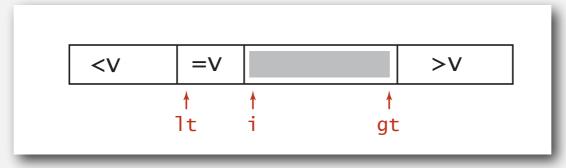
- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i



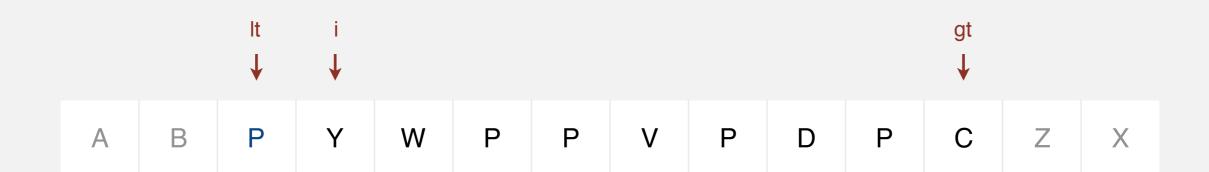


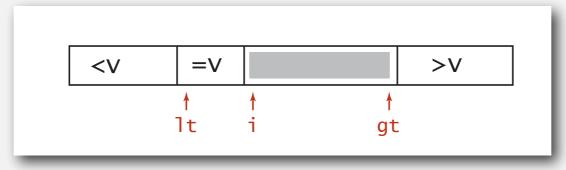
- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i



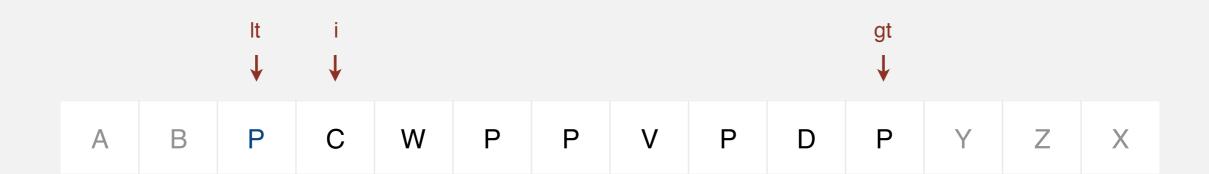


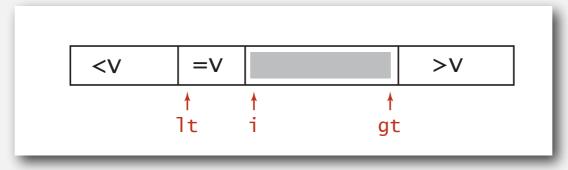
- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i



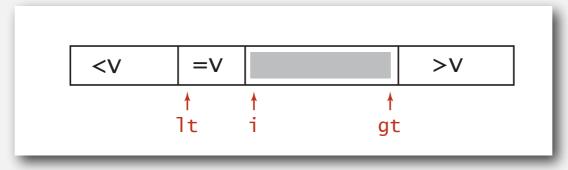


- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i

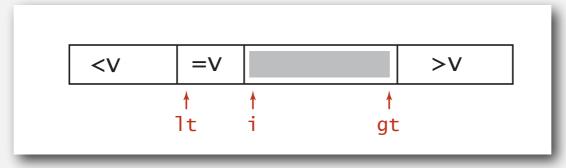




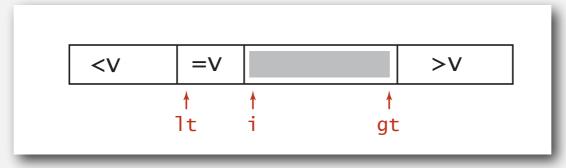
- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i



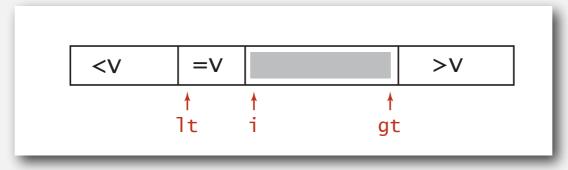
- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i



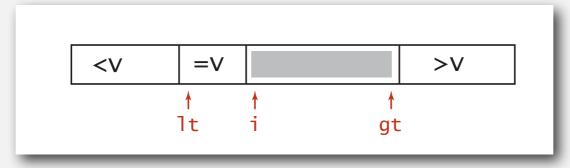
- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i



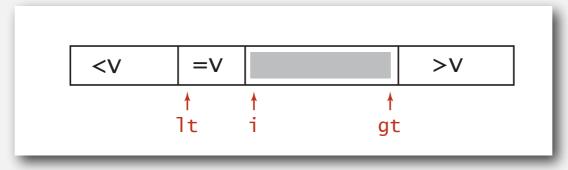
- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i



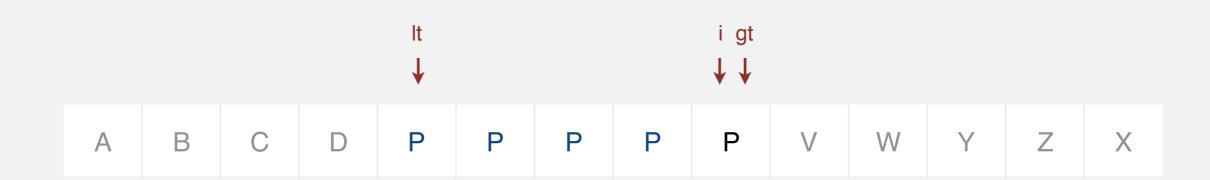
- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i

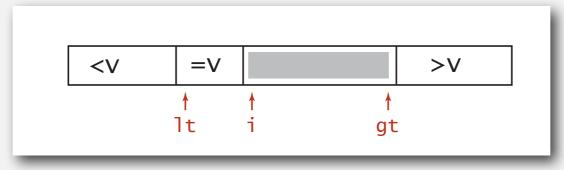


- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i

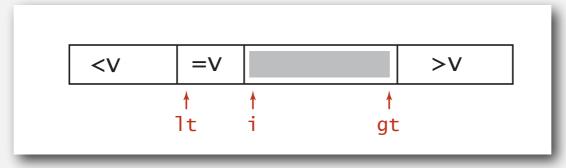


- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i





- Let v be partitioning item a[10].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i] and increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i] and decrement gt
 - (a[i] == v): increment i



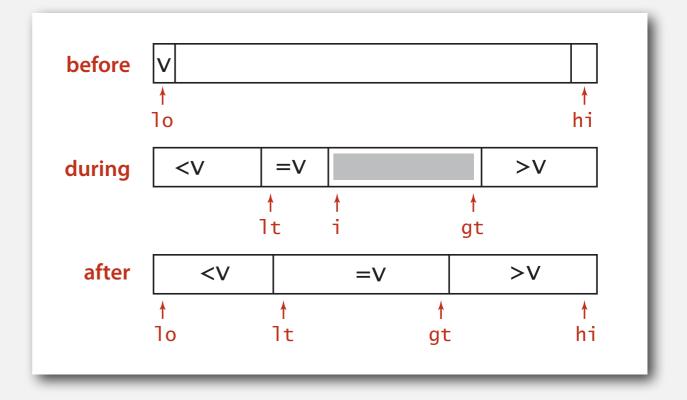
Dijkstra 3-way partitioning algorithm

3-way partitioning.

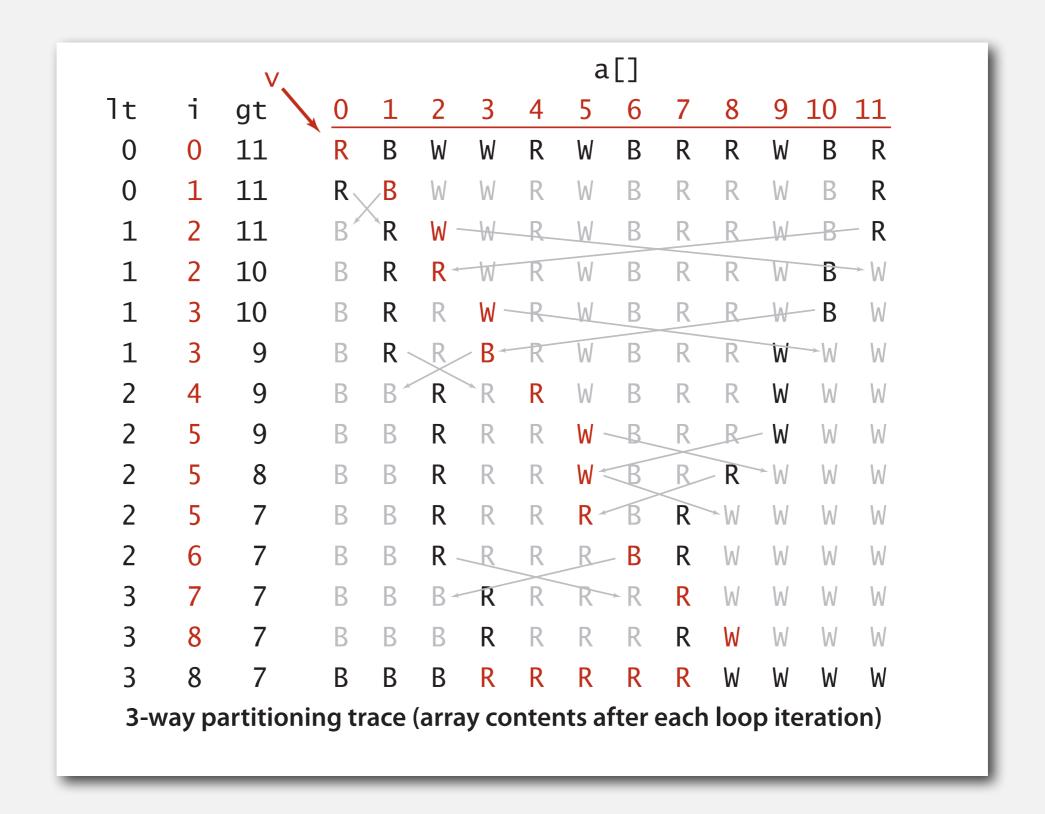
- Let v be partitioning item a[10].
- Scan i from left to right.
 - a[i] less than v: exchange a[lt] with a[i] and increment both lt and i
 - a[i] greater than v: exchange a[gt] with a[i] and decrement gt
 - a[i] equal to v: increment i

Most of the right properties.

- In-place.
- Not much code.
- Linear time if keys are all equal.



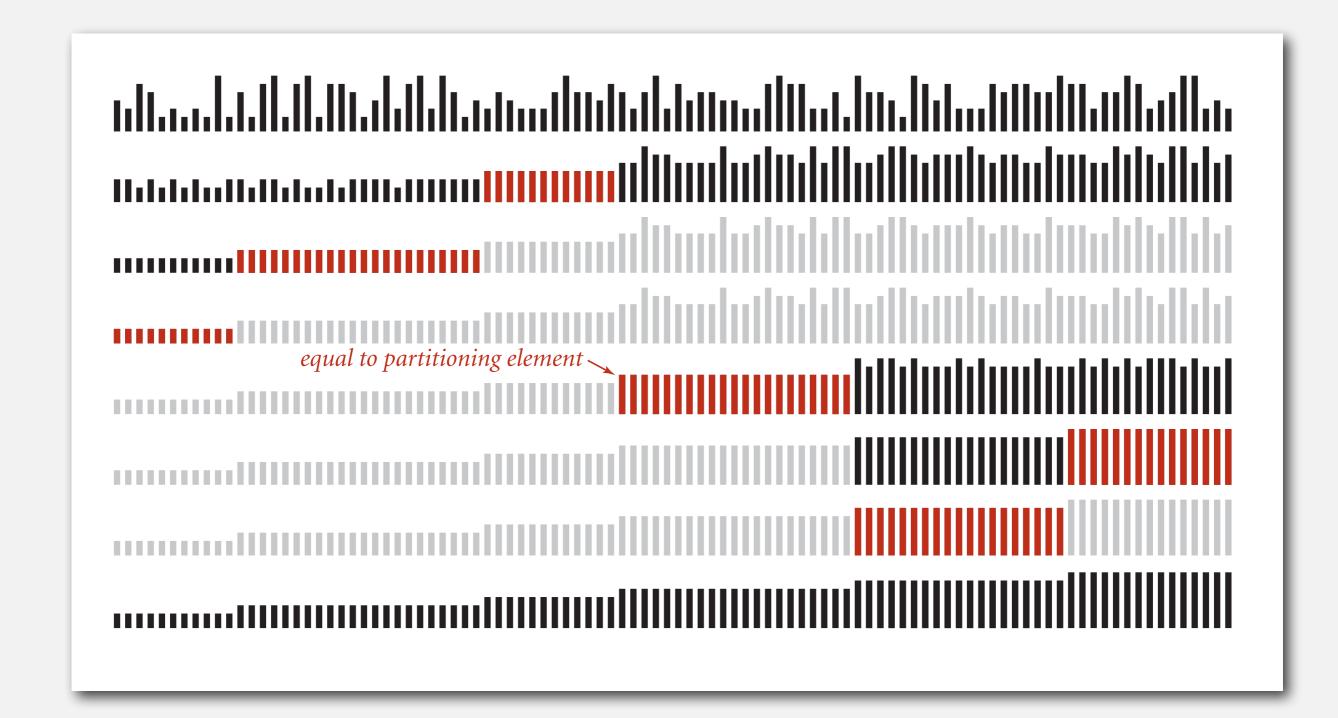
Dijkstra's 3-way partitioning: trace



3-way quicksort: Java implementation

```
private static void sort(Comparable[] a, int lo, int hi)
{
   if (hi <= lo) return;</pre>
   int lt = lo, gt = hi;
   Comparable v = a[lo];
   int i = lo;
   while (i <= gt)</pre>
      int cmp = a[i].compareTo(v);
               (cmp < 0) exch(a, lt++, i++);
      if
      else if (cmp > 0) exch(a, i, gt--);
      else
                           i++;
                                             before
   sort(a, lo, lt - 1);
   sort(a, gt + 1, hi);
                                                    <V
                                             during
                                                          =V
                                                                         >V
}
                                                         1t
                                                                     gt
                                                     <V
                                               after
                                                               =V
                                                                        >V
                                                   10
                                                          1t
                                                                            hi
                                                                   gt
```

3-way quicksort: visual trace



Sorting summary

	inplace?	stable?	worst	average	best	remarks
selection	~		N 2 / 2	N 2 / 2	N ² / 2	N exchanges
insertion	~	~	N 2 / 2	N 2 / 4	N	use for small N or partially ordered
shell	~		?	?	N	tight code, subquadratic
merge		•	N lg N	N lg N	N lg N	N log N guarantee, stable
quick	~		N 2 / 2	N lg N	N lg N	N log N probabilistic guarantee fastest in practice
3-way quick	~		N 2 / 2	N lg N	N	improves quicksort in presence of duplicate keys
???	~	✓	N lg N	N lg N	N lg N	holy sorting grail