BBM 202 - ALGORITHMS

HACETTEPE UNIVERSITY

DEPT. OF COMPUTER ENGINEERING

UNDIRECTED GRAPHS

Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick
and K. Wayne of Princeton University.

4

>
>
>
>
>

Undirected Graphs
Graph API

Depth-first search
Breadth-first search
Connected components
Challenges

Undirected graphs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

® Thousands of practical applications.
® Hundreds of graph algorithms known.
¢ Interesting and broadly useful abstraction.

® Challenging branch of computer science and discrete math.
L e

rtogrohique - PMI 0311 -C PR
¥ - (© Basilique A3 St-Denis-Université
@ Carrefour <Ry de St-Denis) =
Gabriel Péri airie s AN . T La Courneuve Le Bourget
Paris Asnidres - Gennevilliers 13 el fe St-Ou s~ Porte de Paris Aubervilliers 8 Mai 1945
Carihalk Stade ¢ La Plaine Fort.
§ \ Garibaldi S Stade de France et d’Aubervilliers N Bobigny
J b Porte ¢ uatre y Pablo Picasso
Porte e Clig O Porte Pantin
X - Pont de Levallois d a t-Ouen de Clignancourt ’\;m plon @dc la Chapelle 5
www.ratp fr Bécon . A N ‘ - Soniemy-
Anatole France®, et ir Marx Porte de la Villette R Quenes
7 U pyniculaire de Ichateau Rouge B ou Eglise de Pantin
(% 13 D)La Fourche Abbessesg Montmartre - La
IA) By Blanche | i Rocheghouart || | | Chapelle o
Anvers) 4" a e Pantin i
. v~fairde Danube prg airie
e Neullly Gare du Nord \“Lo : aur s B ervais des Lilas
de Neu JLou Boliva =
Botzaris ® W

Les Sablons 24 Poissonniére

Eurc ~
Gare St-Lazarer™
St-Lazare)8
arles St-Augustin
Porte 8~ R
S i ~de Gaulle Miromesr
+@pauphine ¥““NEtoile st.philippe
du-Roule

Porte Maillot(}

Neuilly - Porte Maillot /y

Cadet

Haussmann
sastLazare

d’Antiy Richelieu

Le Peletic
Argentine

enue l-v,'vm

ue

“~Oberkampf 3
< Pa hai 1.
Gambetta

Mairie

E) e | u 0 Q es Hal Raninitea de Montreuil @
e . i Iéna Clemenceau o / Croix de Chavaux
O o - o Q cfiotel de Vit
cadéro Po o Farain N et
de I'Alma nvalides » d'Orsay COM y Robesp
O ' ' Maralchers A
. . BAssemblée Nationale e e
)La Muette | Passy £a Tour Maubourg Montreuil
ainy ch Ars Solférino
Boulainvillier o ‘e N0 o >e
R o (\Bir-Hakeim Aoy Calng Chaligny 6 &4 y’
Ranelagh J A Sain Nation

Dupleix |La Motte Gare

St-Mandé

ClReuilly -Diderot

Picquet $st-sulpice _de Lyon
1Grenelle 7% Montgallet
Bérauit
glise 1 Be 1
dhctedil O Cambronne DaumesnilXX Chateau

Michel Bizot

Commerce de Vincennes

L

Félix Faure

| Mirabeau

Dugommier

Porte Dorée

igar
Quinet Raspa
Montparnasse spat

Can

® Gah Porte de Charenton
4 Volontaires Gané s Place Fo o5
~Bd Victo! Boucicaut . ~ face’ Liber
- oBd Victor 4 o Mouton Corvisart _ id’Italie
Marcel - . Vaugirard Pernety Duvernet . . - - | b Charenton - Ecole
10 sembat loudlll§ 7 Lourme) G Natio Bibliothéque Charenton - Ecoles
Bouloszne Cond 8 Balard vention Plais. Alésia Francois Mitterrand 5 Ecole Vétérinaire
Pont de St-Clou - P S
g) de Versailles . o JUniversitaire vry
Billancourt T)(2) lss s de Vanves _ Porte Siceine
9 D2 Val de seine deVanves giorigans @ —— Sting Alfort
Pont Corentin Celton f y Gentilly Pierre Curie Juilliottes
de Sévres de Vanves uif

Crétell - UEchat

Créteil - Université

sy @Mamc d’lssy Malakoff Anto Mairle d’lvry 7 Vitry

Rue Etienne Dolet

juif
Valllant-Couturier

Orly Louis\fl”rl‘:é‘élr!-’ D) (® Créteil - Préfecture

Chatillon - Montrouge 13

Graph applications

communication

circuit
mechanical
financial
transportation
internet
game
social relationship
neural network
protein network

chemical compound

telephone, computer
gate, register, processor
joint
stock, currency
street intersection, airport
class C network
board position
person, actor
neuron
protein

molecule

fiber optic cable
wire
rod, beam, spring
transactions
highway, airway route
connection
legal move
friendship, movie cast
synapse
protein-protein interaction

bond

Graph terminology

Path. Sequence of vertices connected by edges.
Cycle. Path whose first and last vertices are the same.

Two vertices are connected if there is a path between them.

vertex
cycle o edge l

length]; \ l

path of
« length 4

vertex of

degree 3

V]

N connected
components

Some graph-processing problems

Path. Is there a path between s and ¢!
Shortest path. What is the shortest path between s and ¢!

Cycle. Is there a cycle in the graph?
Euler tour. Is there a cycle that uses each edge exactly once!?
Hamilton tour. Is there a cycle that uses each vertex exactly once!?

Connectivity. Is there a way to connect all of the vertices!?
MST. What is the best way to connect all of the vertices?

Biconnectivity. Is there a vertex whose removal disconnects the graph!?

Planarity. Can you draw the graph in the plane with no crossing edges?
Graph isomorphism. Do two adjacency lists represent the same graph!?

Challenge. Which of these problems are easy? difficult! intractable!?

» Graph API

» Depth-first search

» Breadth-first search

» Connected components
» Challenges

Graph representation

Graph drawing. Provides intuition about the structure of the graph.

two drawings of the same graph

Caveat. Intuition can be misleading.

Graph representation

Vertex representation.
® This lecture: use integers between 0 and /' — 1.

e Applications: convert between names and integers with symbol table.

self loop parallel

] edges
11
Anomalies.

Graph API

public class Graph

Graph (int V) create an empty graph with V vertices
Graph (In in) create a graph from input stream
void addEdge (int v, int w) add an edge v-w
Iterable<Integer> adj(int v) vertices adjacent to v
int V() number of vertices
int E() number of edges
String toString() string representation
In in = new In(args[0]); p read graph from
Graph G = new Graph(in) ; input stream

for (int v = 0; v < G.V(); v++) _
print out each

for (int w : G.adj(v)) <
StdOut.println(v + "-" + w);

edge (twice)

Graph API: sample client

Graph input format.

tinyG. txt

V—13 2 % java Test tinyG.txt
13 < 0-6
O
4
01 (6) 0-1
9 12 016 0-5
6 4 1-0
5 4 9’0 9\@ 2-0
02 3-5
11 12 9 @ @ 3-4
9 10
06 12-11
; il 12-9
5 3

In in = new In(args[0]); read graph from
Graph G = new Graph(in) ; input stream

for (int v = 0; v < G.V(); v++) _
print out each

for (int w : G.adj(v)) <
StdOut.println(v + "-" + w);

edge (twice)

Typical graph-processing code

public static int degree(Graph G, int v)

{
int degree = 0;
compute the degree of v for (int w : G.adj(v)) degree++;
return degree;
}

public static int maxDegree(Graph G)

{
int max = 0;
_ for (int v = 0; v < G.VQ; v++)
compute maximum degree if (degree(G, v) > max)
max = degree(G, V);
return max;
}

public static double averageDegree(Graph G)
compute average degree { return 2.0 * G.EQ / G.VO: 1}

public static int numberOfSelfLoops(Graph G)
{

int count = 0;
for (int v =0; v < G.VQ; v++)
for (int w : G.adj(v))
if (v == w) count++;
return count/2; // each edge counted twice

count self-loops

Set-of-edges graph representation

Maintain a list of the edges (linked list or array).

= B W Ww O O O O

~

(o]

o 1 o1 d O M N BB

[
o

Adjacency-matrix graph representation

Maintain a two-dimensional J-by-}" boolean array;

true.

adj[w] [v]

for each edge v—w in graph: adj[v][w]

two entries

for each edge

12

11

10

10

14

Adjacency-list graph representation

Maintain vertex-indexed array of lists.

™6 2 1 5

~0
Bag objects
™~ 0

adj[]
0 ™5 4
1
OROR0 | e
3
4 ™~ 3 4 0
5
(D~ 6 :
7
8 ™ 8
5 representations
9 of the same edge
10 ™7
11
() NN

/
8
\

Adjacency-list graph representation: Java implementation

public class Graph
{

private final int V; : :
adjacency lists

private Bag<Integer>[] adj; (using Bag data type)
public Graph (int V)
{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>() ;

create empty graph
with v vertices

public void addEdge (int v, int w)

{

adj[v] .add(w) ; add edge v-w

adj[w] .add(v) ; (parallel edges allowed)

public Iterable<Integer> adj(int v) _ _ _
{ return adj[v]; } iterator for vertices adjacent to v

Graph representations

In practice. Use adjacency-lists representation.

e Algorithms based on iterating over vertices adjacent to v.

AN

® Real-world graphs tend to be sparse.

huge number of vertices,

small average vertex degree

sparse (E=200) dense (E=1000)

Two graphs (V = 50)

Graph representations

In practice. Use adjacency-lists representation.

e Algorithms based on iterating over vertices adjacent to v.

AN

e Real-world graphs tend to be sparse.

huge number of vertices,

small average vertex degree

edge between iterate over vertices
v and w? adjacent to v?

representation add edge

list of edges E 1 E E
adjacency matrix V2 1 * 1 Vv
adjacency lists E+V 1 degree(v) degree(v)

* disallows parallel edges

» Graph API

» Depth-first search

» Breadth-first search

» Connected components
» Challenges

Maze exploration

Maze graphs.

® Vertex = intersection.
® Edge = passage.

intersection passage

Goal. Explore every intersection in the maze.

20

Trémaux maze exploration

Algorithm.
e Unroll a ball of string behind you.

® Mark each visited intersection and each visited passage.
® Retrace steps when no unvisited options.

21

Depth-first search

Goal. Systematically search through a graph.
ldea. Mimic maze exploration.

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked

vertices w adjacent to v.

Typical applications.

® Find all vertices connected to a given source vertex.
¢ Find a path between two vertices.

Design challenge. How to implement!?

Design pattern for graph processing

Design pattern. Decouple graph data type from graph processing.

e Create a Graph object.
® Pass the Gcraph to a graph-processing routine, e.g., Paths.
e Query the graph-processing routine for information.

public class Paths

Paths (Graph G, int s) find paths in G from source s
boolean hasPathTo (int v) is there a path from s to v?
Iterable<Integer> pathTo (int v) path from s to v; null if no such path

Paths paths = new Paths (G, s);
for (int v = 0; v < G.V(); v++)
if (paths.hasPathTo(v))

rint all vertices
StdOut.println (v) ; < -

connected to s

23

Depth-first search

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

tinyG. txt
@ @ V=13

13 <"
05
43
01
) @ 9 12
6 4
5 4
0 2
11 12
& @ 9 10
0 6
78
9 11
5 3

graph G

24

Depth-first search

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

vertices reachable from O

v marked[] edgeTo[v]
0 T -
1 0
2 T 0
3 T 5
4 T 6
5 T 2
6 T 0
7/ F -
8 F -
9 F -
10 F -
11 F -
12 F -

25

Depth-first search

Goal. Find all vertices connected to s (and a path).

ldea. Mimic maze exploration.

Algorithm.
e Use recursion (ball of string).

® Mark each visited vertex (and keep track of edge taken to visit it).
® Return (retrace steps) when no unvisited options.

Data structures.

® boolean[] marked to mark visited vertices.
® int[] edgeTo to keep tree of paths.

(edgeTo[w] == v) means that edge v-w taken to visit w for first time

Depth-first search

public class DepthFirstPaths

{ marked[v] = true
private boolean[] marked; < if vconnected to s
private int [] edgeTo; < edgeTo[\/] = previous
private int s; vertex on path from s to v

public DepthFirstSearch (Graph G, int s)

{
< initialize data structures
dfs (G, s); < find vertices connected to s
}
private void dfs (Graph G, int v) < SEEITERE 2150 @los o
(work

marked|[v] = true;

for (int w : G.adj(v))
if ('marked|[w])
{

dfs (G, w);
edgeTo[w] = v;

Depth-first search properties

Proposition. DFS marks all vertices connected to s in time proportional to

the sum of their degrees.

Pf. source set of marked
vertices

e Correctness:
- if w marked, then w connected to s (why?)
- if w connected to s, then w marked
(if w unmarked, then consider last edge

on a path from s to w that goes from a

no such edge

set of «— can exist

marked vertex to an unmarked one) unmarked

vertices

® Running time:
Each vertex connected to s is visited once.

Depth-first search properties

Proposition. After DFS, can find vertices connected to s in constant time

and can find a path to s (if one exists) in time proportional to its length.

Pf. edgeTo[] is a parent-link representation of a tree rooted at s.

public boolean hasPathTo (int v)
{ return marked|[v]; }

public Iterable<Integer> pathTo (int v)

{
if ('hasPathTo(v)) return null;
Stack<Integer> path = new Stack<Integer>() ;
for (int x = v; x '= s; x = edgeTo[x])

path.push (x) ;
path.push(s) ;
return path;

29

» Graph API

» Depth-first search

» Breadth-first search

» Connected components
» Challenges

Breadth-first search

Repeat until queue is empty:
¢ Remove vertex v from queue.
e Add to queue all unmarked vertices adjacent to v and mark them.

@ /2) tinyCG. txt
A

C;f
Nh‘i

O W WO RFRLPRDMNNOO®
N U1 R BRER DN WD U

T

graph G

31

Breadth-first search

Repeat until queue is empty:

¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

T

add 0 to queue

queue

\"

edgeTolv]

vl D W N —= O

32

Breadth-first search

Repeat until queue is empty:
¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

0 @ queue v edgeTolv]

vl D W N —= O

T

dequeue O

Breadth-first search

Repeat until queue is empty:
¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

o 2 queue v edgeTolv]

0

vl D W N —= O

T

dequeue O

Breadth-first search

Repeat until queue is empty:
¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

a 2 queue v edgeTolv]

o O

vl D W N —= O
I

T

dequeue O

35

Breadth-first search

Repeat until queue is empty:
¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

queue v edgeTolv]
0 —
1 0
2 0
3 —
4 5 0
2

dequeue O

36

Breadth-first search

Repeat until queue is empty:
¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

a 2 queue v edgeTolv]

o O

vl
vl D W N —= O
I

T !

0 done

37

Breadth-first search

Repeat until queue is empty:

¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

o T

dequeue 2

queue

v edgeTolv]
0 —
1 0
2 0
3 —
4 _
5 0

Breadth-first search

Repeat until queue is empty:

¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

o T

dequeue 2

queue

v edgeTolv]
0 —
1 0
2 0
3 —
4 _
5 0

Breadth-first search

Repeat until queue is empty:

¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

/

O

o T

dequeue 2

queue

v edgeTolv]
0 —
1 0
2 0
3 —
4 _
5 0

Breadth-first search

Repeat until queue is empty:
¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

queue v edgeTolv]
O -
1 0
@ 2 0
3 2
4 _
5

dequeue 2

41

Breadth-first search

Repeat until queue is empty:

¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

0

o T

dequeue 2

queue

v edgeTolv]
0 —
1 0
2 0
3 2
4 2
5 0

42

Breadth-first search

Repeat until queue is empty:

¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

2 done

queue

v edgeTolv]
0 —
1 0
2 0
3 2
4 2
5 0

43

Breadth-first search

Repeat until queue is empty:
¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

queue

dequeue 1

v edgeTolv]
0 —
1 0
2 0
3 2
4 2
5 0

44

Breadth-first search

Repeat until queue is empty:

¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

o T

dequeue 1

queue

v edgeTolv]
0 —
1 0
2 0
3 2
4 2
5 0

45

Breadth-first search

Repeat until queue is empty:

¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

o T

dequeue 1

queue

v edgeTolv]
0 —
1 0
2 0
3 2
4 2
5 0

46

Breadth-first search

Repeat until queue is empty:

¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

o T

1 done

queue

v edgeTolv]
0 —
1 0
2 0
3 2
4 2
5 0

47

Breadth-first search

Repeat until queue is empty:

¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

o T

dequeue 5

queue

v edgeTolv]
0 —
1 0
2 0
3 2
4 2
5 0

48

Breadth-first search

Repeat until queue is empty:

¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

o T

dequeue 5

queue

v edgeTolv]
0 —
1 0
2 0
3 2
4 2
5 0

49

Breadth-first search

Repeat until queue is empty:

¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

dequeue 5

—

queue

v edgeTolv]
0 —
1 0
2 0
3 2
4 2
5 0

50

Breadth-first search

Repeat until queue is empty:

¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

5 done

—

queue

v edgeTolv]
0 —
1 0
2 0
3 2
4 2
5 0

51

Breadth-first search

Repeat until queue is empty:

¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

dequeue 3

O — &

queue

v edgeTolv]
0 —
1 0
2 0
3 2
4 2
5 0

52

Breadth-first search

Repeat until queue is empty:

¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

dequeue 3

/e\@

queue

v edgeTolv]
0 —
1 0
2 0
3 2
4 2
5 0

53

Breadth-first search

Repeat until queue is empty:

¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

dequeue 3

9\@

queue

v edgeTolv]
0 —
1 0
2 0
3 2
4 2
5 0

54

Breadth-first search

Repeat until queue is empty:

¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

dequeue 3

queue

v edgeTolv]
0 —
1 0
2 0
3 2
4 2
5 0

55

Breadth-first search

Repeat until queue is empty:

¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

3 done

queue

v edgeTolv]
0 —
1 0
2 0
3 2
4 2
5 0

56

Breadth-first search

Repeat until queue is empty:

¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

dequeue 4

queue

v edgeTolv]
0 —
1 0
2 0
3 2
4 2
5 0

57

Breadth-first search

Repeat until queue is empty:

¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

dequeue 4

queue

v edgeTolv]
0 —
1 0
2 0
3 2
4 2
5 0

58

Breadth-first search

Repeat until queue is empty:

¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

dequeue 4

queue

v edgeTolv]
0 —
1 0
2 0
3 2
4 2
5 0

59

Breadth-first search

Repeat until queue is empty:

¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

4 done

queue

v edgeTolv]
0 —
1 0
2 0
3 2
4 2
5 0

60

Breadth-first search

Repeat until queue is empty:
¢ Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to v and mark them.

done

v edgeTolv]
0 —
1 0
2 0
3 2
4 2
5 0

6l

Breadth-first search

Depth-first search. Put unvisited vertices on a stack.
Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to ¢ that uses fewest humber of edges.

BFS (from source vertex s) \[\// i\

Put s onto a FIFO queue, and mark s as visited.

Repeat until the queue is empty:

~

- remove the least recently added vertex v

- add each of v's unvisited neighbors to the queue,

and mark them as visited.

~

Intuition. BFS examines vertices in increasing distance from s.

62

Breadth-first search properties

Proposition. BFS computes shortest path (number of edges) from s

in a connected graph in time proportional to £+ V.

Pf. [correctness| Queue always consists of zero or more vertices of

distance £ from s, followed by zero or more vertices of distance k + 1.

Pf. [running time] Each vertex connected to s is visited once.

standard drawing dist =0 dist =1 dist = 2

63

Breadth-first search

public class BreadthFirstPaths
{
private boolean[] marked;
private boolean[] edgeTol[];
private final int s;

private void bfs (Graph G, int s)
{
Queue<Integer> q = new Queue<Integer>() ;
gq.enqueue (s) ;
marked[s] = true;
while (!q.isEmpty())
{
int v = g.dequeue();
for (int w : G.adj(v))
{
if ('marked[w])
{
g.enqueue (W) ;
marked[w] = true;
edgeTo[w] = v;

64

» Graph API

» Depth-first search

» Breadth-first search

» Connected components
» Challenges

Connectivity queries

Def. Vertices v and w are connected if there is a path between them.

Goal. Preprocess graph to answer queries: is v connected to w !

In constant time.

public class CC

CC (Graph G) find connected components in G
boolean connected(int v, int w) are v and w connected?
int count|() number of connected components
int id(int v) component identifier for v

Depth-first search. [next few slides]

66

Connected components

The relation "is connected to" is an equivalence relation:
e Reflexive: v is connected to v.
e Symmetric: if v is connected to w, then w is connected to v.

e Transitive: if v connected to w and w connected to x, then v connected to x.

Def. A connected component is a maximal set of connected vertices.

v id[v]
0 0
L
2 0
3 0
4 0
e @ 5 0
6 0
7 1
8 1
0.0 -
10 2
3 connected components Ll 2
12 2

Remark. Given connected components, can answer queries in constant time.

67

Connected components

Def. A connected component is a maximal set of connected vertices.

*—o

L d lP—I
]
]

>

4

& L]
b o - L

4 L B J L]
5 'Lij“,
L] L
> -9
;

]

-l
:"i—I—i
=

L
{ L1

IHD L2
" Jag

Siaes
T
gy

I.—.—O—l 2

888

*—e

GP—I—I N 4 -
- > 4
L] L]

Hitsiess

I_I: - L]
:I—‘O—I I(D
]

J

lbI—Ii)—.—.% *

*—e &

5 .

N 2

1

ol 5
.

* ¢

),

hits

"9 o4

Ne

"9

e

68

63 connected components

Connected components

Goal. Partition vertices into connected components.

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all R
vertices discovered as part of the same component. V13 =
13 -~

4 3

01

9 12

6 4

© 0
O® 0 2
Q@Ga@ 11 12
9 10

06

o K e
(5) (112 -

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

(O—)

graph G

marked|[]

ccl]

L I i [o I I i [i I A i N i (N v A I A i

70

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

(O—)

visit 0: check 6

11

<

marked|[]

ccl]

- O

O 00 N O ui A W DN

© ©

M T T M M M M M M M M

71

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

(O—)

visit 6: check O

v marked[] cc[]
0 T 0
1 F -
2 F -
3 F -
4 F -
5 F -
s @ ©
/ F -
8 F -
9 F -
10 F -
11 F -
12 F -

72

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

<

marked|[] cc[]

(O—)

0 T 0

1 F -

2 F -

—

3 F -

4 F -

5 F -

3 4 11 @ 6 T 0

7 F -

c 8 F -
9 F -

10 F -

11 F -

visit 6: check 4

12 F -

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

(O—)

visit 4: check 5

11

v marked[] cc[]
0 T 0
1 F -
2 F -
3 F -
¢« @ ©
5 F -
6 T 0
/ F -
8 F -
9 F -
10 F -
11 F -
12 F -

74

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

(O—)

visit 5: check 3

11

v marked[] cc[]
0 T 0
1 _
2 F -
3 F -
4 T 0
INGING
6 T 0
/ F -
8 F -
9 F -
10 F -
11 F -
12 F -

75

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

(O—)

visit 3: check 5

11

<

marked|[] cc[]

- O

O 00 N O ui A W DN

T 0

©
0
0
0

'n-n'n-n'n'n—l—l—l@'n

76

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

(O—)

visit 3: check 4

v marked[] cc[]
0 T 0
1 _
2 F -
3 T 0
4 T 0
5 T 0
6 T 0
/ F -
8 F -
9 F -
10 F -
11 F -
12 F -

77

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

(O—)

3 done

v marked[] cc[]
0 T 0
1 _
2 F -
3 T 0
4 T 0
5 T 0
6 T 0
/ F -
8 F -
9 F -
10 F -
11 F -
12 F -

78

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

(O—)

visit 5: check 4

v marked[] cc[]
0 T 0
1 _
2 F -
3 T 0
4 T 0
5 T 0
6 T 0
/ F -
8 F -
9 F -
10 F -
11 F -
12 F -

79

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

(O—)

visit 5: check O

v marked[] cc[]
0 T 0
1 _
2 F -
3 T 0
4 T 0
5 T 0
6 T 0
/ F -
8 F -
9 F -
10 F -
11 F -
12 F -

80

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

(O—)

5 done

v marked[] cc[]
0 T 0
1 _
2 F -
3 T 0
4 T 0
5 T 0
6 T 0
/ F -
8 F -
9 F -
10 F -
11 F -
12 F -

8l

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

(O—)

visit 4: check 6

v marked[] cc[]
0 T 0
1 _
2 F -
3 T 0
4 T 0
5 T 0
6 T 0
/ F -
8 F -
9 F -
10 F -
11 F -
12 F -

82

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

(O—)

visit 4: check 3

v marked[] cc[]
0 T 0
1 _
2 F -
3 T 0
4 T 0
5 T 0
6 T 0
/ F -
8 F -
9 F -
10 F -
11 F -
12 F -

83

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

(O—)

4 done

v marked[] cc[]
0 T 0
1 _
2 F -
3 T 0
4 T 0
5 T 0
6 T 0
/ F -
8 F -
9 F -
10 F -
11 F -
12 F -

84

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

(O—)

6 done

v marked[] cc[]
0 T 0
1 _
2 F -
3 T 0
4 T 0
5 T 0
6 T 0
/ F -
8 F -
9 F -
10 F -
11 F -
12 F -

85

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

(O—)

visit 0: check 2

v marked[] cc[]
0 T 0
1 _
2 F -
3 T 0
4 T 0
5 T 0
6 T 0
/ F -
8 F -
9 F -
10 F -
11 F -
12 F -

86

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

(O—)

visit 2: check O

v marked[] cc[]
0 T 0
1 F -
. @ ©
3 T 0
4 T 0
5 T 0
6 T 0
/ F -
8 F -
9 F -
10 F -
11 F -
12 F -

87

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

(O—)

2 done

v marked[] cc[]
0 T 0
1 _
2 T 0
3 T 0
4 T 0
5 T 0
6 T 0
/ F -
8 F -
9 F -
10 F -
11 F -
12 F -

88

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

(O—)

visit 0: check 1

v marked[] cc[]
0 T 0
1 _
2 T 0
3 T 0
4 T 0
5 T 0
6 T 0
/ F -
8 F -
9 F -
10 F -
11 F -
12 F -

89

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

(O—)

visit 1: check O

v marked[] cc[]
0 T 0
@ ©
2 T 0
3 T 0
4 T 0
5 T 0
6 T 0
/ F -
8 F -
9 F -
10 F -
11 F -
12 F -

90

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

@ (O—)

o —@®

1 done

v marked[] cc[]
0 T 0
1 0
2 T 0
3 T 0
4 T 0
5 T 0
6 T 0
/ F -
8 F -
9 F -
10 F -
11 F -
12 F -

91

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

O (O—)

0 done

v marked[] cc[]
0 T 0
1 0
2 T 0
3 T 0
4 T 0
5 T 0
6 T 0
/ F -
8 F -
9 F -
10 F -
11 F -
12 F -

92

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

(O—)

D ®

connected component: 0 1 2 3 4 5 6

connected

component

v marked[] cc[]
0 T 0
] T 0
2 T 0
3 T 0
4 T 0
5 T 0
6 T 0
/ F -
8 F -
9 F -
10 F -
11 F -
12 F -

93

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

<

marked|[]

ccl]

(O—)

0

1

2
]
4

5

11 @ 6
7

8

9

10

check1 2 3 45 6 :;

L D I o R o I b .

94

Connected components

To visit a vertex v :
e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

<

marked|[]

ccl]

- O

@
OUDOO\IQU'ILUUI\)

— —
—]

visit 7: check 8

—
N

95

Connected components

To visit a vertex v :
e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

<

marked|[] cc[]

—©

0
]
2

—)
3
4
5

M @ 6
7 T]
s O O
9 F -
10 F -
11 F -

visit 8: check 7

12 F -

96

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

8 done

<

marked|[]

ccl]

- O

O 00 N O ui A W DN

- m Mmoo m - -

97

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

7 done

<

marked|[]

ccl]

- O

O 00 N O ui A W DN

- m Mmoo m - -

98

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

o—O

connected component: 7 8

<

marked|[]

ccl]

- O

O 00 N O ui A W DN

- m Mmoo m - -

99

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

<

marked|[] cc[]

0
]
2
o —
3
4
5
M @ 6
7
8
9 F -
10 F -
11 F -
check 8
12 F -

100

Connected components

To visit a vertex v :
e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

<

marked|[] cc[]

0

1

2

3

4

5

6

/

8

s ® @

10 F _
visit 9: check 11 11 F -

12 F _

0l

Connected components

To visit a vertex v :
e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

<

marked|[] cc[]

- O

@
OUDOO\IQU'ILUUI\)

-
F
11
visit 11: check 9 @ @
F

102

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

<

marked|[] cc[]

0

1

2

3

4

5

6

7

8

9 T 2

10 F =
visit 11: check 12 H ! :

12 F -

103

Connected components

To visit a vertex v :
e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

<

marked|[] cc[]

- O

2

OUDOO\IQU'ILUUI\)

—

.
F
T 2
12 (T) @m

—
—]

visit 12: check 11

4

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

v marked[] cc]]
0
1
2
3
4
| 5
| 6
7
8
9 T 2
10 F -
visit 12: check 9 H ! ‘
12 T 2

105

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

\% marked[] cc[]
0
1
2

o
3
4
5
6
7
8
9 T 2
10 F —
11 T 2
12 done

12 T 2

106

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

\% marked[] cc[]
0
1
2

o
3
4
5
6
7
8
9 T 2
10 F —
11 T 2
11 done

12 T 2

107

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

v marked[] cc[]

0

]

2

3

4

5

6

7

8

9 T 2

10 F -
visit 9: check 10 N ! :

12 T 2

108

Connected components

To visit a vertex v :
e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

v marked[] cc]]
0
1
2
3
4
5
6
/
8
9 T 2
INGING
visit 10: check 9 11 T 2
12 T 2

109

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

<

marked|[] cc[]

0

1

2

3

4

5

6

7

8

9 T 2

10 T 2
10 done N ! :

12 T 2

110

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

<

marked|[]

ccl]

- O

OUDOO\IQU'ILUUI\)

— —
—]

9 done

—
N

- 4 4 -

N NN NN

Connected components

To visit a vertex v :

e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

<

marked|[] cc[]

0

1

2

3

4

5

6

7

8

9 T 2

10 T 2
connected component: 9 10 11 12 11 T 2

12 T 2

112

Connected components

To visit a vertex v :
e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

<

marked|[] cc[]

- O

O@OO\IQU'ILUUI\)

— —
—]

check 10 11 12

—
N

13

Connected components

To visit a vertex v :
e Mark vertex v as visited.

® Recursively visit all unmarked vertices adjacent to v.

v marked[] cc[]
0 T 0
] 0
2 T 0
3 T 0
4 T 0
5 T 0
6 T 0
7 T 1
8 T 1
9 T 2
10 T 2
done ' ! ‘
12 T 2

114

Finding connected components with DFS

public class CC
{

private boolean marked[];
private int[] id;
private int count;

public CC(Graph G)
{

marked = new boolean[G.V()];
id = new int[G.V ()],
for (int v = 0; v < G.V(); v++)

{
if ('marked[v])
{
dfs (G, v); <€
count++;
}
}

public int count ()
public int id(int wv)
private void dfs (Graph G, int v)

id[v] = id of component containing v

number of components

run DFS from one vertex in

each component

see next slide

15

Finding connected components with DFS (continued)

public int count ()
{ return count; }

< number of components

public int id(int wv) <
{ return id[v]; }

id of component containing v

private void dfs (Graph G, int v)
{

marked|[v] = true; .))
[v] ’ all vertices discovered in

id[v] = count; <
for (int w : G.adj(v))
if ('marked[w])
dfs (G, w);

same call of dfs have same id

116

» Graph API

» Depth-first search

» Breadth-first search

» Connected components
» Challenges

Graph-processing challenge |

Problem. Is a graph bipartite!?

B D DMV R O O OO
|
o U1 d W WO UL K

How difficult?

® Any programmer could do it.
e Typical diligent algorithms student could do it.

® Hire an expert.

e Intractable.

e No one knows.

® Impossible.

B b DM PR OO O O
I
o U1 b W WoOH UL DKL

118

Graph-processing challenge |

Problem. Is a graph bipartite!?

B D DMV R O O OO
|
o U1 d W WO UL K

How difficult?

® Any programmer could do it.

V' e Typical diligent algorithms student could do it.
® Hire an expert. \
® Intractable.

simple DFS-based solution
® NO one knOWS. (see textbook)

® Impossible.

B b DM PR OO O O
I
o U1 b W WoOH UL DKL

119

Graph-processing challenge 2

Problem. Find a cycle.

How difficult? e o

® Any programmer could do it.

B D DMV R O O OO
|
o U1 d W WO UL K

e Typical diligent algorithms student could do it.
® Hire an expert.

® Intractable.

® No one knows.

® Impossible. e e e

120

Graph-processing challenge 2

Problem. Find a cycle.

0-1
0-2
0-5
0-6
() (2) (&
How difficult? oo™
ow difficult? e
e Any programmer could do it. : j_g
Ve Typical diligent algorithms student could do it. 4-6
® Hire an expert. \
e |ntractable. simple DFS-based solution e
* No one knows. S URRIEY

® Impossible. e e e

121

Bridges of Konigsberg

The Seven Bridges of Konigsberg. [Leonhard Euler |736]

“...in Konigsberg in Prussia, there is an island A, called the
Kneiphof; the river which surrounds it is divided into two branches ...
and these branches are crossed by seven bridges. Concerning these

bridges, it was asked whether anyone could arrange a route in such a

way that he could cross each bridge once and only once. ”

Euler tour. Is there a (general) cycle that uses each edge exactly once!?
Answer. Yes iff connected and all vertices have even degree.
To find path. DFS-based algorithm (see textbook).

122

Graph-processing challenge 3

Problem. Find a cycle that uses every edge.
Assumption. Need to use each edge exactly once.

How difficult?

® Any programmer could do it.

_ D W dMNDMNN PR OO O O
|
o Ul d W NMDOOOGLDNR

e Typical diligent algorithms student could do it.
e Hire an expert. 0-1-2-3-4-2-0-6-4-5-0
® |ntractable.

® No one knows.

® Impossible.

123

Graph-processing challenge 3

Problem. Find a cycle that uses every edge.
Assumption. Need to use each edge exactly once.

0-1

0-2

0-5

0-6

. 1-2

How difficult? .-

e Any programmer could do it. 2—:

V' e Typical diligent algorithms student could do it. 45

e Hire an expert \ 0-1-2-3-4-2-0-6-4-5-0 4-6

® Intractable. Eulerian tour

e No one knows. (classic graph-processing problem)

® Impossible.

124

Graph-processing challenge 4

Problem. Find a cycle that visits every vertex exactly once.

0-1
0-2

0-5

0-6

1-2

2-6

: 3-4

How difficult? -
e Any programmer could do it. 4-5
0-5-3-4-6-2-1-0 4-6

e Typical diligent algorithms student could do it.
® Hire an expert.

® Intractable.

® No one knows.

® Impossible.

125

Graph-processing challenge 4

Problem. Find a cycle that visits every vertex.
Assumption. Need to visit each vertex exactly once.

How difficult?

® Any programmer could do it.

e Typical diligent algorithms student could do it.

= B W W hbDNPR OO OO
|
o 0t 1 dOYNMOOULDN K

0-5-3-4-6-2-1-0

® Hire an expert.
V' e Intractable. \

Hamiltonian cycle
¢ No one knows. rronan ¢y

. (classical NP-complete problem)
® Impossible.

126

Graph-processing challenge 5

Problem. Are two graphs identical except for vertex names!?

0-1
0-2
0-5
0-6
: 3-4
How difficult? -
e Any programmer could do it. :-2
e Typical diligent algorithms student could do it.
® Hire an expert.
o
Intractable. e
e No one knows. 0-5
® Impossible. 2:2
1-5
2-4
3-4
5-6

0<4, 1<3, 22, 3<6, 4<5, 5<0, 6<1

127

Graph-processing challenge 5

Problem. Are two graphs identical except for vertex names!?

How difficult?

® Any programmer could do it. - /

e Typical diligent algorithms student could do it.

= b W Ww o O O O
| |
o Ot U1 O UN KR

® Hire an expert.
¢ Intractable.

0-4
v" ® No one knows. 0-5
. 0-6
® Impossible. \
graph isomorphism is 1-4
) 1-5
longstanding open problem -
3-4
5-6

128

Graph-processing challenge 6

Problem. Lay out a graph in the plane without crossing edges?

How difficult?

® Any programmer could do it.

= b W Ww o O O O
|
o Ot U1 O UN KR

e Typical diligent algorithms student could do it.
® Hire an expert.

® Intractable.

® No one knows.

® Impossible.

129

Graph-processing challenge 6

Problem. Lay out a graph in the plane without crossing edges?

How difficult?

® Any programmer could do it.

= b W Ww o O O O
|
o Ot U1 O UN KR

e Typical diligent algorithms student could do it.
V' e Hire an expert.

e |ntractable. \

e No one knows. linear-time DFS-based planarity algorithm

° Impossible. discovered by Tarjan in 1970s

(too complicated for practitioners)

130

