
BBM 202 - ALGORITHMS

UNDIRECTED GRAPHS 

 
DEPT. OF COMPUTER ENGINEERING

Acknowledgement:	The	course	slides	are	adapted	from	the	slides	prepared	by	R.	Sedgewick	 
and	K.	Wayne	of	Princeton	University.

TODAY 

‣ Undirected Graphs
‣ Graph API
‣ Depth-first search
‣ Breadth-first search
‣ Connected components
‣ Challenges

Graph. Set of vertices connected pairwise by edges.
 
Why study graph algorithms?
• Thousands of practical applications.

• Hundreds of graph algorithms known.

• Interesting and broadly useful abstraction.

• Challenging branch of computer science and discrete math.

 3

Undirected graphs

 4

Graph applications

graph vertex edge

communication telephone, computer fiber optic cable

circuit gate, register, processor wire

mechanical joint rod, beam, spring

financial stock, currency transactions

transportation street intersection, airport highway, airway route

internet class C network connection

game board position legal move

social relationship person, actor friendship, movie cast

neural network neuron synapse

protein network protein protein-protein interaction

chemical compound molecule bond

 5

Graph terminology

Path. Sequence of vertices connected by edges.
Cycle. Path whose first and last vertices are the same.

Two vertices are connected if there is a path between them.

Anatomy of a graph

cycle of
length 5

vertex

vertex of
degree 3

edge

path of
length 4

connected
components

 6

Some graph-processing problems

Path. Is there a path between s and t ?
Shortest path. What is the shortest path between s and t ?
 
Cycle. Is there a cycle in the graph?  
Euler tour. Is there a cycle that uses each edge exactly once? 
Hamilton tour. Is there a cycle that uses each vertex exactly once?
 
Connectivity. Is there a way to connect all of the vertices?  
MST. What is the best way to connect all of the vertices?  
Biconnectivity. Is there a vertex whose removal disconnects the graph?
 
Planarity. Can you draw the graph in the plane with no crossing edges?  
Graph isomorphism. Do two adjacency lists represent the same graph?
 
Challenge. Which of these problems are easy? difficult? intractable?

UNDIRECTED GRAPHS

‣ Graph API
‣ Depth-first search
‣ Breadth-first search
‣ Connected components
‣ Challenges

Graph drawing. Provides intuition about the structure of the graph.  
 
 
 
 
 
 
 
 
 
 
 
 

Caveat. Intuition can be misleading.

 8

Graph representation

Two drawings of the same graph

Two drawings of the same graphtwo drawings of the same graph

Vertex representation.
• This lecture: use integers between 0 and V – 1.

• Applications: convert between names and integers with symbol table.

 
 
 
 
 
 
 
 
 
 
 
Anomalies.

A

G

E

CB

F

D

 9

Graph representation

symbol table

0

6

4

21

5

3

Anomalies

parallel
edges

self-loop

 10

Graph API

 public class Graph

Graph(int V) create an empty graph with V vertices

Graph(In in) create a graph from input stream

void addEdge(int v, int w) add an edge v-w

Iterable<Integer> adj(int v) vertices adjacent to v

int V() number of vertices

int E() number of edges

String toString() string representation

In in = new In(args[0]);
Graph G = new Graph(in);

for (int v = 0; v < G.V(); v++)
 for (int w : G.adj(v))
 StdOut.println(v + "-" + w);

read graph from

input stream

print out each

edge (twice)

 11

Graph input format.

Graph API: sample client

13
13
0 5
4 3
0 1
9 12
6 4
5 4
0 2
11 12
9 10
0 6
7 8
9 11
5 3

tinyG.txt

Input format for Graph constructor (two examples)

250
1273
244 246
239 240
238 245
235 238
233 240
232 248
231 248
229 249
228 241
226 231
...
(1261 additional lines)

mediumG.txt
V

E
V

E
% java Test tinyG.txt
0-6
0-2
0-1
0-5
1-0
2-0
3-5
3-4
…
12-11
12-9

In in = new In(args[0]);
Graph G = new Graph(in);

for (int v = 0; v < G.V(); v++)
 for (int w : G.adj(v))
 StdOut.println(v + "-" + w);

read graph from

input stream

print out each

edge (twice)

 12

Typical graph-processing code
task implementation

compute the degree of v

public static int degree(Graph G, int v)
{
 int degree = 0;
 for (int w : G.adj(v)) degree++;
 return degree;
}

compute maximum degree

public static int maxDegree(Graph G)
{
 int max = 0;
 for (int v = 0; v < G.V(); v++)
 if (degree(G, v) > max)
 max = degree(G, v);
 return max;
}

compute average degree
public static double averageDegree(Graph G)
{ return 2.0 * G.E() / G.V(); }

count self-loops

public static int numberOfSelfLoops(Graph G)
{
 int count = 0;
 for (int v = 0; v < G.V(); v++)
 for (int w : G.adj(v))
 if (v == w) count++;
 return count/2; // each edge counted twice
}

string representation of the
graph’s adjacency lists

(instance method in Graph)

public String toString()
{
 String s = V + " vertices, " + E + " edges\n";
 for (int v = 0; v < V; v++)
 {
 s += v + ": ";
 for (int w : this.adj(v))
 s += w + " ";
 s += "\n";
 }
 return s;
}

Typical graph-processing code

5234.1 n Undirected Graphs

Maintain a list of the edges (linked list or array).

 13

Set-of-edges graph representation

 0 1
 0 2
 0 5
 0 6
 3 4
 3 5
 4 5
 4 6
 7 8
 9 10
 9 11
 9 12
11 12

87

109

1211

0

6

4

21

5

3

Maintain a two-dimensional V-by-V boolean array; 
for each edge v–w in graph: adj[v][w] = adj[w][v] = true.

0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 1 1 0 0 1 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 1 1 0 0 0 0 0 0 0

4 0 0 0 1 0 1 1 0 0 0 0 0 0

5 1 0 0 1 1 0 0 0 0 0 0 0 0

6 1 0 0 0 1 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 1 0 0 0 0

8 0 0 0 0 0 0 0 1 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 1 1 1

10 0 0 0 0 0 0 0 0 0 1 0 0 0

11 0 0 0 0 0 0 0 0 0 1 0 0 1

12 0 0 0 0 0 0 0 0 0 1 0 1 0

 14

Adjacency-matrix graph representation

two entries

for each edge

109

1211

0

6

4

21

5

3

87

Maintain vertex-indexed array of lists.

 15

Adjacency-list graph representation

109

1211

0

6

4

21

5

3

adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 4

0 4

9 12

11 9

0

0

8

7

9

5 6 3

3 4 0

11 10 12

6 2 1 5

Adjacency-lists representation (undirected graph)

Bag objects

representations
of the same edge

87

 16

Adjacency-list graph representation: Java implementation

public class Graph
{
 private final int V;
 private Bag<Integer>[] adj;

 public Graph(int V)
 {
 this.V = V;
 adj = (Bag<Integer>[]) new Bag[V];
 for (int v = 0; v < V; v++)
 adj[v] = new Bag<Integer>();
 }

 public void addEdge(int v, int w)
 {
 adj[v].add(w);
 adj[w].add(v);
 }

 public Iterable<Integer> adj(int v)
 { return adj[v]; }
}

adjacency lists

(using Bag data type)

create empty graph 
with V vertices

add edge v-w  
(parallel edges allowed)

iterator for vertices adjacent to v

In practice. Use adjacency-lists representation.
• Algorithms based on iterating over vertices adjacent to v.

• Real-world graphs tend to be sparse.

 17

Graph representations

huge number of vertices, 
small average vertex degree

sparse (E = 200) dense (E = 1000)

Two graphs (V = 50)

In practice. Use adjacency-lists representation.
• Algorithms based on iterating over vertices adjacent to v.

• Real-world graphs tend to be sparse.

 18

Graph representations

representation space add edge
edge between

v and w?

iterate over vertices

adjacent to v?

list of edges E 1 E E

adjacency matrix V 2 1 * 1 V

adjacency lists E + V 1 degree(v) degree(v)

huge number of vertices, 
small average vertex degree

* disallows parallel edges

UNDIRECTED GRAPHS

‣ Graph API
‣ Depth-first search
‣ Breadth-first search
‣ Connected components
‣ Challenges

 20

Maze exploration

Maze graphs.
• Vertex = intersection.

• Edge = passage.

Goal. Explore every intersection in the maze.

intersection passage

Algorithm.
• Unroll a ball of string behind you.

• Mark each visited intersection and each visited passage.

• Retrace steps when no unvisited options.

 21

Trémaux maze exploration

Tremaux exploration

Goal. Systematically search through a graph.
Idea. Mimic maze exploration.
 
 
 
 
 
 
 
Typical applications.
• Find all vertices connected to a given source vertex.

• Find a path between two vertices.  

Design challenge. How to implement?

Depth-first search

Mark v as visited.
Recursively visit all unmarked
 vertices w adjacent to v.

DFS (to visit a vertex v)

 23

Design pattern. Decouple graph data type from graph processing.
• Create a Graph object.

• Pass the Graph to a graph-processing routine, e.g., Paths.

• Query the graph-processing routine for information.

Design pattern for graph processing

 Paths paths = new Paths(G, s);
 for (int v = 0; v < G.V(); v++)
 if (paths.hasPathTo(v))
 StdOut.println(v);

print all vertices 
connected to s

 public class Paths

Paths(Graph G, int s) find paths in G from source s

boolean hasPathTo(int v) is there a path from s to v?

Iterable<Integer> pathTo(int v) path from s to v; null if no such path

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

87

109

1211

0

6

4

21

5

3

Depth-first search

 24

graph G

87

109

1211

0

6

4

21

5

3

87

109

1211

0

6

4

21

5

3

13
13
0 5
4 3
0 1
9 12
6 4
5 4
0 2
11 12
9 10
0 6
7 8
9 11
5 3

tinyG.txt

Input format for Graph constructor (two examples)

250
1273
244 246
239 240
238 245
235 238
233 240
232 248
231 248
229 249
228 241
226 231
...
(1261 additional lines)

mediumG.txt
V

E
V

E

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

0

4

5

621

3

Depth-first search

 25

vertices reachable from 0

87

109

1211

87

109

1211

0

1

2

3

4

5

6

7

8

9

10

11

12

v marked[]

T

T

T

T

T

T

T

F

F

F

F

F

F

edgeTo[v]

–

0

0

5

6

4

0

–

–

–

–

–

–

Goal. Find all vertices connected to s (and a path).
Idea. Mimic maze exploration.
 
Algorithm.
• Use recursion (ball of string).

• Mark each visited vertex (and keep track of edge taken to visit it).

• Return (retrace steps) when no unvisited options.

 
Data structures.
• boolean[] marked to mark visited vertices.

• int[] edgeTo to keep tree of paths.  
(edgeTo[w] == v) means that edge v-w taken to visit w for first time

Depth-first search

 27

Depth-first search

public class DepthFirstPaths
{
 private boolean[] marked;
 private int[] edgeTo;
 private int s;

 public DepthFirstSearch(Graph G, int s)
 {
 ...
 dfs(G, s);
 }

 private void dfs(Graph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w])
 {
 dfs(G, w);
 edgeTo[w] = v;
 }
 }
}

marked[v] = true

if v connected to s

find vertices connected to s

recursive DFS does the

work

edgeTo[v] = previous

vertex on path from s to v

initialize data structures

Depth-first search properties

Proposition. DFS marks all vertices connected to s in time proportional to 
the sum of their degrees.  

Pf.
• Correctness:

- if w marked, then w connected to s (why?)

- if w connected to s, then w marked 
(if w unmarked, then consider last edge 
on a path from s to w that goes from a 
marked vertex to an unmarked one)

• Running time:  
Each vertex connected to s is visited once.

 28

set of
unmarked

vertices

no such edge
can exist

source

v

s

set of marked
vertices

w

x

Proposition. After DFS, can find vertices connected to s in constant time
and can find a path to s (if one exists) in time proportional to its length.

 
Pf. edgeTo[] is a parent-link representation of a tree rooted at s.

 29

Depth-first search properties

 public boolean hasPathTo(int v)
 { return marked[v]; }

 public Iterable<Integer> pathTo(int v)
 {
 if (!hasPathTo(v)) return null;
 Stack<Integer> path = new Stack<Integer>();
 for (int x = v; x != s; x = edgeTo[x])
 path.push(x);
 path.push(s);
 return path;
 }

Trace of pathTo() computation

edgeTo[]
 0
 1 2
 2 0
 3 2
 4 3
 5 3

5 5
3 3 5
2 2 3 5
0 0 2 3 5

x path

UNDIRECTED GRAPHS

‣ Graph API
‣ Depth-first search
‣ Breadth-first search
‣ Connected components
‣ Challenges

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 31

graph G

0

4

2

1

5

3

adj[]
0

1

2

3

4

5

2 1 5

0 2

5 4 2

3 2

3 0

0 1 3 4

6
8
0 5
2 4
2 3
1 2
0 1
3 4
3 5
0 2

tinyCG.txt standard drawing

drawing with both edges

adjacency lists

A connected undirected graph

V
E

0

4

2

1

5

3

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 32

add 0 to queue

0

4

2

1

5

3

4

2

1

5

3

0

1

2

3

4

5

v edgeTo[v]

–

–

–

–

–

–

queue00

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 33

0

4

2

1

5

3

0

4

2

1

5

3

0

1

2

3

4

5

v edgeTo[v]

–

–

–

–

–

–

queue

dequeue 0

0

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 34

0

4

2

1

5

3

0

4

2

1

5

3

0

1

2

3

4

5

v edgeTo[v]

–

–

–

–

–

–

queue

dequeue 0

22

0

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 35

0

4

2

1

5

3

0

4

2

1

5

3

0

1

2

3

4

5

v edgeTo[v]

–

–

0

–

–

–

queue

2

dequeue 0

2

11
0

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 36

dequeue 0

0

4

2

1

5

3

0

4

2

1

5

3

0

1

2

3

4

5

v edgeTo[v]

–

0

0

–

–

–

queue

2

1

2

1

55 0

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 37

0 done

0

4

2

1

5

3

4

2

1

5

3

0

1

2

3

4

5

v edgeTo[v]

–

0

0

–

–

0

queue

2

1

2

1

5

5

0

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 38

dequeue 2

0

4

2

1

5

3

4

2

1

5

3

0

1

2

3

4

5

v edgeTo[v]

–

0

0

–

–

0

queue

2

1

5

1

5

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 39

dequeue 2

0

4

2

1

5

3

4

2

1

5

3

0

1

2

3

4

5

v edgeTo[v]

–

0

0

–

–

0

queue

1

5

1

5

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 40

dequeue 2

0

4

2

1

5

3

4

2

1

5

3

0

1

2

3

4

5

v edgeTo[v]

–

0

0

–

–

0

queue

1

5

1

5

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 41

dequeue 2

0

4

2

1

5

3

4

2

1

5

3

0

1

2

3

4

5

v edgeTo[v]

–

0

0

–

–

0

queue

1

5

1

5

33

2

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 42

dequeue 2

0

4

2

1

5

3

4

2

1

5

3

0

1

2

3

4

5

v edgeTo[v]

–

0

0

2

–

0

queue

1

5

1

5

3

3

44

2

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 43

2 done

0

4

2

1

5

3

4

2

1

5

3

0

1

2

3

4

5

v edgeTo[v]

–

0

0

2

2

0

queue

1

5

1

5

3

3

4

4

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 44

dequeue 1

0

4

2

1

5

3

4

1

5

3

0

1

2

3

4

5

v edgeTo[v]

–

0

0

2

2

0

queue

1

5
5

3

3

4

4

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 45

dequeue 1

0

4

2

1

5

3

4

1

5

3

0

1

2

3

4

5

v edgeTo[v]

–

0

0

2

2

0

queue

5

3

4

5

3

4

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 46

dequeue 1

0

4

2

1

5

3

4

1

5

3

0

1

2

3

4

5

v edgeTo[v]

–

0

0

2

2

0

queue

5

5

3
3

4

4

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 47

1 done

0

4

2

1

5

3

4

1

5

3

0

1

2

3

4

5

v edgeTo[v]

–

0

0

2

2

0

queue

5

5

3
3

4

4

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 48

dequeue 5

0

4

2

1

5

3

45

3

0

1

2

3

4

5

v edgeTo[v]

–

0

0

2

2

0

queue

5

3
3

4

4

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 49

dequeue 5

0

4

2

1

5

3

45

3

0

1

2

3

4

5

v edgeTo[v]

–

0

0

2

2

0

queue

3

3

4
4

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 50

dequeue 5

0

4

2

1

5

3

45

3

0

1

2

3

4

5

v edgeTo[v]

–

0

0

2

2

0

queue

3

3

4
4

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 51

5 done

0

4

2

1

5

3

45

3

0

1

2

3

4

5

v edgeTo[v]

–

0

0

2

2

0

queue

3

3

4
4

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 52

dequeue 3

0

4

2

1

5

3

4

0

1

2

3

4

5

v edgeTo[v]

–

0

0

2

2

0

queue

3

3

4
4

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 53

dequeue 3

0

4

2

1

5

3

4

0

1

2

3

4

5

v edgeTo[v]

–

0

0

2

2

0

queue

3

4

4

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 54

dequeue 3

0

4

2

1

5

3

4

0

1

2

3

4

5

v edgeTo[v]

–

0

0

2

2

0

queue

3

4

4

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 55

dequeue 3

0

4

2

1

5

3

4

0

1

2

3

4

5

v edgeTo[v]

–

0

0

2

2

0

queue

3

4

4

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

33

Breadth-first search

 56

3 done

0

4

2

1

5 4

0

1

2

3

4

5

v edgeTo[v]

–

0

0

2

2

0

queue

4

4

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 57

dequeue 4

0

4

2

1

5

3

4

0

1

2

3

4

5

v edgeTo[v]

–

0

0

2

2

0

queue

4

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 58

dequeue 4

0

4

2

1

5

3

4

0

1

2

3

4

5

v edgeTo[v]

–

0

0

2

2

0

queue

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 59

dequeue 4

0

4

2

1

5

3

4

0

1

2

3

4

5

v edgeTo[v]

–

0

0

2

2

0

queue

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 60

4 done

0

4

2

1

5

3

4

0

1

2

3

4

5

v edgeTo[v]

–

0

0

2

2

0

queue

Repeat until queue is empty:
• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

 61

done

0

1

2

3

4

5

v edgeTo[v]

–

0

0

2

2

0

0

4

2

1

5

3

Depth-first search. Put unvisited vertices on a stack.
Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to t that uses fewest number of edges.

Intuition. BFS examines vertices in increasing distance from s.

 62

Breadth-first search

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:
 - remove the least recently added vertex v
 - add each of v's unvisited neighbors to the queue,  
 and mark them as visited.

BFS (from source vertex s)

Breadth-first
maze exploration

Proposition. BFS computes shortest path (number of edges) from s  
in a connected graph in time proportional to E + V.

 
Pf. [correctness] Queue always consists of zero or more vertices of
distance k from s, followed by zero or more vertices of distance k + 1.
 
Pf. [running time] Each vertex connected to s is visited once.

Breadth-first search properties

 63

0

4

2

1

5
3

standard drawing

0

4

2

1

5

3

dist = 0 dist = 1 dist = 2

 64

Breadth-first search

public class BreadthFirstPaths
{
 private boolean[] marked;
 private boolean[] edgeTo[];
 private final int s;
 …

 private void bfs(Graph G, int s)
 {
 Queue<Integer> q = new Queue<Integer>();
 q.enqueue(s);
 marked[s] = true;
 while (!q.isEmpty())
 {
 int v = q.dequeue();
 for (int w : G.adj(v))
 {
 if (!marked[w])
 {
 q.enqueue(w);
 marked[w] = true;
 edgeTo[w] = v;
 }
 }
 }
 }
}

UNDIRECTED GRAPHS

‣ Graph API
‣ Depth-first search
‣ Breadth-first search
‣ Connected components
‣ Challenges

Def. Vertices v and w are connected if there is a path between them.
 
Goal. Preprocess graph to answer queries: is v connected to w ?  
in constant time.
 
 
 
 
 
 
 
 
 
 
Depth-first search. [next few slides]

 66

Connectivity queries

 public class CC

CC(Graph G) find connected components in G

boolean connected(int v, int w) are v and w connected?

int count() number of connected components

int id(int v) component identifier for v  

The relation "is connected to" is an equivalence relation:
• Reflexive: v is connected to v.

• Symmetric: if v is connected to w, then w is connected to v.

• Transitive: if v connected to w and w connected to x, then v connected to x.

 
Def. A connected component is a maximal set of connected vertices.
 
 
 
 
 
 
 
 
Remark. Given connected components, can answer queries in constant time.

 67

Connected components

 v id[v]
 0 0 
 1 0
 2 0 
 3 0
 4 0 
 5 0
 6 0 
 7 1
 8 1
 9 2
 10 2
 11 2
 12 2

87

109

1211

0

6

4

21

5

3

3 connected components

Def. A connected component is a maximal set of connected vertices.

 68

Connected components

63 connected components

Goal. Partition vertices into connected components.

 69

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all
vertices discovered as part of the same component.

Connected components

13
13
0 5
4 3
0 1
9 12
6 4
5 4
0 2
11 12
9 10
0 6
7 8
9 11
5 3

tinyG.txt

Input format for Graph constructor (two examples)

250
1273
244 246
239 240
238 245
235 238
233 240
232 248
231 248
229 249
228 241
226 231
...
(1261 additional lines)

mediumG.txt
V

E
V

E

13
13
0 5
4 3
0 1
9 12
6 4
5 4
0 2
11 12
9 10
0 6
7 8
9 11
5 3

tinyG.txt

Input format for Graph constructor (two examples)

250
1273
244 246
239 240
238 245
235 238
233 240
232 248
231 248
229 249
228 241
226 231
...
(1261 additional lines)

mediumG.txt
V

E
V

E

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

87

109

1211

0

6

4

21

5

3

Connected components

 70

graph G

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

F

F

F

F

F

F

F

F

F

F

F

F

F

87

109

1211

0

6

4

21

5

3

87

109

1211

0

6

4

21

5

3

cc[]

–

–

–

–

–

–

–

–

–

–

–

–

–

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

00 87

109

1211

6

4

21

5

3

Connected components

 71

visit 0: check 6, check 2, check 1 and check 5

87

109

1211

6

4

21

5

3

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

F

F

F

F

F

F

F

F

F

F

cc[]

0

–

–

–

–

–

–

–

–

–

–

–

–

0

–

–

–

–

–

0

–

–

–

–

–

–

66

00

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

4

21

5

3

Connected components

 72

visit 6: check 0 and check 4

4

21

5

3

87

109

1211

87

109

1211

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

F

F

F

T

F

F

F

F

F

F

cc[]

00

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

6

4

21

5

3

Connected components

 73

visit 6: check 0 and check 4

6

4

21

5

3

6

87

109

1211

87

109

1211

0

–

–

–

–

–

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

F

F

F

T

F

F

F

F

F

F

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

00

66

4

21

5

3

Connected components

 74

visit 4: check 5, check 6 and check 3

4

21

5

3 4

87

109

1211

87

109

1211

0

–

–

–

0

–

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

F

T

F

T

F

F

F

F

F

F

cc[]

00

44

66

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

21

5

3

Connected components

 75

visit 5: check 3, check 4 and check 0

21

5

3

5

87

109

1211

87

109

1211

0

–

–

–

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

F

T

T

T

F

F

F

F

F

F

cc[]

55

00

44

66

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

21

3

Connected components

 76

visit 3: check 5 and check 4

21

3

87

109

1211

87

109

1211

0

–

–

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

T

T

T

T

F

F

F

F

F

F

cc[]

55

00

44

66

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

21

3

Connected components

 77

visit 3: check 5 and check 4

21

3

87

109

1211

87

109

1211

0

–

–

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

T

T

T

T

F

F

F

F

F

F

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

55

00

44

6621

3

Connected components

 78

3 done

21

3

87

109

1211

87

109

1211

5

0

–

–

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

T

T

T

T

F

F

F

F

F

F

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

55

00

44

6621

3

Connected components

 79

visit 5: check 3, check 4 and check 0

21

87

109

1211

87

109

1211

5

0

–

–

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

T

T

T

T

F

F

F

F

F

F

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

55

00

44

6621

3

Connected components

 80

visit 5: check 3, check 4 and check 0

21

87

109

1211

87

109

1211

5

0

–

–

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

T

T

T

T

F

F

F

F

F

F

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

5

00

44

6621

3

Connected components

 81

5 done

21

87

109

1211

87

109

1211

5

4

0

–

–

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

T

T

T

T

F

F

F

F

F

F

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

5

00

44

6621

3

Connected components

 82

visit 4: check 5, check 6 and check 3

21

87

109

1211

87

109

12114

0

–

–

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

T

T

T

T

F

F

F

F

F

F

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

5

00

44

6621

3

Connected components

 83

visit 4: check 5, check 6 and check 3

21

87

109

1211

87

109

12114

0

–

–

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

T

T

T

T

F

F

F

F

F

F

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

4

5

00

6621

3

Connected components

 84

4 done

21

87

109

1211

87

109

12114

6

0

–

–

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

T

T

T

T

F

F

F

F

F

F

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

6

4

5

00

21

3

Connected components

 85

6 done

21

87

109

1211

87

109

1211

0

6

0

–

–

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

T

T

T

T

F

F

F

F

F

F

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

4

5

00

621

3

Connected components

 86

visit 0: check 6, check 2, check 1 and check 5

21

87

109

1211

87

109

1211

0

0

–

–

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

T

T

T

T

F

F

F

F

F

F

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

4

5

00

621

3

Connected components

 87

visit 2: check 0

21

87

109

1211

87

109

1211

0

–

0

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

T

T

T

T

T

F

F

F

F

F

F

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

4

5

00

621

3

Connected components

 88

2 done

21

87

109

1211

87

109

1211

0

0

–

0

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

T

T

T

T

T

F

F

F

F

F

F

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

4

5

00

621

3

Connected components

 89

visit 0: check 6, check 2, check 1 and check 5

1

87

109

1211

87

109

1211

0

0

–

0

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

T

T

T

T

T

F

F

F

F

F

F

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

4

5

00

621

3

Connected components

 90

visit 1: check 0

1

87

109

1211

87

109

1211

0

0

0

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

F

F

F

F

F

F

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

4

5

00

621

3

Connected components

 91

1 done

1

87

109

1211

87

109

1211

0

0

0

0

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

F

F

F

F

F

F

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

00

4

5

621

3

Connected components

 92

0 done

87

109

1211

87

109

1211

0

0

0

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

F

F

F

F

F

F

cc[]

T

T

T

T

T

T

T

F

F

F

F

F

F

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

Connected components

 93

connected component: 0 1 2 3 4 5 6

87

109

1211

87

109

1211

connected

component

0

4

5

621

3

0

0

0

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

0

4

5

621

3

Connected components

 94

check 1 2 3 4 5 6

87

109

1211

87

109

1211

0

0

0

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

F

F

F

F

F

F

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

0

4

5

621

3

Connected components

 95

visit 7: check 8

87

109

1211

87

109

1211

0

0

0

0

0

0

0

1

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

F

F

F

F

F

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

0

4

5

621

3

Connected components

 96

visit 8: check 7

87

109

1211

87

109

1211

0

0

0

0

0

0

0

1

1

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

F

F

F

F

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

0

4

5

621

3

Connected components

 97

8 done

87

109

1211

7

109

1211

87

0

0

0

0

0

0

0

1

1

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

F

F

F

F

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

70

4

5

621

3

Connected components

 98

7 done

8

109

1211

109

1211

7

0

0

0

0

0

0

0

1

1

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

F

F

F

F

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

70

4

5

621

3

Connected components

 99

connected component: 7 8

8

109

1211

109

1211

7 8

0

0

0

0

0

0

0

1

1

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

F

F

F

F

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

70

4

5

621

3

Connected components

 100

check 8

8

109

1211

109

1211

0

0

0

0

0

0

0

1

1

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

F

F

F

F

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

70

4

5

621

3

Connected components

 101

visit 9: check 11, check 10 and check 12

8

109

1211

109

1211

0

0

0

0

0

0

0

1

1

2

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

T

F

F

F

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

70

4

5

621

3

Connected components

 102

visit 11: check 9 and check 12

8

109

1211

109

1211

0

0

0

0

0

0

0

1

1

2

–

2

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

T

F

T

F

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

70

4

5

621

3

Connected components

 103

visit 11: check 9 and check 12

8

109

1211

109

1211

0

0

0

0

0

0

0

1

1

2

–

2

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

T

F

T

F

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

70

4

5

621

3

Connected components

 104

visit 12: check 11 and check 9

8

109

1211

109

1211

0

0

0

0

0

0

0

1

1

2

–

2

2

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

T

F

T

T

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

70

4

5

621

3

Connected components

 105

visit 12: check 11 and check 9

8

109

1211

109

1211

0

0

0

0

0

0

0

1

1

2

–

2

2

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

T

F

T

T

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

70

4

5

621

3

Connected components

 106

12 done

8

109

1211

109

11 1211

0

0

0

0

0

0

0

1

1

2

–

2

2

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

T

F

T

T

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

11

70

4

5

621

3

Connected components

 107

11 done

8

109

12

109

11

9

0

0

0

0

0

0

0

1

1

2

–

2

2

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

T

F

T

T

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

11

70

4

5

621

3

Connected components

 108

visit 9: check 11, check 10 and check 12

8

109

12

1099

0

0

0

0

0

0

0

1

1

2

–

2

2

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

T

F

T

T

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

11

70

4

5

621

3

Connected components

 109

visit 10: check 9

8

109

12

109

0

0

0

0

0

0

0

1

1

2

2

2

2

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

T

T

T

T

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

11

70

4

5

621

3

Connected components

 110

10 done

8

109

12

9 109

0

0

0

0

0

0

0

1

1

2

2

2

2

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

T

T

T

T

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

9

11

70

4

5

621

3

Connected components

 111

9 done

8

10

12

9

0

0

0

0

0

0

0

1

1

2

2

2

2

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

T

T

T

T

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

70

4

5

621

3

Connected components

 112

connected component: 9 10 11 12

8

9

11

10

12

0

0

0

0

0

0

0

1

1

2

2

2

2

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

T

T

T

T

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

70

4

5

621

3

Connected components

 113

check 10 11 12

8

11 12

109

0

0

0

0

0

0

0

1

1

2

2

2

2

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

T

T

T

T

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

70

4

5

621

3

Connected components

 114

done

8

11 12

109

0

0

0

0

0

0

0

1

1

2

2

2

2

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

T

T

T

T

cc[]

 115

Finding connected components with DFS

public class CC
{
 private boolean marked[];
 private int[] id;
 private int count;

 public CC(Graph G)
 {
 marked = new boolean[G.V()];
 id = new int[G.V()];
 for (int v = 0; v < G.V(); v++)
 {
 if (!marked[v])
 {
 dfs(G, v);
 count++;
 }
 }
 }

 public int count()
 public int id(int v)
 private void dfs(Graph G, int v)

}

run DFS from one vertex in

each component

id[v] = id of component containing v

number of components

see next slide

 116

Finding connected components with DFS (continued)

 public int count()
 { return count; }

 public int id(int v)
 { return id[v]; }

 private void dfs(Graph G, int v)
 {
 marked[v] = true;
 id[v] = count;
 for (int w : G.adj(v))
 if (!marked[w])
 dfs(G, w);
 }

all vertices discovered in

same call of dfs have same id

number of components

id of component containing v

UNDIRECTED GRAPHS

‣ Graph API
‣ Depth-first search
‣ Breadth-first search
‣ Connected components
‣ Challenges

Graph-processing challenge 1

Problem. Is a graph bipartite?
 
 
 
 
 
 
How difficult?
• Any programmer could do it.

• Typical diligent algorithms student could do it.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

 118

0-1
0-2
0-5
0-6
1-3
2-3
2-4
4-5
4-6

0

6

4

21

5

3

0-1
0-2
0-5
0-6
1-3
2-3
2-4
4-5
4-6

0

6

4

21

5

3

{ 0, 3, 4 }

Graph-processing challenge 1

Problem. Is a graph bipartite?
 
 
 
 
 
 
How difficult?
• Any programmer could do it.

• Typical diligent algorithms student could do it.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

 119

0-1
0-2
0-5
0-6
1-3
2-3
2-4
4-5
4-6

0

6

4

21

5

3

0-1
0-2
0-5
0-6
1-3
2-3
2-4
4-5
4-6

0

6

4

21

5

3

simple DFS-based solution 
(see textbook)

✓

Graph-processing challenge 2

Problem. Find a cycle.
 
 
 
 
How difficult?
• Any programmer could do it.

• Typical diligent algorithms student could do it.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

 120

0-1
0-2
0-5
0-6
1-3
2-3
2-4
4-5
4-6

0

6

4

21

5

3

0

6

4

21

5

3

0-5-4-6-0

Graph-processing challenge 2

Problem. Find a cycle.

How difficult?
• Any programmer could do it.

• Typical diligent algorithms student could do it.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

 121

0-1
0-2
0-5
0-6
1-3
2-3
2-4
4-5
4-6

0

6

4

21

5

3

simple DFS-based solution 
(see textbook)

0

6

4

21

5

3

✓

0-5-4-6-0

The Seven Bridges of Königsberg. [Leonhard Euler 1736]

Euler tour. Is there a (general) cycle that uses each edge exactly once?
Answer. Yes iff connected and all vertices have even degree.
To find path. DFS-based algorithm (see textbook).

 122

Bridges of Königsberg

“ … in Königsberg in Prussia, there is an island A, called the
Kneiphof; the river which surrounds it is divided into two branches ...
and these branches are crossed by seven bridges. Concerning these
bridges, it was asked whether anyone could arrange a route in such a
way that he could cross each bridge once and only once. ”

Graph-processing challenge 3

Problem. Find a cycle that uses every edge.
Assumption. Need to use each edge exactly once.

How difficult?
• Any programmer could do it.

• Typical diligent algorithms student could do it.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

 123

0-1
0-2
0-5
0-6
1-2
2-3
2-4
3-4
4-5
4-6

0

6

4

21

5

3

0-1-2-3-4-2-0-6-4-5-0

Graph-processing challenge 3

Problem. Find a cycle that uses every edge.
Assumption. Need to use each edge exactly once.

How difficult?
• Any programmer could do it.

• Typical diligent algorithms student could do it.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

 124

Eulerian tour 
(classic graph-processing problem)

0-1
0-2
0-5
0-6
1-2
2-3
2-4
3-4
4-5
4-6

0

6

4

21

5

3

0-1-2-3-4-2-0-6-4-5-0

✓

Graph-processing challenge 4

Problem. Find a cycle that visits every vertex exactly once.
 

 
 
 
How difficult?
• Any programmer could do it.

• Typical diligent algorithms student could do it.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

 125

0-1
0-2
0-5
0-6
1-2
2-6
3-4
3-5
4-5
4-60-5-3-4-6-2-1-0

0

6

4

21

5

3

Graph-processing challenge 4

Problem. Find a cycle that visits every vertex.
Assumption. Need to visit each vertex exactly once.

How difficult?
• Any programmer could do it.

• Typical diligent algorithms student could do it.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

 126

Hamiltonian cycle  
(classical NP-complete problem)

0-1
0-2
0-5
0-6
1-2
2-6
3-4
3-5
4-5
4-60-5-3-4-6-2-1-0

0

6

4

21

5

3

✓

Graph-processing challenge 5

Problem. Are two graphs identical except for vertex names?
 
 
 
 
How difficult?
• Any programmer could do it.

• Typical diligent algorithms student could do it.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

 127

0-1
0-2
0-5
0-6
3-4
3-5
4-5
4-6

0

6

4

21

5

3

3

1

5

2

4

0

6

0↔4, 1↔3, 2↔2, 3↔6, 4↔5, 5↔0, 6↔1

0-4
0-5
0-6
1-4
1-5
2-4
3-4
5-6

Graph-processing challenge 5

Problem. Are two graphs identical except for vertex names?

How difficult?
• Any programmer could do it.

• Typical diligent algorithms student could do it.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

 128

graph isomorphism is  
longstanding open problem

0-1
0-2
0-5
0-6
3-4
3-5
4-5
4-6

0

6

4

21

5

3

✓
3

1

5

2

4

0

6

0-4
0-5
0-6
1-4
1-5
2-4
3-4
5-6

0↔4, 1↔3, 2↔2, 3↔6, 4↔5, 5↔0, 6↔1

Graph-processing challenge 6

Problem. Lay out a graph in the plane without crossing edges?
 
 
 
 
How difficult?
• Any programmer could do it.

• Typical diligent algorithms student could do it.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

 129

1

6

4

2

0

5

3

0-1
0-2
0-5
0-6
3-4
3-5
4-5
4-6

0

6

4

21

5

3

Graph-processing challenge 6

Problem. Lay out a graph in the plane without crossing edges?

How difficult?
• Any programmer could do it.

• Typical diligent algorithms student could do it.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.

 130

linear-time DFS-based planarity algorithm 
discovered by Tarjan in 1970s  

(too complicated for practitioners)

✓

1

6

4

2

0

5

3

0

6

4

21

5

3

0-1
0-2
0-5
0-6
3-4
3-5
4-5
4-6

