BBM 202 - ALGORITHMS

HACETTEPE UNIVERSITY

DEPT. OF COMPUTER ENGINEERING

DYNAMIC PROGRAMMING

Acknowledgement: The course slides are adapted from the slides prepared by K. Wayne of Princeton University.

Algorithmic paradigms

Greed. Process the input in some order, myopically making irrevocable decisions.

Divide-and-conquer. Break up a problem into independent subproblems; solve each subproblem; combine solutions to subproblems to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping subproblems; combine solutions to smaller subproblems to form solution to large subproblem.

fancy name for caching intermediate results in a table for later reuse

Dynamic programming history

Bellman. Pioneered the systematic study of dynamic programming in 1950s.

Etymology.

- Dynamic programming = planning over time.
- Secretary of Defense had pathological fear of mathematical research.
- Bellman sought a "dynamic" adjective to avoid conflict.

THE THEORY OF DYNAMIC PROGRAMMING

RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representative problems which will permit us to exhibit various mathematical features of the theory, let us present a brief survey of the fundamental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical problems arising from the study of various multi-stage decision processes, which may roughly be described in the following way: We have a physical system whose state at any time t is determined by a set of quantities which we call state parameters, or state variables. At certain times, which may be prescribed in advance, or which may be determined by the process itself, we are called upon to make decisions which will affect the state of the system. These decisions are equivalent to transformations of the state variables, the choice of a decision being identical with the choice of a transformation. The outcome of the preceding decisions is to be used to guide the choice of future ones, with the purpose of the whole process that of maximizing some function of the parameters describing the final state.

Examples of processes fitting this loose description are furnished by virtually every phase of modern life, from the planning of industrial production lines to the scheduling of patients at a medical clinic; from the determination of long-term investment programs for universities to the determination of a replacement policy for machinery in factories; from the programming of training policies for skilled and unskilled labor to the choice of optimal purchasing and inventory policies for department stores and military establishments.

Dynamic programming applications

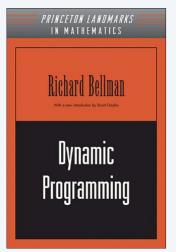
Application areas.

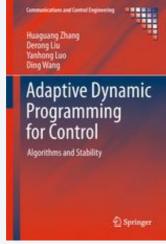
- Computer science: AI, compilers, systems, graphics, theory,
- Operations research.
- Information theory.
- Control theory.
- Bioinformatics.

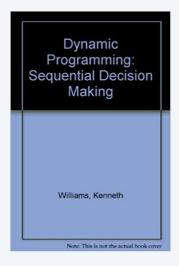
Some famous dynamic programming algorithms.

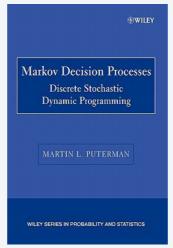
- Avidan–Shamir for seam carving.
- Unix diff for comparing two files.
- Viterbi for hidden Markov models.
- De Boor for evaluating spline curves.
- Bellman–Ford–Moore for shortest path.
- Knuth–Plass for word wrapping text in $T_{\rm E}X$.
- Cocke–Kasami–Younger for parsing context-free grammars.
- Needleman–Wunsch/Smith–Waterman for sequence alignment.

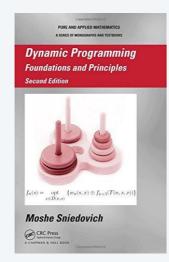
Dynamic programming books

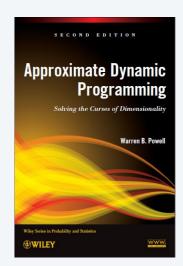


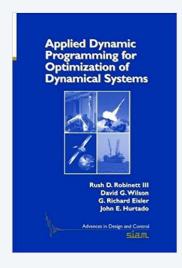


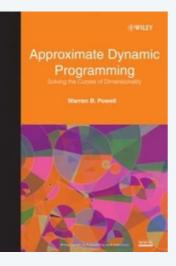


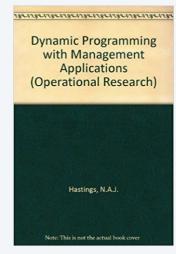


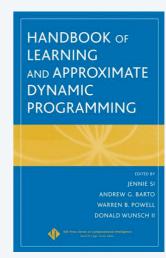


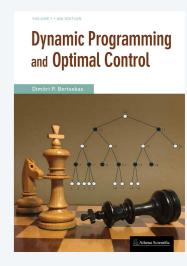


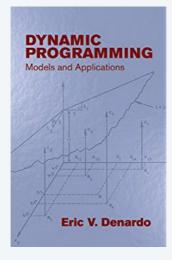


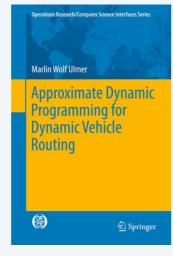


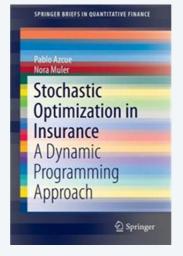


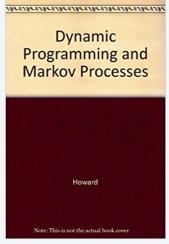


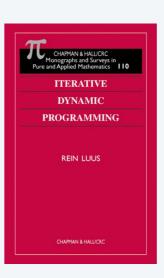


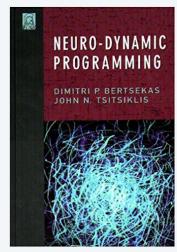












DYNAMIC PROGRAMMING

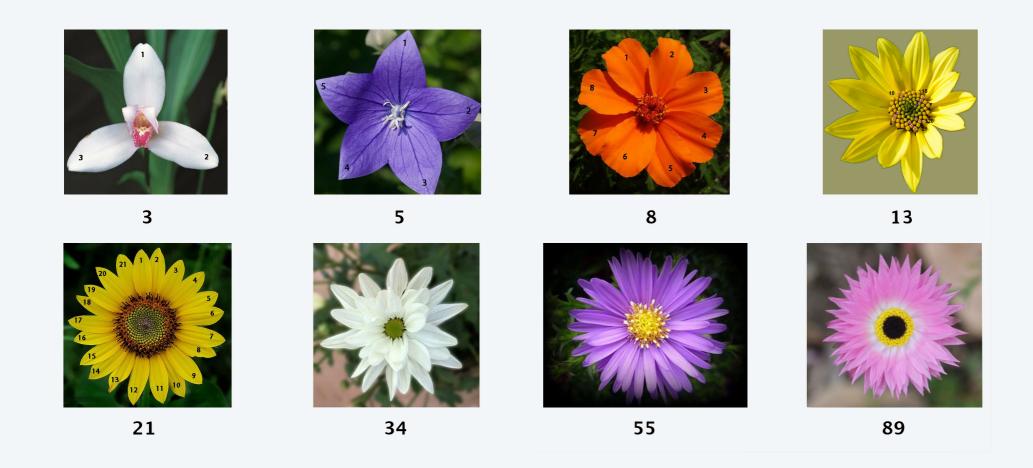
- Fibonacci numbers
- weighted interval scheduling
- segmented least squares
- knapsack problem
- **▶** RNA secondary structure
- sequence alignment

Fibonacci numbers

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

$$F_{i} = \begin{cases} 0 & \text{if } i = 0 \\ 1 & \text{if } i = 1 \\ F_{i-1} + F_{i-2} & \text{if } i > 1 \end{cases}$$

Leonardo Fibonacci



Fibonacci numbers

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

$$F_{i} = \begin{cases} 0 & \text{if } i = 0 \\ 1 & \text{if } i = 1 \\ F_{i-1} + F_{i-2} & \text{if } i > 1 \end{cases}$$

Goal. Given n, compute F_n

Naive recursive approach.

```
public static long fib(int i)
{
   if (i == 0) return 0;
   if (i == 1) return 1;
   return fib(i-1) + fib(i-2);
}
```

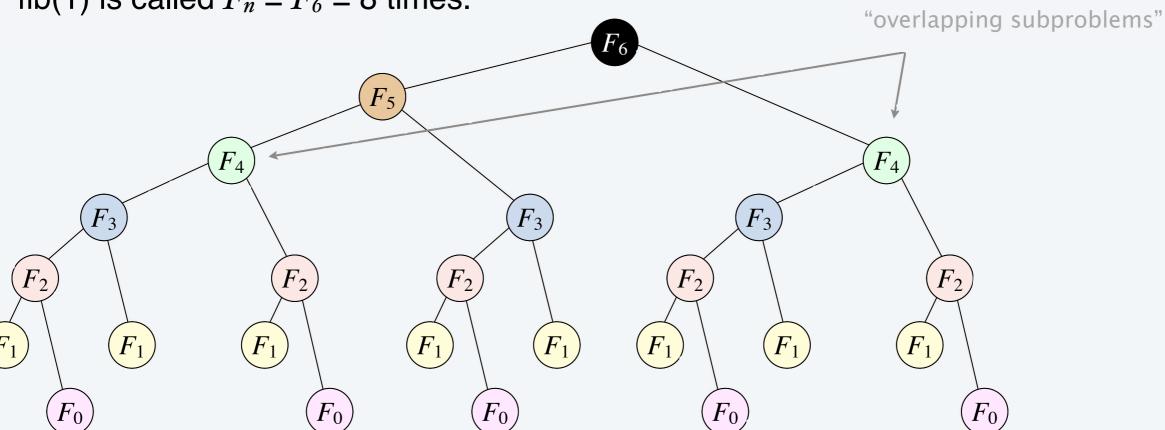
Fibonacci numbers: Recursion tree and exponential growth

Exponential waste. Same overlapping subproblems are solved repeatedly.

Ex. To compute fib(6):

- fib(5) is called 1 time.
- · fib(4) is called 2 times.
- fib(3) is called 3 times.
- fib(2) is called 5 times.
- fib(1) is called $F_n = F_6 = 8$ times.

 $F_n \sim \phi^n, \quad \phi = \frac{1+\sqrt{5}}{2} \approx 1.618$



fib(6)

running time = # subproblems \times cost per subproblem

Fibonacci numbers: Top-down dynamic programming

Memoization.

- · Maintain an array (or symbol table) to remember all computed values.
- If value to compute is known, just return it;
 otherwise, compute it; remember it; and return it.

```
public static long fib(int i)
{
    if (i == 0) return 0;
    if (i == 1) return 1;
    if (f[i] == 0) f[i] = fib(i-1) + fib(i-2);
    return f[i];
}
```

assume global long array f[], initialized to 0

Impact. Solves each subproblem F_i only once; $\Theta(n)$ time to compute F_n .

Fibonacci numbers: Bottom-up dynamic programming

Bottom-up dynamic programming.

- · Build computation from the "bottom up."
- Solve small subproblems and save solutions.
- Use those solutions to solve larger subproblems.

```
public static long fib(int n)
{
    long[] f = new long[n+1];
    f[0] = 0;
    f[1] = 1;
    for (int i = 2; i <= n; i++)
        f[i] = f[i-1] + f[i-2];
    return f[n];
}</pre>
```

Impact. Solves each subproblem F_i only once; $\Theta(n)$ time to compute F_n ; no recursion.

Fibonacci numbers: Further improvements

Performance improvements.

· Save space by saving only two most recent Fibonacci numbers.

```
public static long fib(int n) {
   int f = 1, g = 0;
   for (int i = 1; i < n-1; i++) {
      f = f + g;
      g = f - g;
   }
   return f;
}</pre>
f \text{ and g are consecutive } Fibonacci numbers}
```

Exploit additional properties of problem:

$$F_n = \left[\frac{\phi^n}{\sqrt{5}}\right], \quad \phi = \frac{1+\sqrt{5}}{2}$$

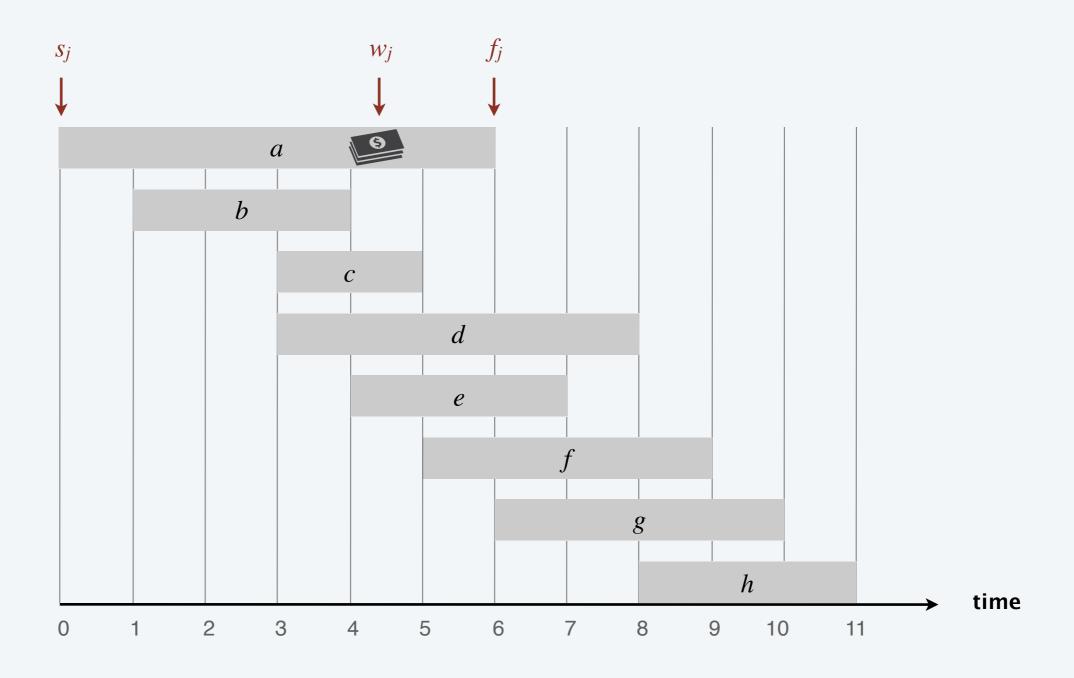
$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix}$$

DYNAMIC PROGRAMMING

- Fibonacci numbers
- weighted interval scheduling
- segmented least squares
- knapsack problem
- **▶** RNA secondary structure
- sequence alignment

Weighted interval scheduling

- Job j starts at s_j , finishes at f_j , and has weight $w_j > 0$.
- Two jobs are compatible if they don't overlap.
- Goal: find max-weight subset of mutually compatible jobs.



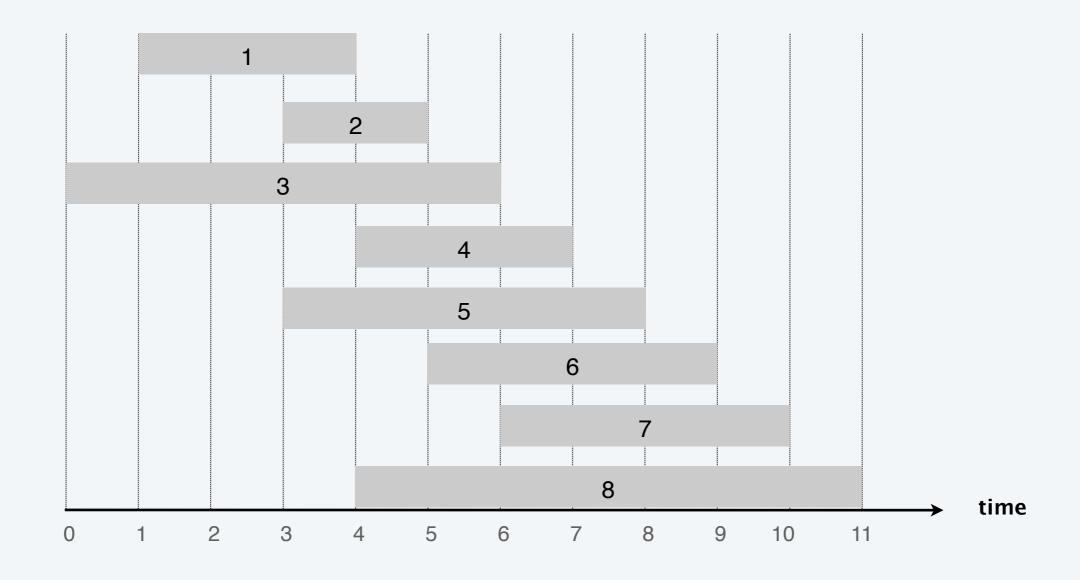
Weighted interval scheduling

Convention. Jobs are in ascending order of finish time: $f_1 \le f_2 \le ... \le f_n$.

Def. p(j) = largest index i < j such that job i is compatible with j.

Ex.
$$p(8) = 1, p(7) = 3, p(2) = 0.$$

 $\it i$ is leftmost interval that ends before $\it j$ begins



Dynamic programming: Binary choice

Def. $OPT(j) = \max$ weight of any subset of mutually compatible jobs for subproblem consisting only of jobs 1, 2, ..., j.

Goal. $OPT(n) = \max$ weight of any subset of mutually compatible jobs.

Case 1. OPT(j) does not select job j.

• Must be an optimal solution to problem consisting of remaining jobs 1, 2, ..., j-1.

Case 2. OPT(j) selects job j.

optimal substructure property
(proof via exchange argument)

- Collect profit w_j .
- Can't use incompatible jobs $\{p(j)+1,p(j)+2,...,j-1\}$.
- Must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j).

Bellman equation.
$$OPT(j) \ = \ \begin{cases} 0 & \text{if } j=0 \\ \max \left\{ OPT(j-1), \ w_j + OPT(p(j)) \right\} & \text{if } j>0 \end{cases}$$

Weighted interval scheduling: Brute force

```
BRUTE-FORCE (n, s_1, ..., s_n, f_1, ..., f_n, w_1, ..., w_n)
```

Sort jobs by finish time and renumber so that $f_1 \le f_2 \le ... \le f_n$.

Compute p[1], p[2], ..., p[n] via binary search.

RETURN COMPUTE-OPT(n).

COMPUTE-OPT(j)

IF
$$(j = 0)$$

RETURN 0.

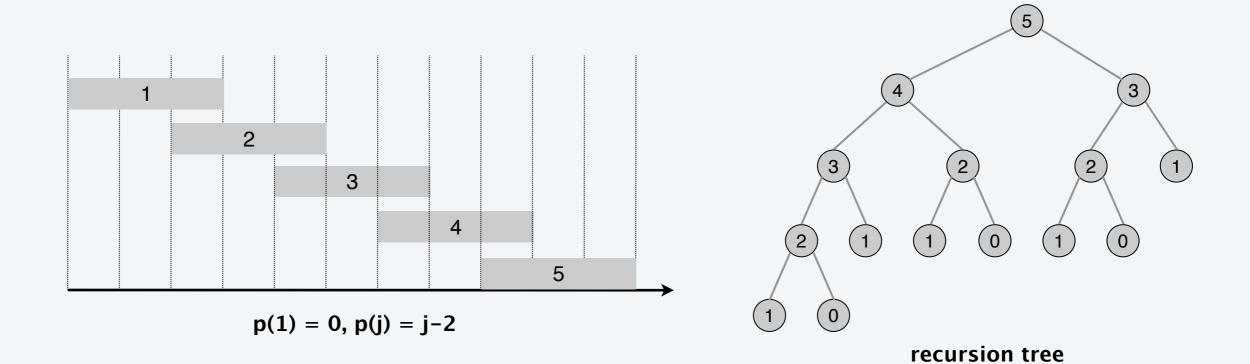
ELSE

RETURN max {COMPUTE-OPT(j-1), w_j + COMPUTE-OPT(p[j]) }.

Weighted interval scheduling: Brute force

Observation. Recursive algorithm is spectacularly slow because of overlapping subproblems ⇒ exponential-time algorithm.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.



Weighted interval scheduling: Memoization

Top-down dynamic programming (memoization).

- Cache result of subproblem j in M[j].
- Use M[j] to avoid solving subproblem j more than once.

```
TOP-DOWN(n, s_1, ..., s_n, f_1, ..., f_n, w_1, ..., w_n)

Sort jobs by finish time and renumber so that f_1 \le f_2 \le ... \le f_n.

Compute p[1], p[2], ..., p[n] via binary search.

M[0] \leftarrow 0. global array

RETURN M-COMPUTE-OPT(n).
```

```
M-COMPUTE-OPT(j)

IF (M[j] is uninitialized)

M[j] \leftarrow \max \{ \text{M-Compute-Opt}(j-1), w_j + \text{M-Compute-Opt}(p[j]) \}.

RETURN M[j].
```

Weighted interval scheduling: Running time

Claim. Memoized version of algorithm takes $O(n \log n)$ time. Pf.

- Sort by finish time: $O(n \log n)$ via mergesort.
- Compute p[j] for each $j : O(n \log n)$ via binary search.
- M-Compute-Opt(j): each invocation takes O(1) time and either
 - (1) returns an initialized value M[j]
 - (2) initializes M[j] and makes two recursive calls
- Progress measure $\Phi = \#$ initialized entries among M[1..n].
 - initially $\Phi = 0$; throughout $\Phi \leq n$.
 - (2) increases Φ by $1 \Rightarrow \leq 2n$ recursive calls.
- Overall running time of M-Compute-Opt(n) is O(n). \blacksquare

Weighted interval scheduling: Running time

Claim. Memoized version of algorithm takes $O(n \log n)$ time. Pf.

- Sort by finish time: $O(n \log n)$ via mergesort.
- Compute p[j] for each $j : O(n \log n)$ via binary search.
- M-Compute-Opt(j): each invocation takes O(1) time and either
 - (1) returns an initialized value M[j]
 - (2) initializes M[j] and makes two recursive calls
- Progress measure $\Phi = \#$ initialized entries among M[1..n].
 - initially $\Phi = 0$; throughout $\Phi \leq n$.
 - (2) increases Φ by $1 \Rightarrow \leq 2n$ recursive calls.
- Overall running time of M-Compute-Opt(n) is O(n).

Those who cannot remember the past are condemned to repeat it.

- Dynamic Programming

Weighted interval scheduling: Finding a solution

- Q. DP algorithm computes optimal value. How to find optimal solution?
- A. Make a second pass by calling FIND-SOLUTION(n).

```
FIND-SOLUTION(j)

IF (j = 0)

RETURN \emptyset.

ELSE IF (w_j + M[p[j]] > M[j-1])

RETURN \{j\} \cup \text{FIND-SOLUTION}(p[j]).

ELSE

RETURN FIND-SOLUTION(j-1).
```

$$M[j] = \max \{ M[j-1], w_j + M[p[j]] \}.$$

Analysis. # of recursive calls $\leq n \Rightarrow O(n)$.

Weighted interval scheduling: Bottom-up dynamic programming

Bottom-up dynamic programming. Unwind recursion.

BOTTOM-UP(
$$n, s_1, ..., s_n, f_1, ..., f_n, w_1, ..., w_n$$
)

Sort jobs by finish time and renumber so that $f_1 \le f_2 \le ... \le f_n$.

Compute $p[1], p[2], ..., p[n]$.

 $M[0] \leftarrow 0$. previously computed values

FOR $j = 1$ TO n
 $M[j] \leftarrow \max \{ M[j-1], w_j + M[p[j]] \}$.

Running time. The bottom-up version takes $O(n \log n)$ time.

Weighted interval scheduling: Bottom-up dynamic programming

Bottom-up dynamic programming. Unwind recursion.

BOTTOM-UP($n, s_1, ..., s_n, f_1, ..., f_n, w_1, ..., w_n$)

Sort jobs by finish time and renumber so that $f_1 \le f_2 \le ... \le f_n$.

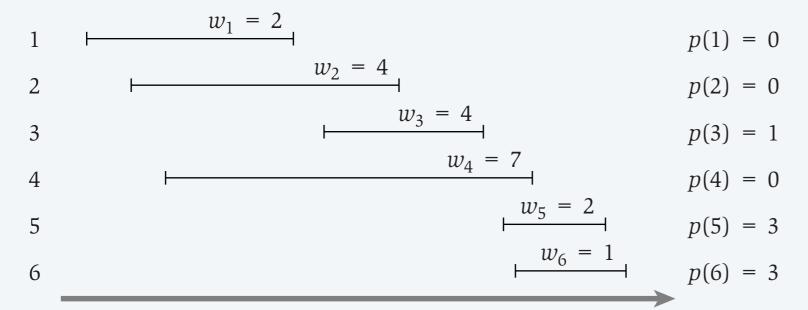
Compute p[1], p[2], ..., p[n].

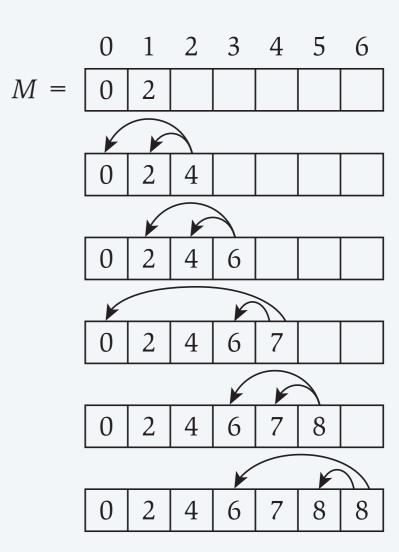
 $M[0] \leftarrow 0.$

FOR j = 1 TO n

 $M[j] \leftarrow \max \{ M[j-1], w_j + M[p[j]] \}.$

Index





DYNAMIC PROGRAMMING

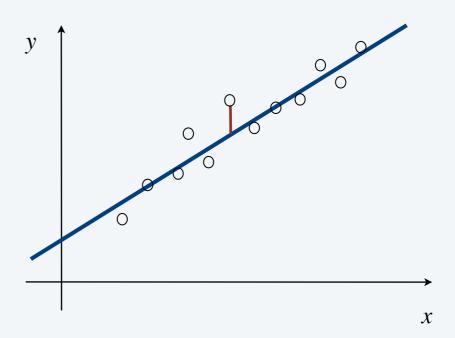
- Fibonacci numbers
- weighted interval scheduling
- segmented least squares
- knapsack problem
- **▶** RNA secondary structure
- sequence alignment

Least squares

Least squares. Foundational problem in statistics.

- Given *n* points in the plane: $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$.
- Find a line y = ax + b that minimizes the sum of the squared error:

$$SSE = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$



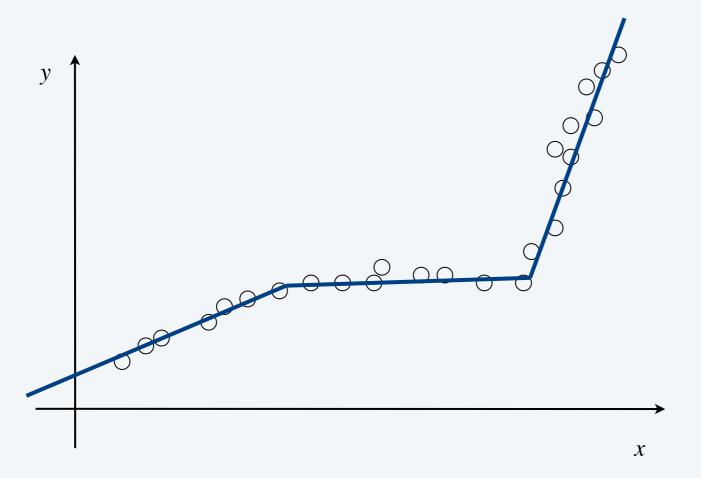
Solution. Calculus ⇒ min error is achieved when

$$a = \frac{n\sum_{i} x_{i}y_{i} - (\sum_{i} x_{i})(\sum_{i} y_{i})}{n\sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}}, \quad b = \frac{\sum_{i} y_{i} - a\sum_{i} x_{i}}{n}$$

Segmented least squares

Segmented least squares.

- Points lie roughly on a sequence of several line segments.
- Given n points in the plane: $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ with $x_1 < x_2 < ... < x_n$, find a sequence of lines that minimizes f(x).
- Q. What is a reasonable choice for f(x) to balance accuracy and parsimony?



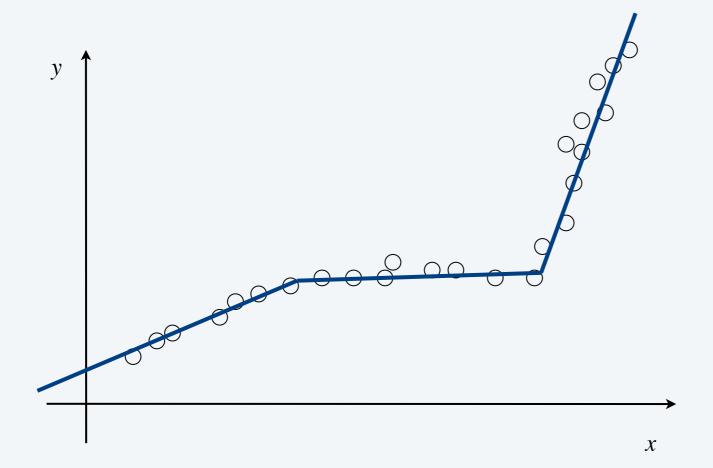
Segmented least squares

Segmented least squares.

- Points lie roughly on a sequence of several line segments.
- Given n points in the plane: $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ with $x_1 < x_2 < ... < x_n$, find a sequence of lines that minimizes f(x).

Goal. Minimize f(x) = E + c L for some constant c > 0, where

- E = sum of the sums of the squared errors in each segment.
- L = number of lines.



Dynamic programming: Multiway choice

Notation.

- OPT(j) = minimum cost for points $p_1, p_2, ..., p_j$.
- e_{ij} = SSE for for points $p_i, p_{i+1}, ..., p_j$.

To compute OPT(j):

- Last segment uses points $p_i, p_{i+1}, ..., p_j$ for some $i \le j$.

Bellman equation.

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \min_{1 \le i \le j} \{ e_{ij} + c + OPT(i - 1) \} & \text{if } j > 0 \end{cases}$$

Segmented least squares algorithm

```
SEGMENTED-LEAST-SQUARES(n, p_1, ..., p_n, c)
FOR j = 1 TO n
   FOR i = 1 TO j
      Compute the SSE e_{ij} for the points p_i, p_{i+1}, ..., p_j.
M[0] \leftarrow 0.
                                                previously computed value
FOR j = 1 TO n
   M[j] \leftarrow \min_{1 \le i \le j} \{ e_{ij} + c + M[i-1] \}.
RETURN M[n].
```

Segmented least squares analysis

Theorem. [Bellman 1961] DP algorithm solves the segmented least squares problem in $O(n^3)$ time and $O(n^2)$ space.

Pf.

• Bottleneck = computing SSE e_{ij} for each i and j.

$$a_{ij} = \frac{n \sum_{k} x_{k} y_{k} - (\sum_{k} x_{k})(\sum_{k} y_{k})}{n \sum_{k} x_{k}^{2} - (\sum_{k} x_{k})^{2}}, \quad b_{ij} = \frac{\sum_{k} y_{k} - a_{ij} \sum_{k} x_{k}}{n}$$

• O(n) to compute e_{ij} . •

Remark. Can be improved to $O(n^2)$ time.

- For each i: precompute cumulative sums $\sum_{k=1}^{i} x_k$, $\sum_{k=1}^{i} y_k$, $\sum_{k=1}^{i} x_k^2$, $\sum_{k=1}^{i} x_k y_k$
- Using cumulative sums, can compute e_{ij} in O(1) time.

DYNAMIC PROGRAMMING

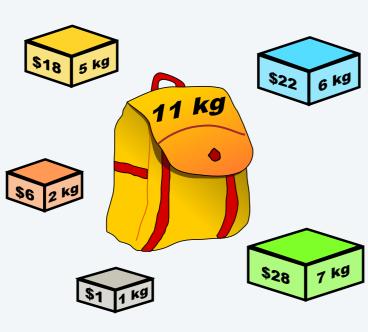
- Fibonacci numbers
- weighted interval scheduling
- segmented least squares
- knapsack problem
- **▶** RNA secondary structure
- sequence alignment

Knapsack problem

Goal. Pack knapsack so as to maximize total value of items taken.

- There are n items: item i provides value $v_i > 0$ and weighs $w_i > 0$.
- Value of a subset of items = sum of values of individual items.
- Knapsack has weight limit of W.
- Ex. The subset $\{1, 2, 5\}$ has value \$35 (and weight 10).
- Ex. The subset $\{3,4\}$ has value \$40 (and weight 11).

Assumption. All values and weights are integral.



Creative Commons Attribution-Share Alike 2.5 by Dake

i	v_i	w_i	
1	\$1	1 kg	weights and values can be arbitrary positive integers
2	\$6	2 kg	
3	\$18	5 kg	
4	\$22	6 kg	
5	\$28	7 kg	

knapsack instance (weight limit W = 11)

Dynamic programming: Two variables

Def. OPT(i, w) = optimal value of knapsack problem with items 1, ..., i, subject to weight limit w.

Goal. OPT(n, W).

possibly because $w_i > w$

optimal substructure property

(proof via exchange argument)

Case 1. OPT(i, w) does not select item i.

• OPT(i, w) selects best of $\{1, 2, ..., i-1\}$ subject to weight limit w.

Case 2. OPT(i, w) selects item i.

- Collect value v_i.
- New weight limit = $w w_i$.
- OPT(i, w) selects best of $\{1, 2, ..., i-1\}$ subject to new weight limit.

Bellman equation.

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max \{ OPT(i-1, w), \ v_i + OPT(i-1, w-w_i) \} & \text{otherwise} \end{cases}$$

Knapsack problem: Bottom-up dynamic programming

KNAPSACK
$$(n, W, w_1, ..., w_n, v_1, ..., v_n)$$

FOR
$$w = 0$$
 TO W

$$M[0, w] \leftarrow 0.$$

FOR
$$i = 1$$
 TO n

FOR $w = 0$ TO W

IF $(w_i > w)$ $M[i, w] \leftarrow M[i-1, w]$.

ELSE $M[i, w] \leftarrow \max\{M[i-1, w], v_i + M[i-1, w-w_i]\}$.

RETURN M[n, W].

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max \{ OPT(i-1, w), \ v_i + OPT(i-1, w-w_i) \} & \text{otherwise} \end{cases}$$

Knapsack problem: Bottom-up dynamic programming

i	v_i	w_i		
1		1 kg		(0
2	\$6	2 kg	$OPT(i, w) = \langle$	OPT(i-1,w)
3	\$18	5 kg		$ \sum_{i=1}^{n} \{OPT(i-1, w), v_i + OPT(i-1, w-w_i) \} $
4	\$22	6 kg		
5	\$28	7 kg		

weight limit w

	0	1	2	3	4	5	6	7	8	9	10	11
{ }	0	0	0	0	0	0	0	0	0	0	0	0
{ 1 }	0	1	1	1	1	1	1	1	1	1	1	1
{ 1, 2 }	0 ←	_1_	6	7	7	7	7	7	7	7	7	7
{ 1, 2, 3 }	0	1	6	7	7	18 🔸	19	24	25	25	25	25
{ 1, 2, 3, 4 }	0	1	6	7	7	18	22	24	28	29	29	40
{ 1, 2, 3, 4, 5 }	0	1	6	7	7	18	22	28	29	34	35	40

subset of items 1, ..., i

OPT(i, w) = optimal value of knapsack problem with items 1, ..., i, subject to weight limit w

Knapsack problem: Running time

Theorem. The DP algorithm solves the knapsack problem with n items and maximum weight W in $\Theta(n|W)$ time and $\Theta(n|W)$ space.

Pf.

weights are integers between 1 and W

- Takes O(1) time per table entry.
- There are $\Theta(n|W)$ table entries.
- After computing optimal values, can trace back to find solution: OPT(i, w) takes item i iff M[i, w] > M[i-1, w].

Remarks.

- Algorithm depends critically on assumption that weights are integral.
- Assumption that values are integral was not used.

Coin changing

Problem. Given n coin denominations $\{c_1, c_2, ..., c_n\}$ and a target value V, find the fewest coins needed to make change for V (or report impossible).

Ex. $\{ 1, 10, 21, 34, 70, 100, 350, 1295, 1500 \}$. Optimal. $140\phi = 70 + 70$.

Coin changing

Def. $OPT(v) = \min \text{ number of coins to make change for } v.$

Goal. OPT(V).

Multiway choice. To compute OPT(v),

- Select a coin of denomination c_i for some i.
- Select fewest coins to make change for $v c_i$.

optimal substructure property (proof via exchange argument)

Bellman equation.

$$OPT(v) = \begin{cases} \infty & \text{if } v < 0 \\ 0 & \text{if } v = 0 \end{cases}$$

$$\min_{1 \le i \le n} \{ 1 + OPT(v - c_i) \} \text{ otherwise}$$

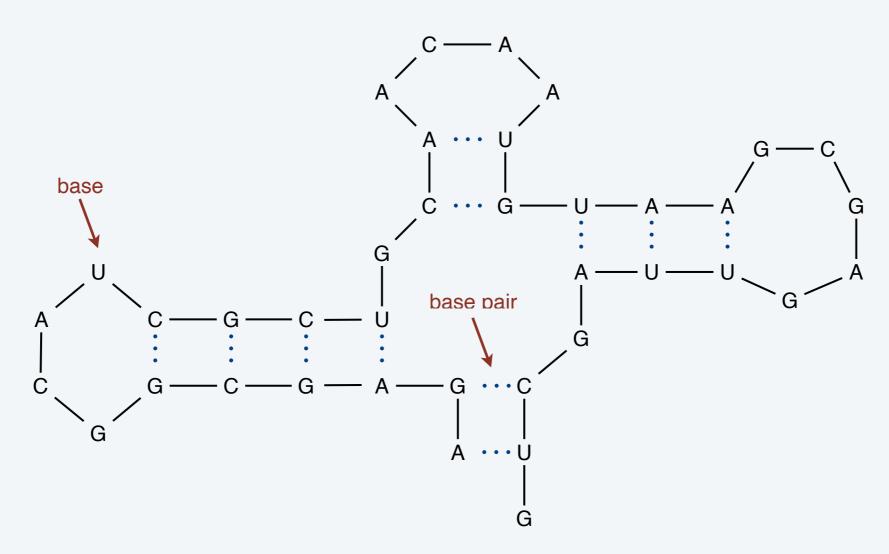
Running time. O(n V).

DYNAMIC PROGRAMMING

- Fibonacci numbers
- weighted interval scheduling
- segmented least squares
- knapsack problem
- ► RNA secondary structure
- sequence alignment

RNA. String $B = b_1 b_2 ... b_n$ over alphabet $\{A, C, G, U\}$.

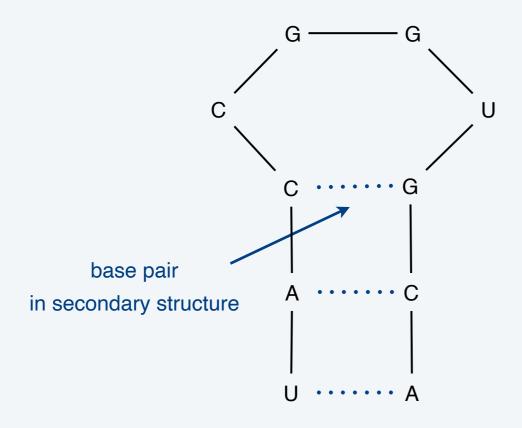
Secondary structure. RNA is single-stranded so it tends to loop back and form base pairs with itself. This structure is essential for understanding behavior of molecule.

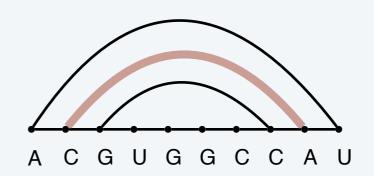


RNA secondary structure for GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

Secondary structure. A set of pairs $S = \{ (b_i, b_j) \}$ that satisfy:

• [Watson–Crick] *S* is a matching and each pair in *S* is a Watson–Crick complement: A–U, U–A, C–G, or G–C.

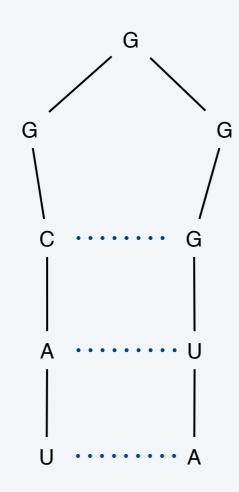




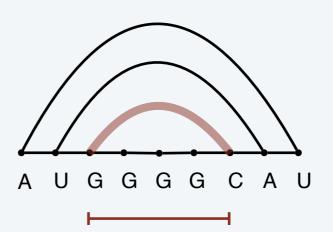
S is not a secondary structure (C-A is not a valid Watson-Crick pair)

Secondary structure. A set of pairs $S = \{ (b_i, b_j) \}$ that satisfy:

- [Watson–Crick] *S* is a matching and each pair in *S* is a Watson–Crick complement: A–U, U–A, C–G, or G–C.
- [No sharp turns] The ends of each pair are separated by at least 4 intervening bases. If $(b_i, b_j) \in S$, then i < j 4.



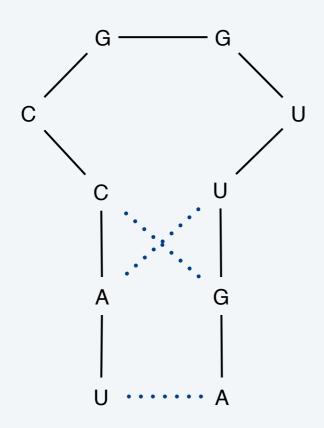
B = AUGGGGCAU $S = \{ (b_1, b_9), (b_2, b_8), (b_3, b_7) \}$



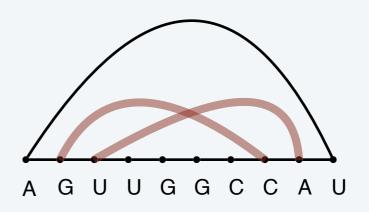
S is not a secondary structure (≤4 intervening bases between G and C)

Secondary structure. A set of pairs $S = \{ (b_i, b_j) \}$ that satisfy:

- [Watson–Crick] *S* is a matching and each pair in *S* is a Watson–Crick complement: A–U, U–A, C–G, or G–C.
- [No sharp turns] The ends of each pair are separated by at least 4 intervening bases. If $(b_i, b_i) \in S$, then i < j 4.
- [Non-crossing] If (b_i, b_j) and (b_k, b_ℓ) are two pairs in S, then we cannot have $i < k < j < \ell$.



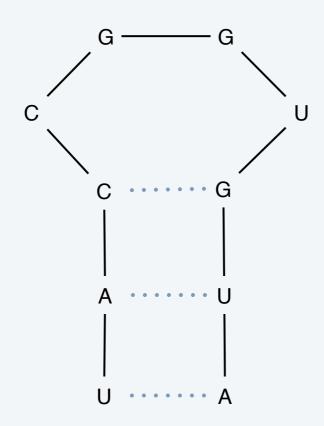
B = ACUUGGCCAU $S = \{ (b_1, b_{10}), (b_2, b_8), (b_3, b_9) \}$



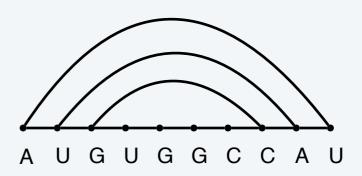
S is not a secondary structure (G-C and U-A cross)

Secondary structure. A set of pairs $S = \{ (b_i, b_j) \}$ that satisfy:

- [Watson–Crick] *S* is a matching and each pair in *S* is a Watson–Crick complement: A–U, U–A, C–G, or G–C.
- [No sharp turns] The ends of each pair are separated by at least 4 intervening bases. If $(b_i, b_i) \in S$, then i < j 4.
- [Non-crossing] If (b_i, b_j) and (b_k, b_ℓ) are two pairs in S, then we cannot have $i < k < j < \ell$.



B = AUGUGGCCAU $S = \{ (b_1, b_{10}), (b_2, b_9), (b_3, b_8) \}$



S is a secondary structure (with 3 base pairs)

Secondary structure. A set of pairs $S = \{ (b_i, b_j) \}$ that satisfy:

- [Watson–Crick] *S* is a matching and each pair in *S* is a Watson–Crick complement: A–U, U–A, C–G, or G–C.
- [No sharp turns] The ends of each pair are separated by at least 4 intervening bases. If $(b_i, b_j) \in S$, then i < j 4.
- [Non-crossing] If (b_i, b_j) and (b_k, b_ℓ) are two pairs in S, then we cannot have $i < k < j < \ell$.

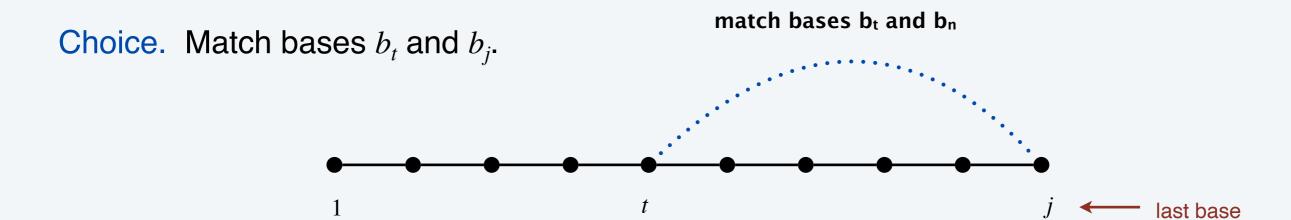
Free-energy hypothesis. RNA molecule will form the secondary structure with the minimum total free energy.

Goal. Given an RNA molecule $B = b_1 b_2 ... b_n$, find a secondary structure S that maximizes the number of base pairs.

RNA secondary structure: Subproblems

First attempt. $OPT(j) = \text{maximum number of base pairs in a secondary structure of the substring } b_1b_2\dots b_j$.

Goal. OPT(n).



Difficulty. Results in two subproblems (but one of wrong form).

- Find secondary structure in $b_1b_2...b_{t-1}$. $\longleftarrow OPT(t-1)$
- Find secondary structure in $b_{t+1}b_{t+2} \dots b_{j-1}$. \longleftarrow need more subproblems (first base no longer b_1)

Dynamic programming over intervals

Def. OPT(i, j) = maximum number of base pairs in a secondary structure of the substring $b_i b_{i+1} \dots b_j$.

Case 1. If $i \ge j-4$.

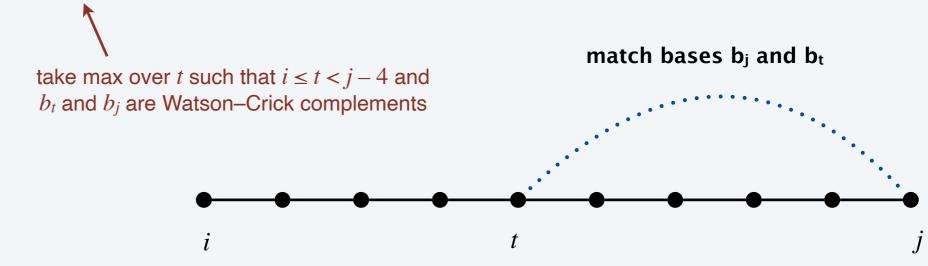
• OPT(i, j) = 0 by no-sharp-turns condition.

Case 2. Base b_j is not involved in a pair.

• OPT(i, j) = OPT(i, j-1).

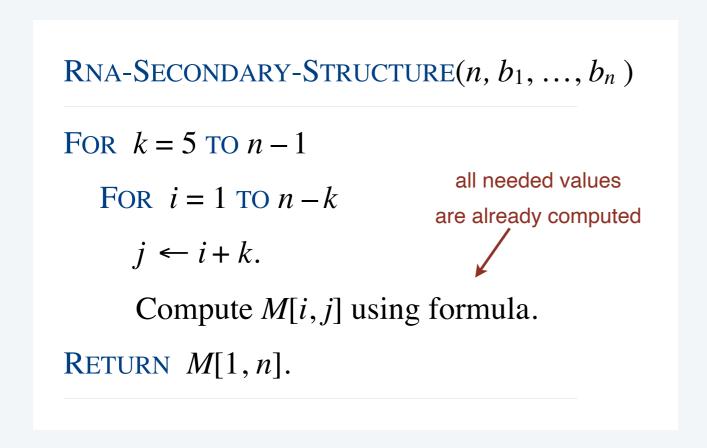
Case 3. Base b_j pairs with b_t for some $i \le t < j - 4$.

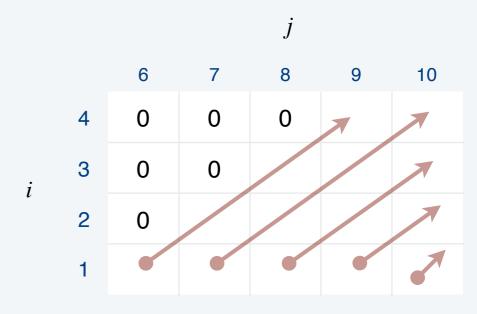
- Non-crossing condition decouples resulting two subproblems.
- $OPT(i, j) = 1 + \max_{t} \{ OPT(i, t-1) + OPT(t+1, j-1) \}.$



Bottom-up dynamic programming over intervals

- Q. In which order to solve the subproblems?
- A. Do shortest intervals first—increasing order of |j-i|.





order in which to solve subproblems

Theorem. The DP algorithm solves the RNA secondary structure problem in $O(n^3)$ time and $O(n^2)$ space.

Bottom-up dynamic programming over intervals

RNA-SECONDARY-STRUCTURE $(n, b_1, ..., b_n)$

FOR
$$k = 5$$
 TO $n - 1$

FOR
$$i = 1$$
 TO $n - k$

$$j \leftarrow i + k$$
.

Compute M[i, j] using formula.

RETURN M[1, n].

Case 1. If $i \ge j-4$.

• OPT(i, j) = 0 by no-sharp-turns condition.

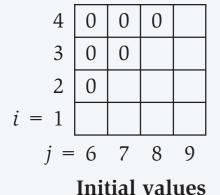
Case 2. Base b_j is not involved in a pair.

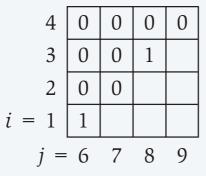
• OPT(i, j) = OPT(i, j-1).

Case 3. Base b_j pairs with b_t for some $i \le t < j - 4$.

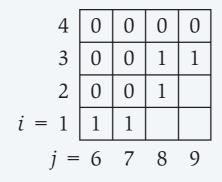
• $OPT(i, j) = 1 + \max_{t} \{ OPT(i, t-1) + OPT(t+1, j-1) \}$

RNA sequence ACCGGUAGU



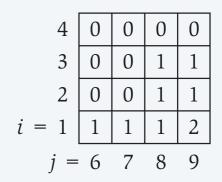


Filling in the values for
$$k = 5$$



Filling in the values for k = 6

Filling in the values for k = 7



Filling in the values for k = 8

DYNAMIC PROGRAMMING

- Fibonacci numbers
- weighted interval scheduling
- segmented least squares
- knapsack problem
- **▶** RNA secondary structure
- sequence alignment

String similarity

- Q. How similar are two strings?
- Ex. ocurrance and occurrence.

6 mismatches, 1 gap

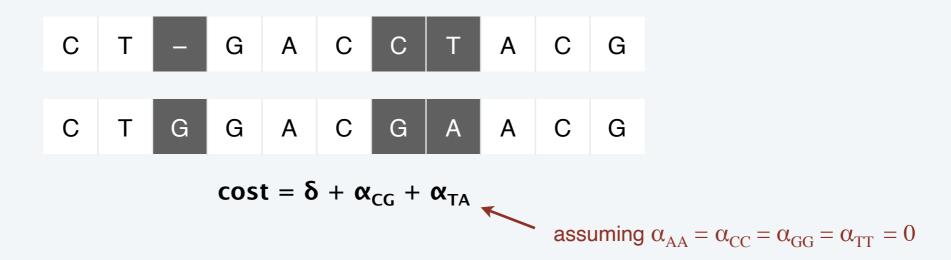
1 mismatch, 1 gap

0 mismatches, 3 gaps

Edit distance

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

- Gap penalty δ ; match penalty α_{pq} .
- Cost = sum of gap and match penalties.



Applications. Bioinformatics, spell correction, machine translation, speech recognition, information extraction, ...

Spokesperson confirms senior government adviser was found Spokesperson said the senior adviser was found

BLOSUM matrix for proteins

	Α	R	N	D	c	Q	E	G	Н	1	L	К	М	F	Р	S	Т	W	Υ	٧
Α	7	-3	-3	-3	-1	-2	-2	0	-3	-3	-3	-1	-2	-4	-1	2	0	-5	-4	-1
R	-3	9	-1	-3	-6	1	-1	-4	0	-5	-4	3	-3	-5	-3	-2	-2	-5	-4	-4
N	-3	-1	9	2	-5	0	-1	-1	1	-6	-6	0	-4	-6	-4	1	0	-7	-4	-5
D	-3	-3	2	10	-7	-1	2	-3	-2	-7	-7	-2	-6	-6	-3	-1	-2	-8	-6	-6
C	-1	-6	-5	-7	13	-5	-7	-6	-7	-2	-3	-6	-3	-4	-6	-2	-2	-5	-5	-2
Q	-2	1	0	-1	-5	9	3	-4	1	-5	-4	2	-1	-5	-3	-1	-1	-4	-3	-4
E	-2	-1	-1	2	-7	3	8	-4	0	-6	-6	1	-4	-6	-2	-1	-2	-6	-5	-4
G	0	-4	-1	-3	-6	-4	-4	9	-4	-7	-7	-3	-5	-6	-5	-1	-3	-6	-6	-6
Н	-3	0	1	-2	-7	1	0	-4	12	-6	-5	-1	-4	-2	-4	-2	-3	-4	3	-5
1	-3	-5	-6	-7	-2	-5	-6	-7	-6	7	2	-5	2	-1	-5	-4	-2	-5	-3	4
L	-3	-4	-6	-7	-3	-4	-6	-7	-5	2	6	-4	3	0	-5	-4	-3	-4	-2	1
K	-1	3	0	-2	-6	2	1	-3	-1	-5	-4	8	-3	-5	-2	-1	-1	-6	-4	-4
М	-2	-3	-4	-6	-3	-1	-4	-5	-4	2	3	-3	9	0	-4	-3	-1	-3	-3	1
F	-4	-5	-6	-6	-4	-5	-6	-6	-2	-1	0	-5	0	10	-6	-4	-4	0	4	-2
Р	-1	-3	-4	-3	-6	-3	-2	-5	-4	-5	-5	-2	-4	-6	12	-2	-3	-7	-6	-4
S	2	-2	1	-1	-2	-1	-1	-1	-2	-4	-4	-1	-3	-4	-2	7	2	-6	-3	-3
T	0	-2	0	-2	-2	-1	-2	-3	-3	-2	-3	-1	-1	-4	-3	2	8	-5	-3	0
W	-5	-5	-7	-8	-5	-4	-6	-6	-4	-5	-4	-6	-3	0	-7	-6	-5	16	3	-5
Υ	-4	-4	-4	-6	-5	-3	-5	-6	3	-3	-2	-4	-3	4	-6	-3	-3	3	11	-3
٧	-1	-4	-5	-6	-2	-4	-4	-6	-5	4	1	-4	1	-2	-4	-3	0	-5	-3	7

Sequence alignment

Goal. Given two strings $x_1 x_2 \dots x_m$ and $y_1 y_2 \dots y_n$, find a min-cost alignment.

Def. An alignment M is a set of ordered pairs $x_i - y_j$ such that each character appears in at most one pair and no crossings.

$$x_i - y_j$$
 and $x_{i'} - y_{j'}$ cross if $i < i'$, but $j > j'$

Def. The cost of an alignment *M* is:

$$cost(M) = \sum_{\substack{(x_i, y_j) \in M \\ \text{match}}} \alpha_{x_i y_j} + \sum_{\substack{i: x_i \text{ unmatched} \\ \text{gap}}} \delta + \sum_{\substack{j: y_j \text{ unmatched} \\ \text{gap}}} \delta$$

an alignment of CTACCG and TACATG

$$M = \{ x_2 - y_1, x_3 - y_2, x_4 - y_3, x_5 - y_4, x_6 - y_6 \}$$

Sequence alignment: Problem structure

Def. $OPT(i,j) = \min \text{ cost of aligning prefix strings } x_1 x_2 \dots x_i \text{ and } y_1 y_2 \dots y_i$ Goal. OPT(m, n).

Case 1. OPT(i,j) matches $x_i - y_j$.

Pay match for $x_i - y_i$ + min cost of aligning $x_1 x_2 \dots x_{i-1}$ and $y_1 y_2 \dots y_{i-1}$.

Case 2a. OPT(i, j) leaves x_i unmatched. Pay gap for x_i + min cost of aligning $x_1 x_2 \dots x_{i-1}$ and $y_1 y_2 \dots y_j$.

Case 2b. OPT(i,j) leaves y_i unmatched.

Pay gap for y_i + min cost of aligning $x_1 x_2 ... x_i$ and $y_1 y_2 ... y_{i-1}$.

(proof via exchange argument)

Bellman equation.

$$\alpha_{x_i,y_j} = \begin{cases} +a & \text{if } x_i = y_j \\ -b & \text{otherwise} \end{cases}$$

$$OPT(i,j) = \begin{cases} j\delta & \text{if } i = 0 \\ i\delta & \text{if } j = 0 \end{cases}$$

$$OPT(i,j) = \begin{cases} \alpha_{x_iy_j} + OPT(i-1,j-1) \\ \delta + OPT(i-1,j) & \text{otherwise} \end{cases}$$

$$\delta + OPT(i,j-1)$$

Sequence alignment: Bottom-up algorithm

SEQUENCE-ALIGNMENT
$$(m, n, x_1, ..., x_m, y_1, ..., y_n, \delta, \alpha)$$

FOR $i = 0$ TO m
 $M[i, 0] \leftarrow i \delta$.

FOR $j = 0$ TO n
 $M[0, j] \leftarrow j \delta$.

FOR $i = 1$ TO m

FOR $j = 1$ TO n
 $M[i, j] \leftarrow \min \{ \alpha_{x_i y_j} + M[i-1, j-1], \delta + M[i-1, j] \}$

already computed

RETURN M[m, n].

Sequence alignment: Traceback

FOR i = 0 TO m $M[i, 0] \leftarrow i \delta.$ FOR j = 0 TO n $M[0, j] \leftarrow j \delta.$ FOR i = 1 TO m FOR j = 1 TO n $M[i, j] \leftarrow \min \left\{ \alpha_{x_i y_j} + M[i-1, j-1], \delta + M[i-1, j], \right\}$

 $\delta + M[i, j-1]$

gap penalty = 2, mismatch penalty = 2, match penalty = -1

	_	S	I	M	I	L	Α	R	I	Т	Y
_	0 🔷	_2	4	6	8	10	12	14	16	18	20
ı	2	2	1 🗲	— 3 _K	5	7	9	11	13	15	17
D	4	4	3	3	5	7	9	11	13	15	17
E	6	6	5	5	5	7	9	11	13	15	17
N	8	8	7	7	7	7	9	11	13	15	17
Т	10	10	9	9	9	9	9	11	13	12	14
ı	12	12	9	11	8	10	11	11	10	12	14
	14	14	11	11	10	10	12	13	12	9	
Y	16	16	13	13	12	12	12	14	14	11	8

Sequence alignment: Analysis

Theorem. The DP algorithm computes the edit distance (and an optimal alignment) of two strings of lengths m and n in $\Theta(mn)$ time and space. Pf.

- Algorithm computes edit distance.
- Can trace back to extract optimal alignment itself.

Theorem. [Backurs–Indyk 2015] If can compute edit distance of two strings of length n in $O(n^{2-\varepsilon})$ time for some constant $\varepsilon > 0$, then can solve SAT with n variables and m clauses in poly(m) $2^{(1-\delta)}$ time for some constant $\delta > 0$.

Edit Distance Cannot Be Computed in Strongly Subquadratic Time (unless SETH is false)*

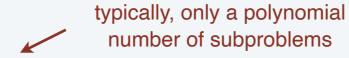
> Arturs Backurs[†] MIT

 $\begin{array}{c} {\rm Piotr~Indyk^{\ddagger}} \\ {\rm MIT} \end{array}$

which would disprove SETH (strong exponential time hypothesis)

Dynamic programming summary

Outline.



- Define a collection of subproblems.
- Solution to original problem can be computed from subproblems.
- Natural ordering of subproblems from "smallest" to "largest" that enables determining a solution to a subproblem from solutions to smaller subproblems.

Techniques.

- Binary choice: weighted interval scheduling.
- Multiway choice: segmented least squares.
- Adding a new variable: knapsack problem.
- Intervals: RNA secondary structure.

Top-down vs. bottom-up dynamic programming. Opinions differ.