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Algorithmic paradigms

Greed. Process the input in some order, myopically making irrevocable decisions.

Divide-and-conquer. Break up a problem into independent subproblems;
solve each subproblem; combine solutions to subproblems to form solution to
original problem.

Dynamic programming. Break up a problem into a series of overlapping
subproblems; combine solutions to smaller subproblems to form solution to large
subproblem.

fancy name for
caching intermediate results

in a table for later reuse



Dynamic programming history

Bellman. Pioneered the systematic study of dynamic programming in 1950s.

Etymology.
* Dynamic programming = planning over time.
* Secretary of Defense had pathological fear of mathematical research.
* Bellman sought a “dynamic” adjective to avoid conflict.

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time ¢ is determined by a
set of quantities which we call state parameters, or state variables.
At certain times, which may be prescribed in advance, or which may
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are
equivalent to transformations of the state variables, the choice of a
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of
future ones, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Examples of processes fitting this loose description are furnished
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical
clinic; from the determination of long-term investment programs for
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments.




Dynamic programming applications

Application areas.
* Computer science: Al, compilers, systems, graphics, theory, ....

Operations research.

Information theory.

Control theory.

Bioinformatics.

Some famous dynamic programming algorithms.
* Avidan—Shamir for seam carving.
* Unix diff for comparing two files.
* Viterbi for hidden Markov models.
* De Boor for evaluating spline curves.
* Bellman—Ford—Moore for shortest path.
* Knuth—Plass for word wrapping text inIfX.
* Cocke—Kasami—Younger for parsing context-free grammars.
* Needleman—-Wunsch/Smith—Waterman for sequence alignment.
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DYNAMIC PROGRAMMING

» Fibonacci numbers



Fibonacci numbers

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

0 it 1=0
Fy=<¢1 it 1=1
Fi 1+ F,_o it i>1

Leonardo Fibonacci




Fibonacci numbers

Fibonacci numbers. 0, 1,1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

0 it 1=20
F,=<¢1 if 1 =1
Fi 1+ F,_o if 1 >1

Goal. Given #n, compute F;,

Naive recursive approach.

public static long fib(int 1)
{
1if (1 == 0) return O;
if (1 == 1) return 1;
return fib(i-1) + fib(1-2);



Fibonacci numbers: Recursion tree and exponential growth

Exponential waste. Same overlapping subproblems are solved repeatedly.
Ex. To compute fib(6):

- fib(5) is called 1 time.
- fib(4) is called 2 times. Fn ~ 9% ¢=—— =~ 1618

- fib(3) is called 3 times.
- fib(2
(

IS called 5 times.

)
)
)
)

- fib(1) is called F,, = Fs = 8 times.

running time = # subproblems x cost per subproblem



Fibonacci numbers: Top-down dynamic programming

Memoization.
- Maintain an array (or symbol table) to remember all computed values.
- If value to compute is known, just return it;

otherwise, compute it; remember it; and return it.

public static Tong fib(int 1)
{
if (i == 0) return O;
if (1 == 1) return 1;
if (F[i] == 0) f[i] = fib(i-1) + fib(i-2);
return f[i]; |

Impact. Solves each subproblem F; only once; ®(x) time to compute F.

10



Fibonacci numbers: Bottom-up dynamic programming

Bottom-up dynamic programming.
- Build computation from the “bottom up.”
- Solve small subproblems and save solutions.
- Use those solutions to solve larger subproblems.

public static long fib(int n)

{
long[] f = new Tong[n+1];
f[0] = O;
fL1] = 1;
for (int 1 = 2; 1 <= n; i++)

fli] = f[1-1] + f[i-2];

return f[n]; “\\\////”

} smaller subproblems

Impact. Solves each subproblem F; only once; ©(#) time to compute F,; no
recursion.

11



Fibonacci numbers: Further improvements

Performance improvements.
- Save space by saving only two most recent Fibonacci numbers.

public static long fib(int n) {
int f =1, g=0; <
for (Aint 1 = 1; 1 < n-1; 1++) {

f=1+g;
g="F-9;
¥
return f;

- Exploit additional properties of problem:

" 1++5 1 1\"
e (1 o)

Fn—l—l
Fry

12



DYNAMIC PROGRAMMING

» weighted interval scheduling



Weighted interval scheduling

* Job j starts at s;, finishes at f;, and has weight w; > 0.
* Two jobs are compatible if they don’t overlap.

* Goal: find max-weight subset of mutually compatible jobs.

Ji

11

>

time

14



Weighted interval scheduling

Convention. Jobs are in ascending order of finishtime: f, < f, <...<f,.

Def. p(j) = largest index i < j such that job i is compatible with ;.
Ex. p(8)=1,p(7)=3,p(2) =0. AN

[ is leftmost interval
that ends before j begins

> time

15



Dynamic programming: Binary choice

Def. OPT(j) = max weight of any subset of mutually compatible jobs for subproblem
consisting only of jobs 1, 2, ..., /.

Goal. OPT(n) = max weight of any subset of mutually compatible jobs.

Case 1. OPT(j) does not select job ;.
* Must be an optimal solution to problem consisting of remaining

jobs 1,2, .., j—1.
\ optimal substructure property
Case 2. OPT(j) selects job j. / (proof via exchange argument)
* Collect profit w;.
* Can’t use incompatible jobs { p(j) + 1,p(j) +2, ..., j—1 }.
* Must include optimal solution to problem consisting of remaining compatible
jobs 1,2, ..., p(j).

0 if j =0
Bellman equation.  OPT(j) = J
max{ OPT(j — 1), w; + OPT(p(j))} ifj >0

16



Weighted interval scheduling: Brute force

BRUTE-FORCE (11, S1, «..\y Suy f1s «ovs fus W1y oooy Wh)

IA
IA
o

Sort jobs by finish time and renumber so that fi < f>
Compute p[l], p[2], ..., p[n] via binary search.

RETURN COMPUTE-OPT(n).

COMPUTE-OPT(j )

IF (j =0)
RETURN 0.
ELSE

RETURN max {COMPUTE-OPT(j—1), w; + COMPUTE-OPT(p[j]) }.

17



Weighted interval scheduling: Brute force

Observation. Recursive algorithm is spectacularly slow because of overlapping
subproblems = exponential-time algorithm.

Ex. Number of recursive calls for family of “layered” instances grows like Fibonacci
sequence.

ONONONONBONO,
p(1) = 0, p() = j-2 @ @

recursion tree

18



Weighted interval scheduling: Memoization

Top-down dynamic programming (memaoization).
* Cache result of subproblem jin M[/].
* Use M][j] to avoid solving subproblem j more than once.

TOP-DOWN(n, 81, ...y Sny f1y cvvs frs Wi, ooy Wh)

IA
IA
B

Sort jobs by finish time and renumber so that fi < f>

Compute p[l], p[2], ..., p[n] via binary search.

M[0] <= 0. €< globalarray

RETURN M-COMPUTE-OPT(n).

M-COMPUTE-OPT(j )

IF (M[j] 1is uninitialized)
M]|j] < max { M-COMPUTE-OPT (j—1), w; + M-COMPUTE-OPT(p[j]) }.

RETURN M|J].

19



Weighted interval scheduling: Running time

Claim. Memoized version of algorithm takes O(n log n) time.
Pf.

* Sort by finish time: O(n log n) via mergesort.
Compute p[j] for each j : O(nlog n) via binary search.

* M-CoMPUTE-OPT(j): each invocation takes O(1) time and either
- (1) returns an initialized value M|j]
- (2) initializes M[j] and makes two recursive calls

Progress measure ® = # initialized entries among M|[1..n].
- Initially @ = 0; throughout & < n.
- (2) increases ® by 1 = < 2n recursive calls.

Overall running time of M-COMPUTE-OPT(n) iS O(n). =

20



Weighted interval scheduling: Running time

Claim. Memoized version of algorithm takes O(n log n) time.
Pf.

* Sort by finish time: O(n log n) via mergesort.
Compute p[j] for each j : O(nlog n) via binary search.

* M-CoMPUTE-OPT(j): each invocation takes O(1) time and either
- (1) returns an initialized value M|j]
- (2) initializes M[j] and makes two recursive calls

Progress measure ® = # initialized entries among M|[1..n].
- Initially @ = 0; throughout & < n.
- (2) increases ® by 1 = < 2n recursive calls.

Overall running time of M-COMPUTE-OPT(n) iS O(n). =

21



Those who cannot remember the
past are condemned to repeat it.

- Dynamic Programming



Weighted interval scheduling: Finding a solution

Q. DP algorithm computes optimal value. How to find optimal solution?
A. Make a second pass by calling FIND-SOLUTION(n).

FIND-SOLUTION( )

IF j=0)
RETURN .
ELSE IF (w; + M[p[j1] > M[j—1])
RETURN {j } U FIND-SOLUTION(p[/]).
ELSE

RETURN FIND-SOLUTION(j—1).

M|j]=max { M[j—1], w; + Mlpljl] }.

Analysis. # of recursive calls =n = O(n).

23



Weighted interval scheduling: Bottom-up dynamic programming

Bottom-up dynamic programming. Unwind recursion.

BOTTOM-UP(n, S1, ..., Sns f1s cvvs frs Wi, oovy Wh)

Sort jobs by finish time and renumber so that fi < f>

IA
IA
B

Compute p[l], p[2], ..., pln].

M[O] <— 0. previously computed values

FORj=1TOn / \

M|j] < max { M[j-1], w;i + M[pljll }.

Running time. The bottom-up version takes O(n log n) time.

24



Weighted interval scheduling: Bottom-up dynamic programming

Bottom-up dynamic programming. Unwind recursion.

BOTTOM-UP(n, S1, «..y Snsfly cvvsfrs Wiy evny Wi)

Sort jobs by finish time and renumber so that fi < 2 < ... < fa.
Compute p[1], p[2], ..., pln].
M[0] < O.
FORj=1TOn
M[jl < max { M[j—1], w; + M[p[j]] }.
wy = 2
: | p(l) =0
w, = 4
: | p(2) =0
Wy = 4
| i p@3) =1
Wy = 7
| i p4) =0
Wy = 2
I | p(5) =3
We = 1
| i p(6) =3

(-
)
N
(@)

-
\S)
NN
(@)}
~

25



DYNAMIC PROGRAMMING

» segmented least squares



Least squares

Least squares. Foundational problem in statistics.
* Given n points in the plane: (x1, y1), (x2,y2) , ..., (Xn, Yn).
* Find a line y = ax + b that minimizes the sum of the squared error:

n

SSE = Z (y; — axz; — b)?

1=1

Solution. Calculus = min error is achieved when

_ D Tilfs — (D T D, Vi) ho— D W =G Y T
ny w7 — (O ;%) n

27



Segmented least squares

Segmented least squares.
* Points lie roughly on a sequence of several line segments.
* Given n points in the plane: (x1, y1), (x2,y2) , ..., (xa, yn) With
X1 <x2 < ...< X, find a sequence of lines that minimizes f(x).

Q. What is a reasonable choice for f(x) to balance accuracy and parsimony?

1 1

goodness of fit number of lines

\ 4

28



Segmented least squares

Segmented least squares.
* Points lie roughly on a sequence of several line segments.
* Given n points in the plane: (x1, y1), (x2,y2) , ..., (xa, yn) With
X1 <x2 < ...< X, find a sequence of lines that minimizes f(x).

Goal. Minimize f(x) = E + ¢ L for some constant ¢ > 0, where

* E =sum of the sums of the squared errors in each segment.

* L. = number of lines.

\ 4

29



Dynamic programming: Multiway choice

Notation.
* OPT(j) = minimum cost for points pi, p2, ..., p;.
* ¢ = SSE for for points pi, pi+1, ..., pj.

To compute OPT(j):
* Last segment uses points p;, pi+1, ..., p;for somei<j.

* Cost=¢;j + ¢ + OPT(i-1). <“<——  optimal substructure property

(proof via exchange argument)

Bellman equation.

(0 if j =0

OPT(j) = < min { e; +c+OPT(i—1)} ifj>0
\ 1<y

30



Segmented least squares algorithm

SEGMENTED-LEAST-SQUARES(n, pi, ..., Pn, C)

FOR j=1TO n
FOR 1=1TO j

Compute the SSE e;; for the points p;, pi+1, ..., p;.

M[0] < 0.
previously computed value
FOR j=1TO n /

M[]] < minlsisj {e,-j +c+MJ[i—1] }

RETURN M| n].

31



Segmented least squares analysis

Theorem. [Bellman 1961] DP algorithm solves the segmented least squares
problem in O(»’) time and O(n?) space.

Pf.
* Bottleneck = computing SSE ¢;; for each i and ;.

n g TkYk — (2 Tk) (g Yk) b — Dok Yk — Qij D _p Tk
nypar— (pan)? n

CLij =

* O(n) to compute ¢;;. =

Remark. Can be improved to O(n?) time. | | | |
* For each i : precompute cumulative sums Y zx, > sk D Th D Tkl
k=1 k=1 k=1 k=1

* Using cumulative sums, can compute ¢;; in O(1) time.

32



DYNAMIC PROGRAMMING

» knapsack problem



Knapsack problem

Goal. Pack knapsack so as to maximize total value of items taken.
* There are n items: item i provides value v; >0 and weighs w; > 0.
* Value of a subset of items = sum of values of individual items.
* Knapsack has weight limit of W.

Ex. The subset { 1,2,5 } has value $35 (and weight 10).
Ex. The subset { 3,4 } has value $40 (and weight 11).

Assumption. All values and weights are integral.

i Vi Wi

<l > = > 1 1 1k
¢ 8 weights and values
Q can be arbitrary

” @ 2 56 2 ke / positive integers
— % 3 $18 S kg
d ') 4 $22  6ke
- 5 $28  7ke

knapsack instance

Creative Commons Attribution-Share Alike 2.5 (WEIght Ilmlt W — 1 1)
by Dake 34



Dynamic programming: Two variables

Def. OPIT(i,w) = optimal value of knapsack problem with items 1, ..., i, subject to
weight limit w.
Goal. OPT(n, W).

/ possibly because w; > w
Case 1. OPT(i,w) does not select item .

* OPT(i,w) selects bestof { 1,2,...,i—1 } subject to weight limit w.

Case 2. OPT(i,w) selects item 1. \ optimal substructure property
* Collect value v: / (proof via exchange argument)
In
* New weight limit = w — w;.

* OPT(i,w) selects bestof {1,2,...,i—1 } subject to new weight limit.

Bellman equation.

v

0 iti=20
OPT(t,w) = < OPT(i—1,w) if w; > w

max{ OPT(i — 1,w), v; + OPT(i —1,w —w;) }  otherwise

\

35



Knapsack problem: Bottom-up dynamic programming

KNAPSACK(n, W, W1, ..., Wn, V1, ..., Vi)

FOR w=0TO W
M[O,w] < 0.

. previously computed values
FOR i=1TOn

FOR w=0TO W / \
IF wi>w) M[i,w] < M[i—-1,w]. )

ELSE M[i,w] < max{ M[i—-1,w], vi + M[i—-1,w—w;] }.

RETURN M|n, W].

(0 if i =0
OPT(i,w) = ¢ OPT(i—1,w) if w; > w
|\ max{ OPT(i - 1,w), v; + OPT(i —1,w —w;) } otherwise

36



Knapsack problem: Bottom-up dynamic programming

l Vi Wi

1 31 lkg (0 if i = 0

2 6  2kg  oPTG,w) = { OPT( - 1,w) if w; > w
3 $18  Skg | max {OPT(i — 1,w), v; + OPT(i — 1,w — w;}  otherwise
4 $22  6kg

5 $28 7Tk

{1}

1

{1}

subset {1,2}
of items

1, ..,i {1,2,3}

{1,2,3,4}

{1!2!3’4!5

}

weight limit w

o123 e s 67 s ]e 0l
0 0 0 0 0 0 0 0 0 0 0

0

g 1 1 1 1 1 1 1 1 1 1 1
g 6 7 7 7 7 7 7 7 7 7
0 1 6 7 7 18 24 25 25 25 25
0 1 6 7 7 18 22 24 28 29 29 40
0 1 6 7 7 18 22 28 29 34 35

OPT(i, w) = optimal value of knapsack problem with items 1, ..., i, subject to weight limit w

37



Knapsack problem: Running time

Theorem. The DP algorithm solves the knapsack problem with » items
and maximum weight Win ©O(n W) time and O(n W) space.
Pt. weights are integers
- Takes O(1) time per table entry. between [ and W
* There are ®(n W) table entries.
* After computing optimal values, can trace back to find solution:
OPT(i,w)takesitemiift M[i,w] > M[i—1,w]. =

Remarks.
* Algorithm depends critically on assumption that weights are integral.
* Assumption that values are integral was not used.

38



Coin changing

Problem. Given n coin denominations { ci1, c2, ..., ¢, } and a target value V, find the
fewest coins needed to make change for V (or report impossible).

Ex. {1, 10, 21, 34, 70, 100, 350, 1295, 1500 }.
Optimal. 140¢ = 70 + 70.

39



Coin changing

Def. OPT(v) = min number of coins to make change for v.

Goal. OPT(V).

Multiway choice. To compute OPT(v),

optimal substructure property
* Select a coin of denomination ¢; for some i. (proof via exchange argument)

/

* Select fewest coins to make change for v — c..

Bellman equation.
)

00 if v <0
min { 1+ OPT(v—c¢;)} otherwise
L 1<i<n

Running time. O V).

40
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» RNA secondary structure



RNA secondary structure

RNA. String B =b,b,...b, over alphabet { A,C,G, U }.

Secondary structure. RNA is single-stranded so it tends to loop back and form base
pairs with itself. This structure is essential for understanding behavior of molecule.

cC—A
/ AN
A A
AN /
A....U G—C
base | | / \
Ce+++ G U A A G
\ % . |
U 7 A U U A
/ \ | base pair | \G/
A C G C
I : : : : \ G
: : : : /
C G C G A G--+ C
N S |
G
A...U
G

RNA secondary structure for GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA



RNA secondary structure

Secondary structure. A set of pairs § = { (b;, b)) } that satisfy:

l

* [Watson—Crick] S is a matching and each pair in S is a Watson—Crick
complement: A-U, U-A, C-G, or G-C.

G G
C U
C ........ G ¢ * * * * *
/ A CGUGGTCCAWU
base pair S is not a secondary structure
in secondary structure AR C (C-A is not a valid Watson-Crick pair)
U ........ A

B=ACGUGGCCCAU
S ={ (b1, b10), (b2, b9), (b3,bs) }

43



RNA secondary structure

Secondary structure. A set of pairs § = { (b;, b)) } that satisfy:
* [Watson—Crick] S is a matching and each pair in S is a Watson—Crick
complement: A-U, U-A, C-G, or G-C.
* [No sharp turns] The ends of each pair are separated by at least 4 intervening
bases. If (b;,,b,)E S,theni < j — 4.

1°

G
G G
Covennnns c /—\
A UGGGGCAU
A cccceeeee U
S is not a secondary structure
1] oocccoonc A (<4 intervening bases between G and C)

B=AUGGGGCAU
S = { (bla b9)7 (b2, b8), (b3’ b7) }

44



RNA secondary structure

Secondary structure. A set of pairs § = { (b;, b)) } that satisfy:
* [Watson—Crick] S is a matching and each pair in S is a Watson—Crick
complement: A-U, U-A, C-G, or G-C.
* [No sharp turns] The ends of each pair are separated by at least 4 intervening
bases. If (b;,,b,)E S,theni < j — 4.

1°

* [Non-crossing] If (b;,b,) and (b, by) are two pairs in S, then we cannot have i <

l

k<j<U{.

C. U
>
A G o & ® ® ® ® 9 &
A GUUGGTCCA AU
Usoooosos A S is not a secondary structure

(G-C and U-A cross)
B=ACUUGGCCAU

S ={ (b1, b1), (b2, bs), (b3, bo) } 45



RNA secondary structure

Secondary structure. A set of pairs § = { (b;, b)) } that satisfy:
* [Watson—Crick] S is a matching and each pair in S is a Watson—Crick
complement: A-U, U-A, C-G, or G-C.
* [No sharp turns] The ends of each pair are separated by at least 4 intervening
bases. If (b;,,b,)E S,theni < j — 4.

1°

* [Non-crossing] If (b;,b,) and (b, by) are two pairs in S, then we cannot have i <

l

k<j<U{.

C G
A U @ @ L @
A UGUGGT CZCA AU
S is a secondary structure
U A

(with 3 base pairs)
B=AUGUGGCCAU

S ={ (b1, b1), (b2, b9), (b3, bs) }

46



RNA secondary structure

Secondary structure. A set of pairs S ={ (b,, b, } that satisfy:
* [Watson—Crick] S is a matching and each pair in S is a Watson—Crick
complement: A-U, U-A, C-G, or G-C.
* [No sharp turns] The ends of each pair are separated by at least 4 intervening
bases. If (b;,b) €S, theni < j - 4.
* [Non-crossing] If (b;,b) and (b, by) are two pairs in S, then we cannot have i <

k<j<U{.

Free-energy hypothesis. RNA molecule will form the secondary structure with the

\

approximate by number of base pairs
(more base pairs = lower free energy)

minimum total free energy.

Goal. Given an RNA molecule B = b,b,...b,, find a secondary structure §
that maximizes the number of base pairs.

47



RNA secondary structure: Subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary structure of

the substring b,b, ... b..

Goal. OPT(n).

. match bases bt and b,
Choice. Match bases b, and b..

1 t J <€— |astbase

Difficulty. Results in two subproblems (but one of wrong form).

* Find secondary structure in b,b,... b, ;. «—— OPT(+-1)
. ' ' . need more subproblems
Find secondary structure in b,,,b,,,... b, ;. o = s o

48



Dynamic programming over intervals

Def. OPT(i, j) = maximum number of base pairs in a secondary structure
of the substring b,b,,, ... b,
Case 1. Ifi = j—4.

* OPT(i, j) =0 by no-sharp-turns condition.

Case 2. Base b;is not involved in a pair.
* OPT(i, j)=OPT@, j—1).

Case 3. Base b; pairs with b;forsomei <t < j — 4.
* Non-crossing condition decouples resulting two subproblems.
* OPT(, j)=1+max,{ OPT(i, t— 1)+ OPT(t+ 1, j—1) }.

\ match bases bj and by
take max over f such thati <t <;j—4 and

b: and b; are Watson—Crick complements
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Bottom-up dynamic programming over intervals

Q. In which order to solve the subproblems?
A. Do shortest intervals first—increasing order of |j—i|.

RNA-SECONDARY-STRUCTURE(n, b1, ..., bn) J
6 7 8 9 10
FOR k=5TOn-1 N . 0 0
. all needed values
FOR i=1TOn—k are already computed ; 3 0 0
J <1+ k. 2 0
Compute M[i, j] using formula. 1

RETURN M[1, n]. order in which to solve subproblems

Theorem. The DP algorithm solves the RNA secondary structure problem in O(n?)
time and O(n?) space.
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Bottom-up dynamic programming over intervals

RNA-SECONDARY-STRUCTURE(#, b1, ..., by )

FOR k=5T1TO0Nn-1
FOrR i=1TOn—-%

j <—i+k.

Compute M[i, j] using formula.

RETURN M][1, n].

410|100 410
310|0 310
210 210
i =1 i=1]1
j=6 7 8 9 j=6 7 8 9
Initial values Filling in the values

fork = 5

Case 1. Ifi = j-4.
* OPT(i, j) =0 by no-sharp-turns condition.
Case 2. Base b, is not involved in a pair.
* OPT(, j)=OPT(@, j—1).
Case 3. Base b, pairs with b, forsomei <t < j — 4.

* OPT(, j)=1+max,{ OPTG, t— 1)+ OPT(t+1, j— 1)}

RNA sequence ACCGGUAGU

410(0(0]|0 410(0(0]|0 410(0(0]|0
3(]0(0]|1]1 3(]0(0]1]1 3{0[{0]1]1
21001 2(0(0(1]1 210|011
i=1(1]1 i=1|1]|1]1 i=1(1[1]1]2
j=6 7 8 9 j=6 7 8 9 j=6 7 8 9
Filling in the values Filling in the values Filling in the values

fork = 6 fork = 7 fork = 8
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DYNAMIC PROGRAMMING

» sequence alignment



String similarity

Q. How similar are two strings?

EX. ocurrance and occurrence.

6 mismatches, 1 gap

0 mismatches, 3 gaps

1 mismatch, 1 gap

53



Edit distance

Edit distance. [Levenshtein 1966, Needleman—Wunsch 1970]
* Gap penalty 6; match penalty a,, .

* Cost = sum of gap and match penalties.

. -
-

Applications. Bioinformatics,

coSst = & + ¢ + Ktp

assuming Oy, = Oloc = Ogg = Opp =0

spell correction, machine translation,

speech recognition, information extraction, ...

Spokesperson confirms
Spokesperson said

senior government adviser was found
the senior adviser was found
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BLOSUM matrix for proteins

>STTVURENYTHYS - T e=NY Do niN
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Sequence alignment

Goal. Given two strings x, x, ... x,, and y, y, ... v, find a min-cost alignment.

Def. An alignment M is a set of ordered pairs x; — y; such that each character

appears in at most one pair and no crossings.

™

xi—yjand x; —y;-crossifi<i’, butj>j’

Def. The cost of an alignment M is:

cost(M) =

> Oy + > 0+ >y 6

(x;,.y ) )EM i :x; unmatched  j:y; unmatched

J . J

match gap

X1 X2 X3 X4 X5 X6
c 1 ac o
B oo

Y1 y2 y3 V4 Y5 V6

an alignment of CTACCG and TACATG

M = 3 X)=Y1, X37Y25 X4=Y35 X5=Ya4> X6~ V6 }
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Sequence alignment: Problem structure

Def. OPT(i, j) = min cost of aligning prefix strings x, x, ... x; and y, y, ... y..
Goal. OPT(m, n).

Case 1. OPT(i,j) matches x; — y;.
Pay match for x; —y, + min cost of aligning x; x, ... x, ; and y, y, ... y; ;.

Case 2a. OPI1(i,j) leaves x; unmatched.
Pay gap for x; + min cost of aligning x; x, ... x; ; and y, y, ... y..

o \ optimal substructure property
Case 2b. OPT(i,j) leaves y; unmatched.

(proof via exchange argument)

\

Pay gap for y; + min cost of aligning x; x, ... x; and y, y, ... y; ;.

: (6 ifi =0
Bellman equation.
06 if j =0
OPT(i,j) = 4 Qg + OPT(i—1,5—1)
. [ +a if 7, = y; min{ 6 + OPT (i —1,5) otherwise
Toli ol —b otherwise 5 + OPT(i,j — 1)
\ L )
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Sequence alignment: Bottom-up algorithm

SEQUENCE-ALIGNMENT(m, n, X1, ..., Xm, Y1, «.., Y¥n, O, Q)

FOR i=0TO m
M1i,0] < iO.

FOR j=0TOn
M0, j] < jo.

FOR 1=1 TO m
FOR j=1 TO n
MUi,j] < min { @y, + M[i-1,j-1],
O+ Ml[i—1,]], already
O+ MlJi,j—1]}. computed

RETURN M [m, n].
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Sequence alignment: Traceback

10

12

14

16

10

12

14

16

gap penalty = 2, mismatch penalty = 2, match penalty = -1

11

13

M

11

11

13

10

12

10

10

10

12

A

12

11

12

12

R

14

11

11

11

11

11

11

13

14

16

13

13

13

13

13

10

12

14

18

15

15

15

15

12

12

11

20

17

17

17

17

14

14

11

FOR i=0TOm
MI[i,0] < io.
FOR j=0TOn
MI0,j] < jo.
FOR i=1 TO m
FOR j=1TO n
M[i,jl<-min { oy y + M[i—1,j-1],
S+ M[i—1,]1,
O+ Mli,j—1]
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Sequence alignment: Analysis

Theorem. The DP algorithm computes the edit distance (and an optimal alignment)
of two strings of lengths m and »n in ®(mn) time and space.
Pf.

* Algorithm computes edit distance.

* Can trace back to extract optimal alignment itself. =

Theorem. [Backurs—Indyk 2015] If can compute edit distance of two strings
of length n in O(n?-%) time for some constant ¢ > 0, then can solve SAT
with n variables and m clauses in poly(m) 21-" time for some constant 6 > 0.

AN

o which would disprove SETH
Edit Distance Cannot Be Computed (strong exponential time hypothesis)

in Strongly Subquadratic Time
(unless SETH is false)*

Arturs Backurs! Piotr Indyk?
MIT MIT
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Dynamic programming summary

typically, only a polynomial
+~  number of subproblems

* Define a collection of subproblems.

Outline.

* Solution to original problem can be computed from subproblems.
* Natural ordering of subproblems from “smallest” to “largest” that enables
determining a solution to a subproblem from solutions to smaller subproblems.

Techniques.
* Binary choice: weighted interval scheduling.
* Multiway choice: segmented least squares.
* Adding a new variable: knapsack problem.
* Intervals: RNA secondary structure.

Top-down vs. bottom-up dynamic programming. Opinions differ.
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