BBM 202 - ALGORITHMS

DEPT. OF COMPUTER ENGINEERING

DIRECTED GRAPHS

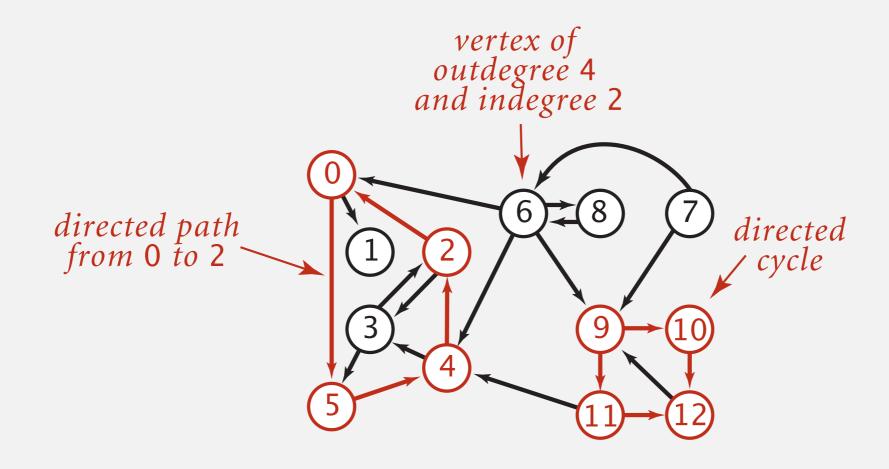
Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton University.

TODAY

- Directed Graphs
- Digraph API
- Digraph search
- Topological sort
- Strong components

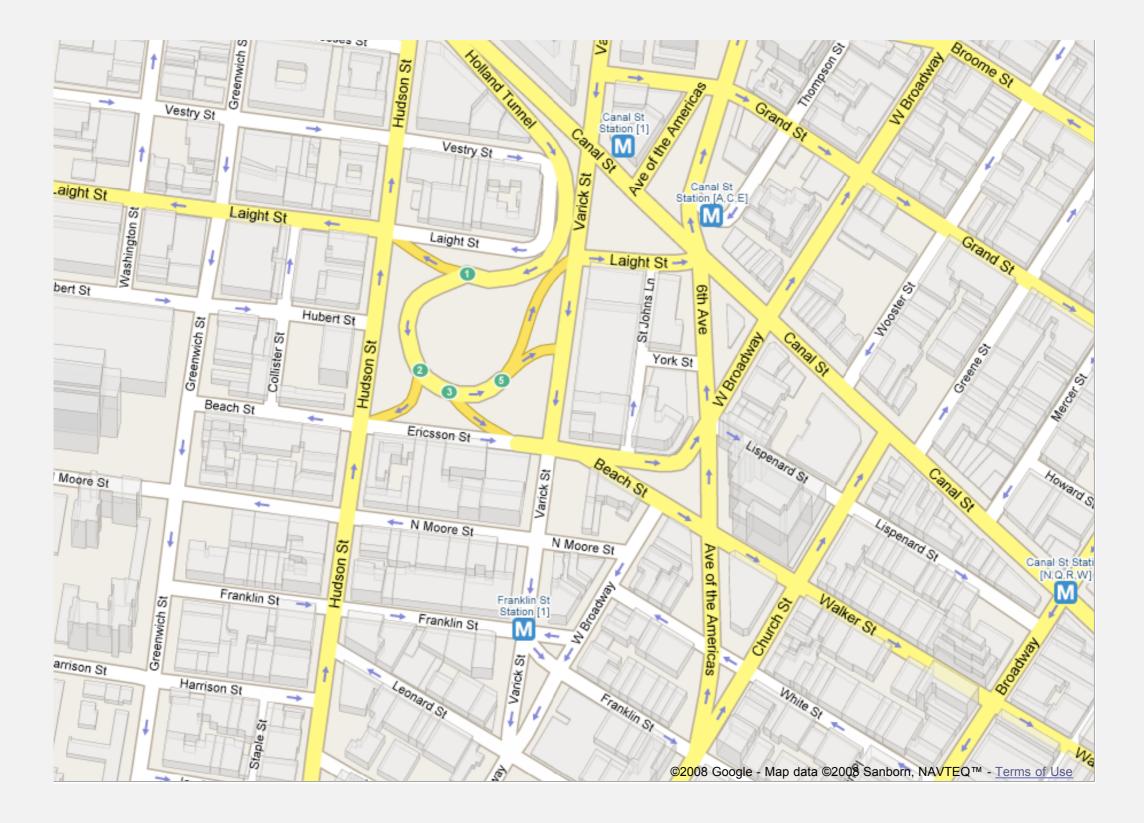
Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.



Road network

Vertex = intersection; edge = one-way street.



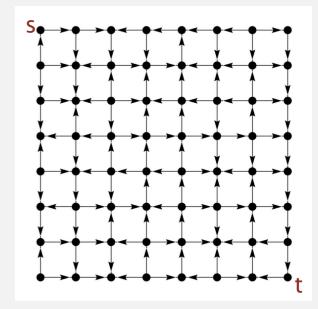
Digraph applications

digraph	vertex	directed edge	
transportation	street intersection	one-way street	
web	web page	hyperlink	
food web	species	predator-prey relationship	
WordNet	synset	hypernym	
scheduling	task	precedence constraint	
financial	bank	transaction	
cell phone	person	placed call	
infectious disease	person	infection	
game	board position	legal move	
citation	journal article	citation	
object graph	object	pointer	
inheritance hierarchy	class	inherits from	
control flow	code block	jump	

Some digraph problems

Path. Is there a directed path from s to t?

Shortest path. What is the shortest directed path from s to t?



Topological sort. Can you draw the digraph so that all edges point upwards?

Strong connectivity. Is there a directed path between all pairs of vertices?

Transitive closure. For which vertices v and w is there a path from v to w?

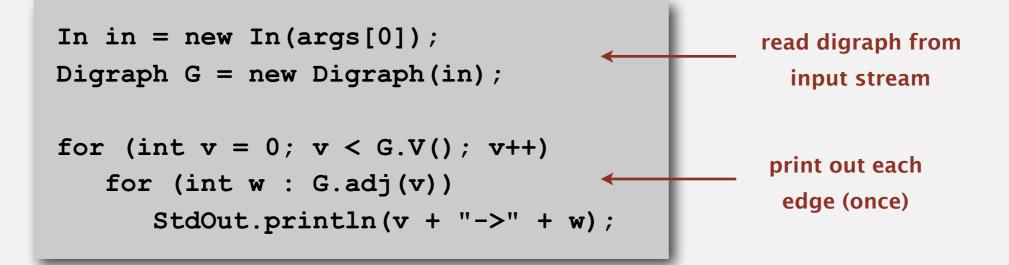
PageRank. What is the importance of a web page?

DIRECTED GRAPHS

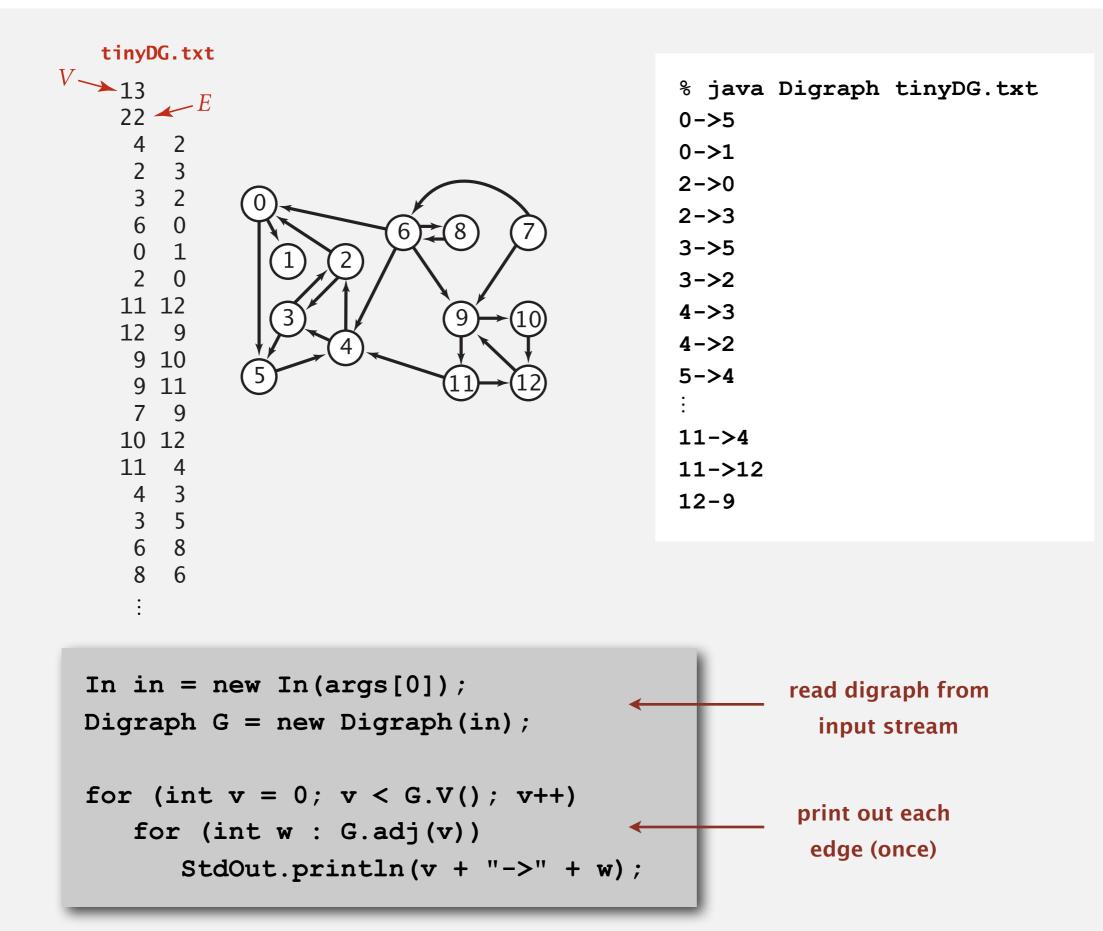
- Digraph API
- Digraph search
- Topological sort
- Strong components

Digraph API

public class	Digraph		
	Digraph(int V)	create an empty digraph with V vertices	
	Digraph(In in)	create a digraph from input stream	
void	addEdge(int v, int w) add a directed edge $v \rightarrow w$		
Iterable <integer></integer>	adj(int v) vertices pointing from v		
int	V()	number of vertices	
int	E()	number of edges	
Digraph	reverse()	reverse of this digraph	
String	toString()	string representation	

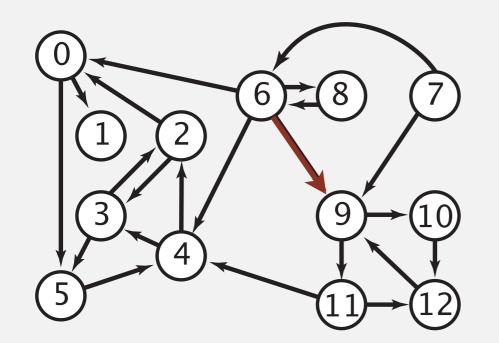


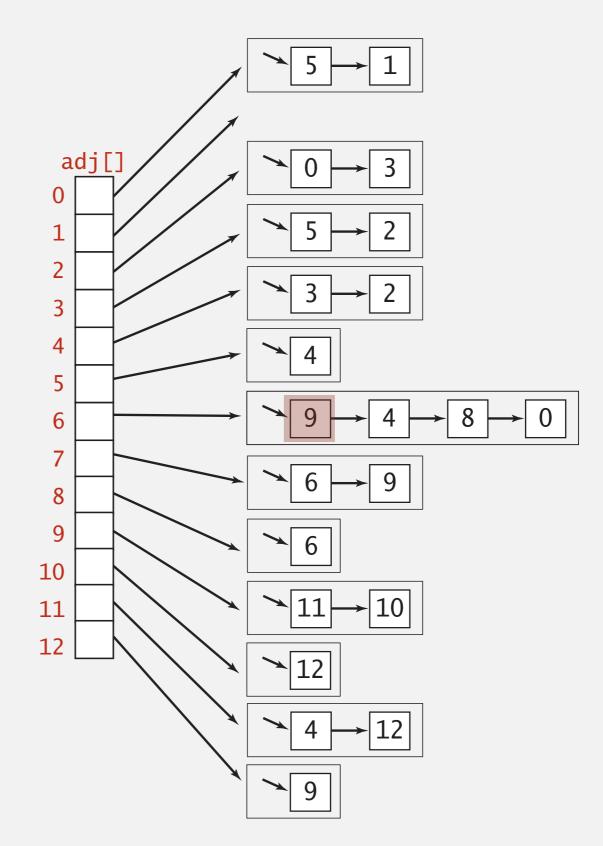
Digraph API



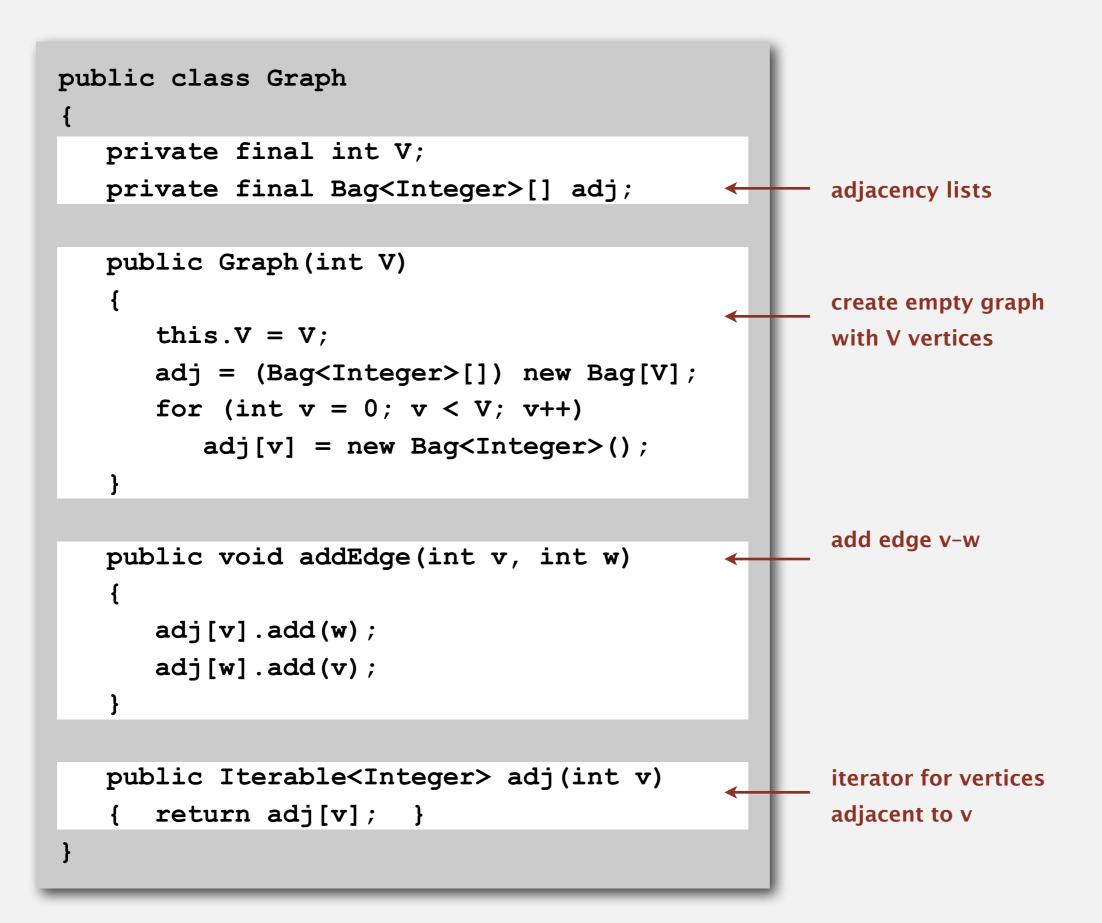
Adjacency-lists digraph representation

Maintain vertex-indexed array of lists.



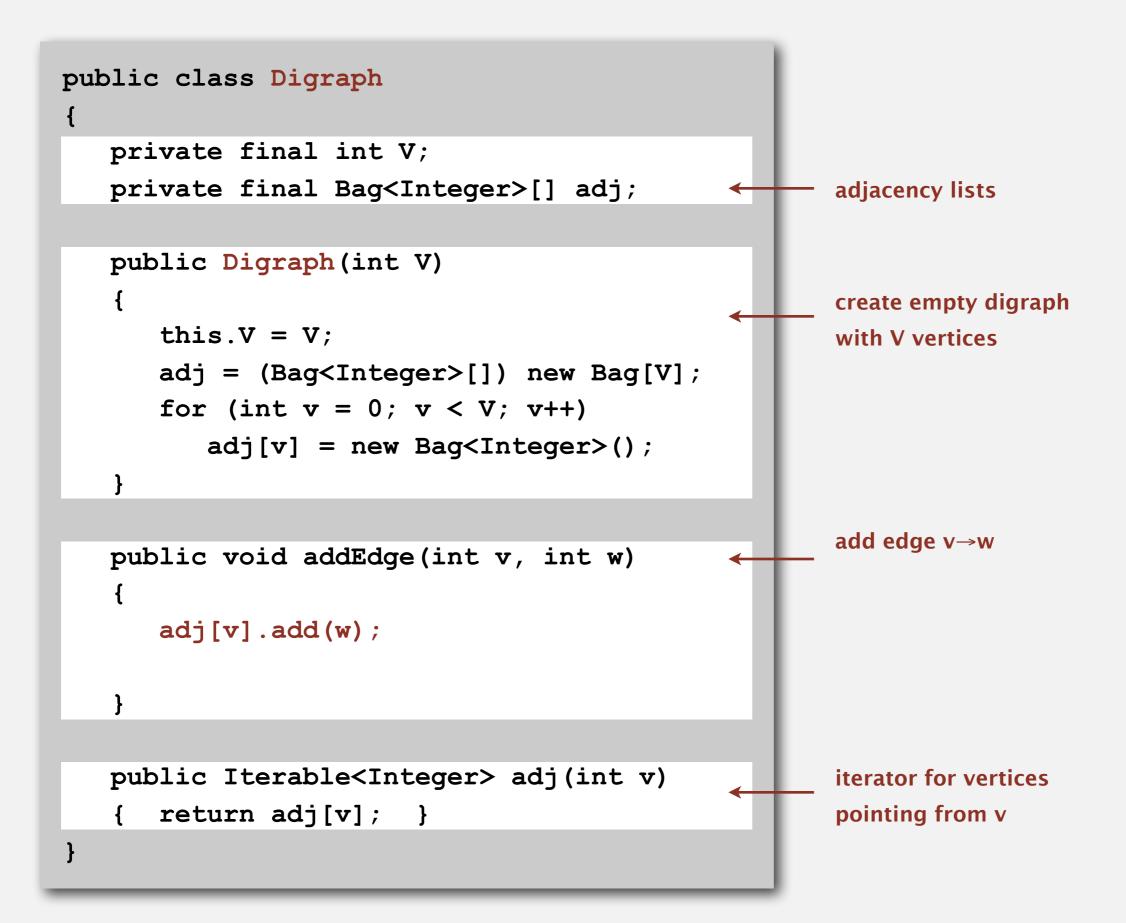


Adjacency-lists graph representation: Java implementation



11

Adjacency-lists digraph representation: Java implementation



Digraph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices pointing from v.
- Real-world digraphs tend to be sparse.

huge number of vertices, small average vertex degree

representation	space	insert edge from v to w	edge from v to w?	iterate over vertices pointing from v?
list of edges	E	1	E	E
adjacency matrix	V 2	1 †	1	V
adjacency lists	E + V	1	outdegree(v)	outdegree(v)

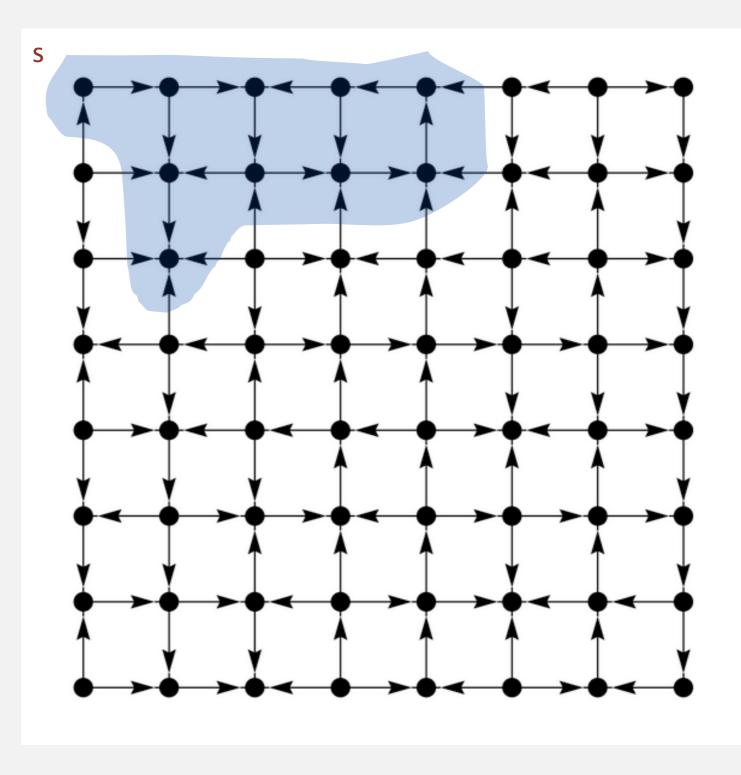
† disallows parallel edges

DIRECTED GRAPHS

- Digraph API
- Digraph search
- Topological sort
- Strong components

Reachability

Problem. Find all vertices reachable from *s* along a directed path.



Depth-first search in digraphs

Same method as for undirected graphs.

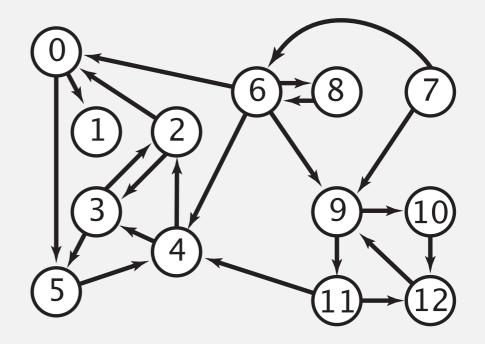
- Every undirected graph is a digraph (with edges in both directions).
- DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited.

Recursively visit all unmarked

vertices w pointing from v.



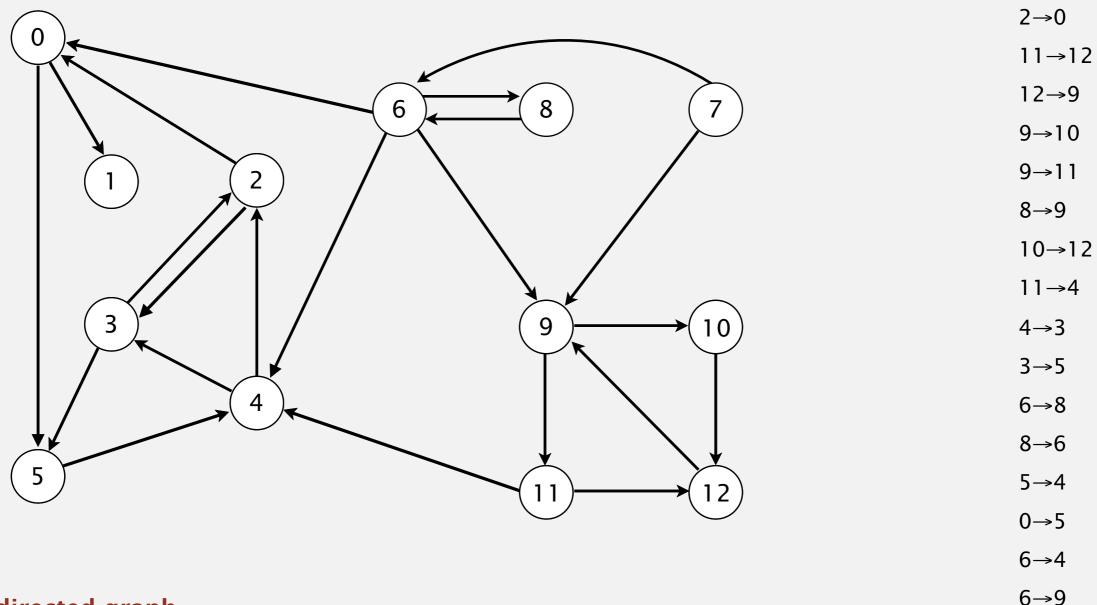
Depth-first search

To visit a vertex v:

4→2

0→1

- Mark vertex v as visited. $3 \rightarrow 2$
- Recursively visit all unmarked vertices pointing from v. $5 \rightarrow 2$ $6 \rightarrow 0$

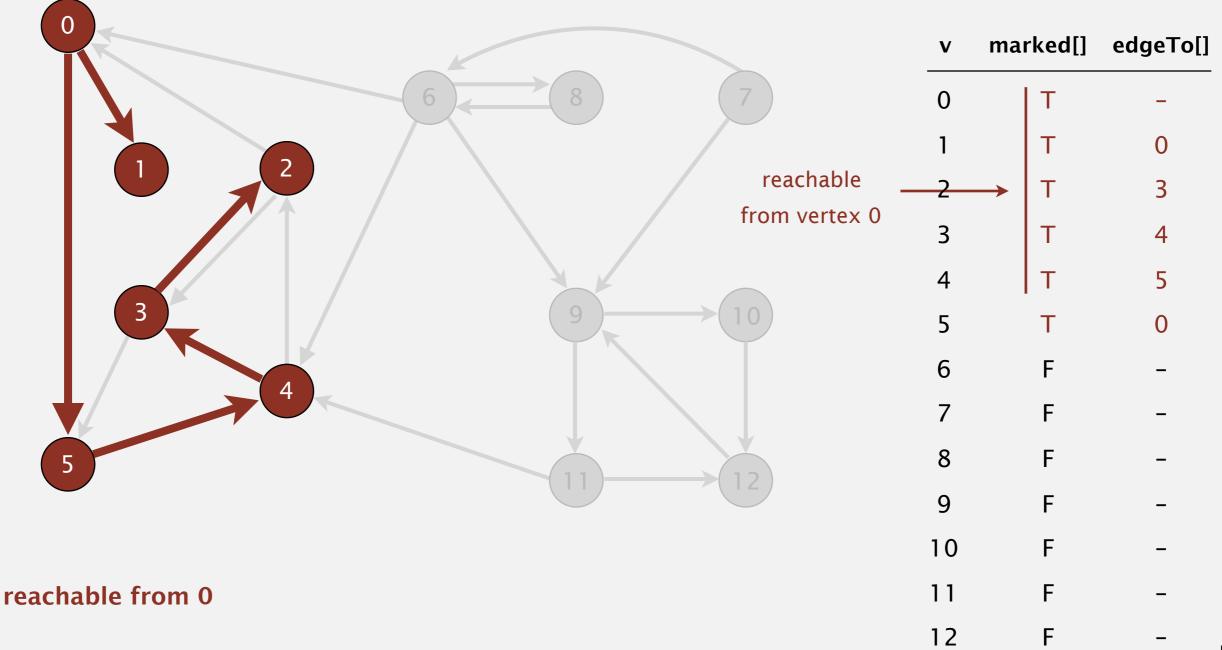


7→6

Depth-first search

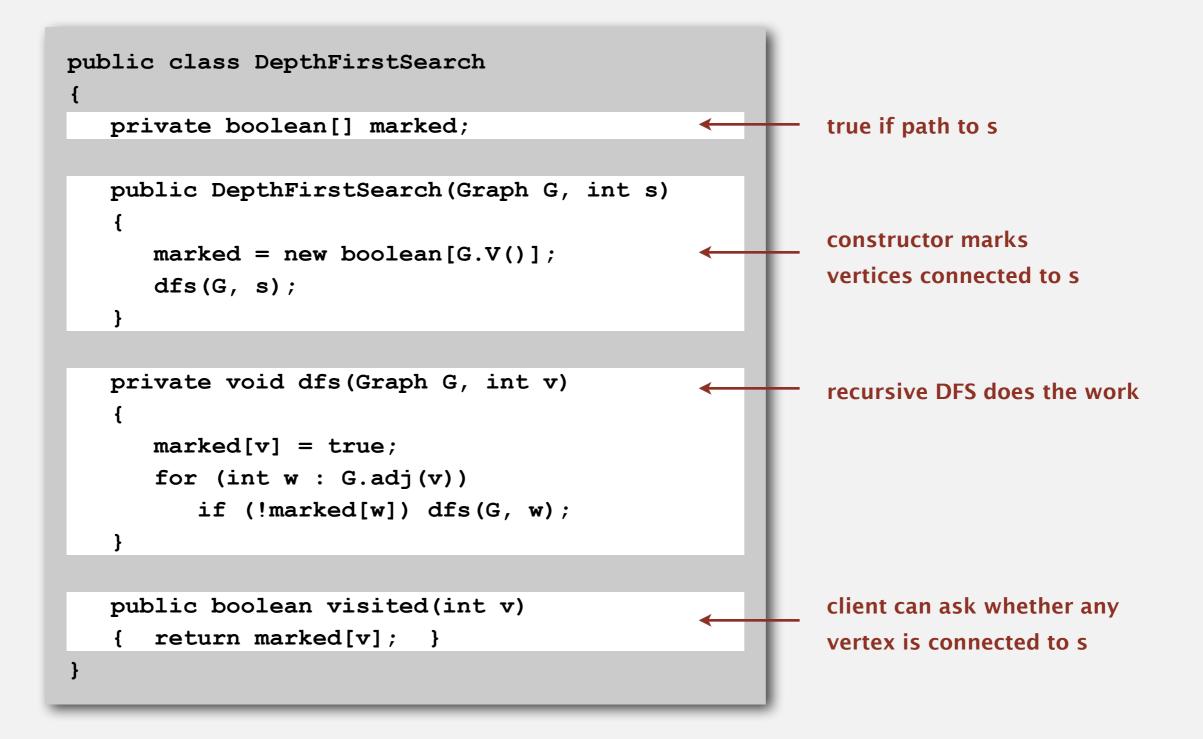
To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices pointing from v.



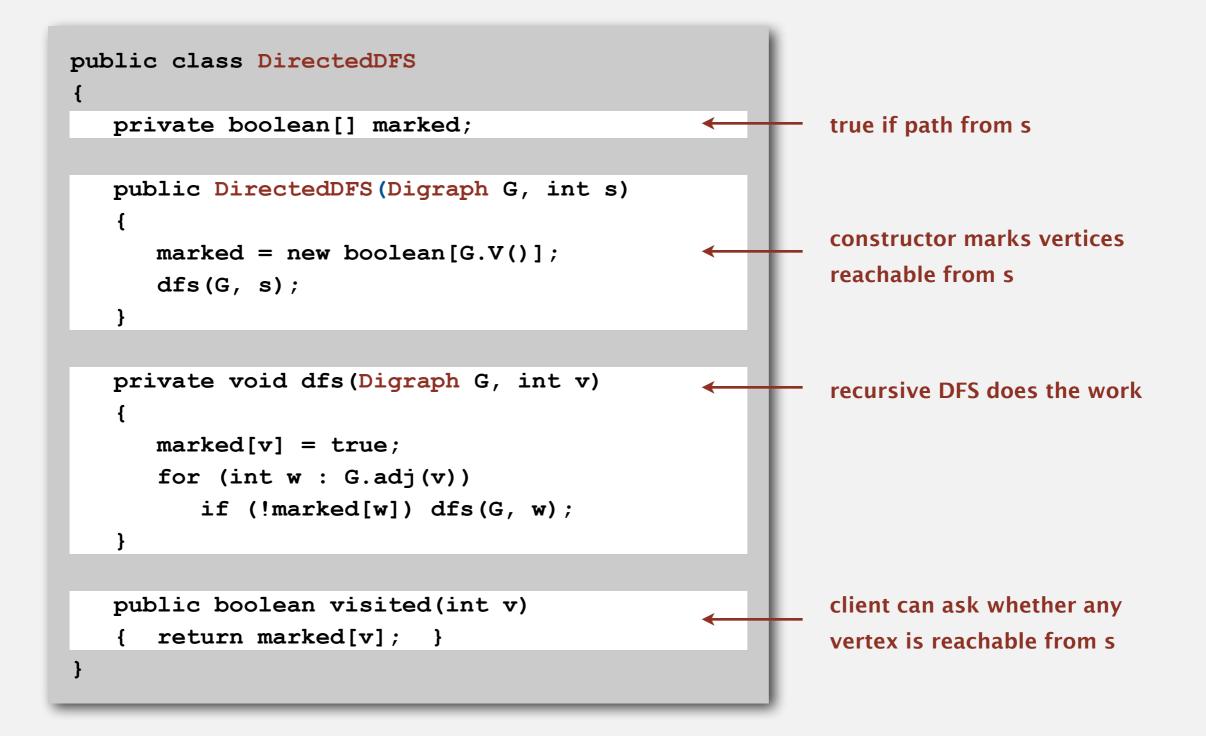
Depth-first search (in undirected graphs)

Recall code for undirected graphs.



Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one. [substitute Digraph for Graph]



Reachability application: program control-flow analysis

Every program is a digraph.

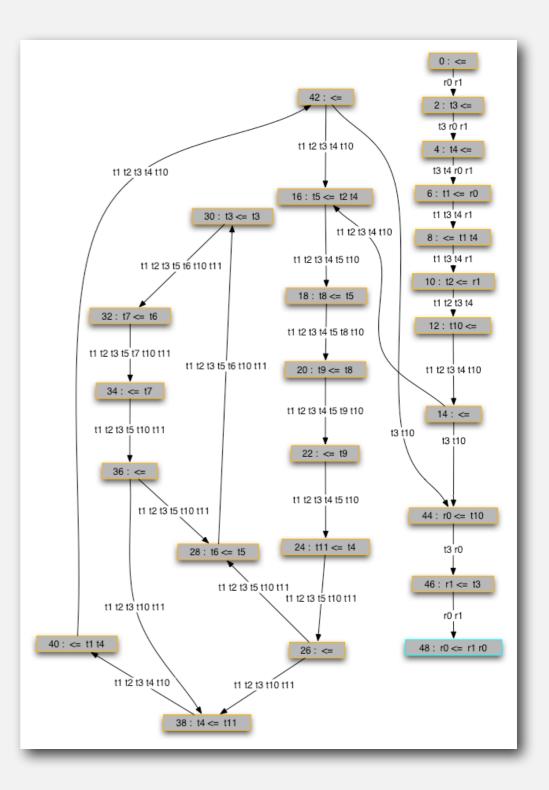
- Vertex = basic block of instructions (straight-line program).
- Edge = jump.

Dead-code elimination.

Find (and remove) unreachable code.

Infinite-loop detection.

Determine whether exit is unreachable.



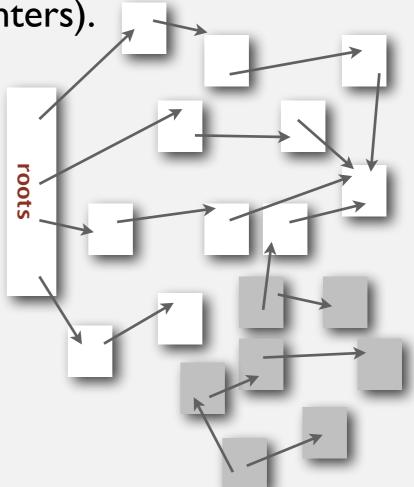
Reachability application: mark-sweep garbage collector

Every data structure is a digraph.

- Vertex = object.
- Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program (starting at a root and following a chain of pointers).

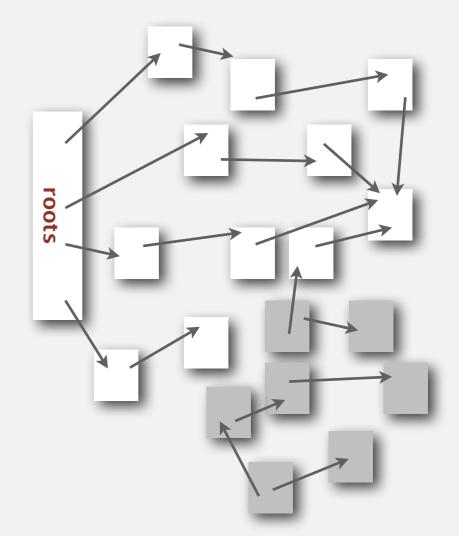


Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]

- Mark: mark all reachable objects.
- Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses I extra mark bit per object (plus DFS stack).



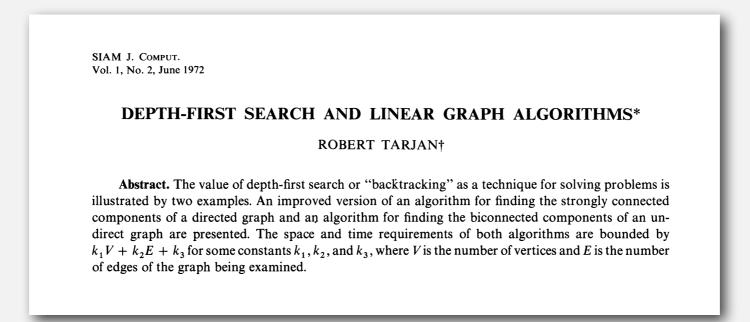
Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.

- Reachability.
 - Path finding.
 - Topological sort.
 - Directed cycle detection.

Basis for solving difficult digraph problems.

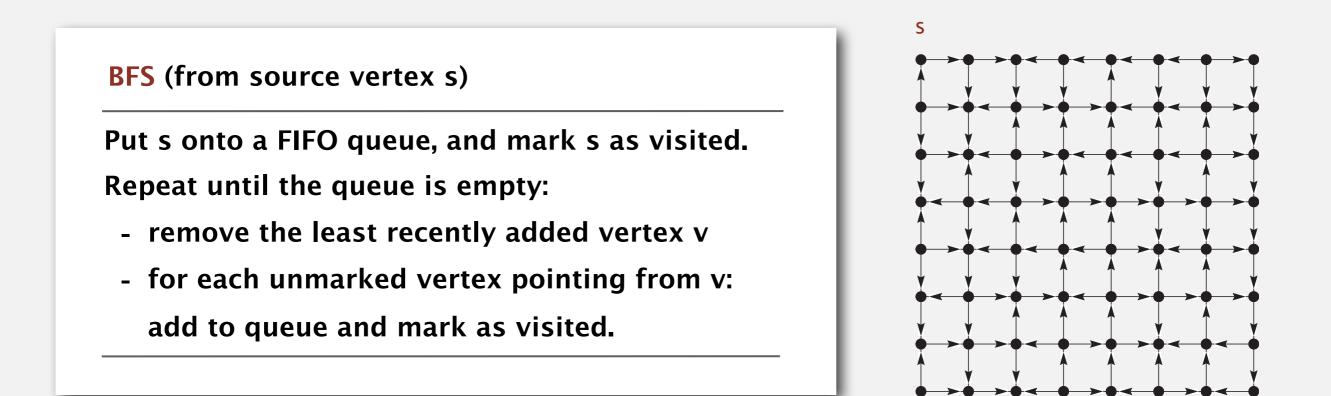
- 2-satisfiability.
- Directed Euler path.
- Strongly-connected components.



Breadth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- BFS is a digraph algorithm.



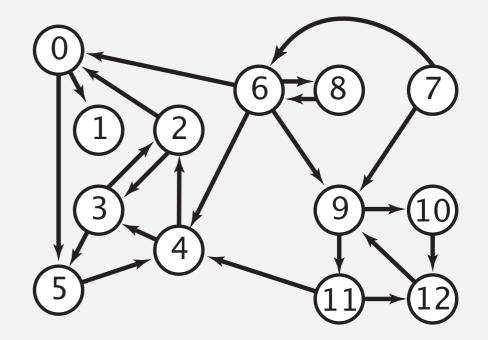
Proposition. BFS computes shortest paths (fewest number of edges) from s to all other vertices n a digraph in time proportional to E+V.

Multiple-source shortest paths

Multiple-source shortest paths. Given a digraph and a set of source vertices, find shortest path from any vertex in the set to each other vertex.

Ex. $S = \{ 1, 7, 10 \}.$

- Shortest path to 4 is $7 \rightarrow 6 \rightarrow 4$.
- Shortest path to 5 is $7 \rightarrow 6 \rightarrow 0 \rightarrow 5$.
- Shortest path to 12 is $10 \rightarrow 12$.



Q. How to implement multi-source constructor?

A. Use BFS, but initialize by enqueuing all source vertices.

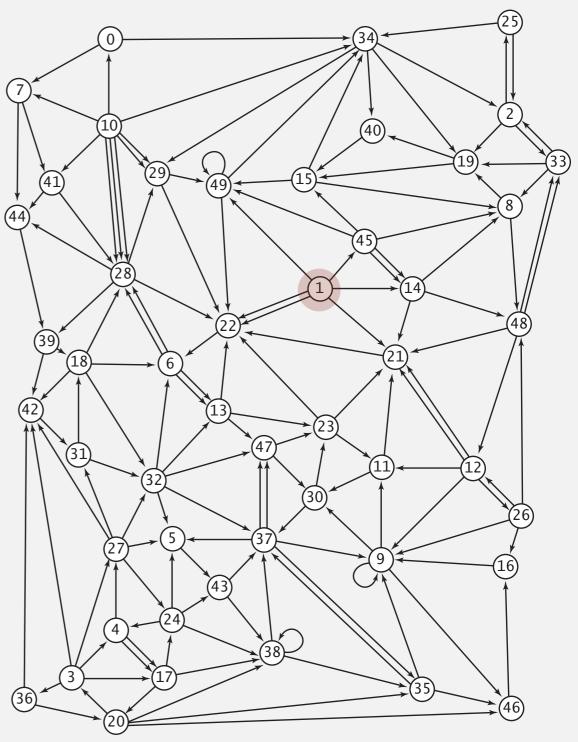
Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say <u>www.princeton.edu</u>. Solution. BFS with implicit graph.

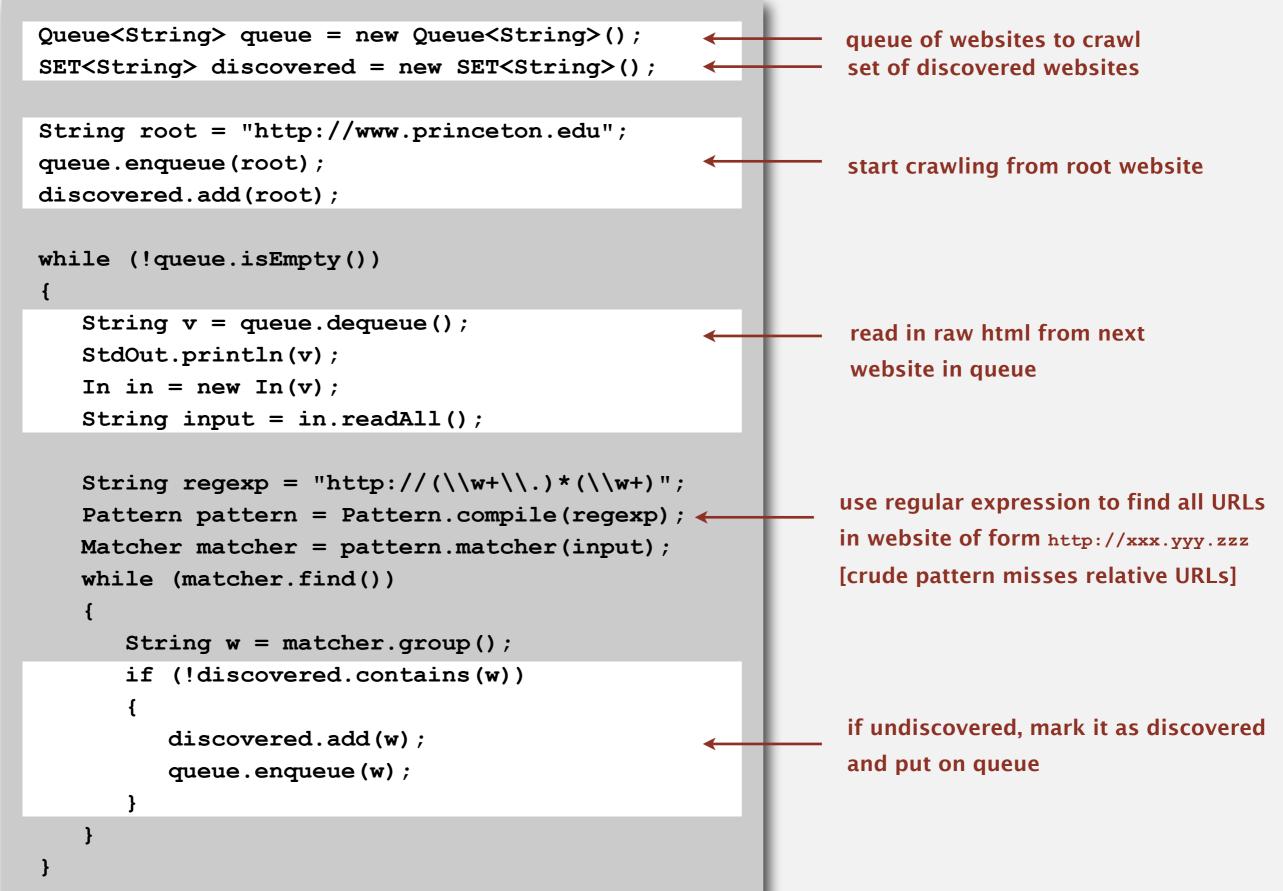
BFS.

- Choose root web page as source s.
- Maintain a Queue of websites to explore.
- Maintain a SET of discovered websites.
- Dequeue the next website and enqueue websites to which it links (provided you haven't done so before).

Q. Why not use DFS?



Bare-bones web crawler: Java implementation



DIRECTED GRAPHS

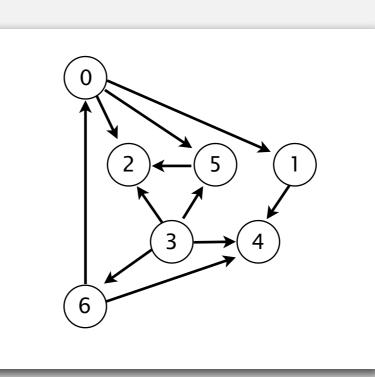
- Digraph API
- Digraph search
- Topological sort
- Strong components

Precedence scheduling

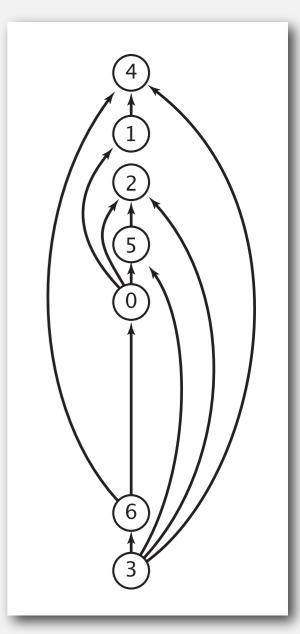
Goal. Given a set of tasks to be completed with precedence constraints, in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

- 0. Algorithms
- 1. Complexity Theory
- 2. Artificial Intelligence
- 3. Intro to CS
- 4. Cryptography
- 5. Scientific Computing
- 6. Advanced Programming



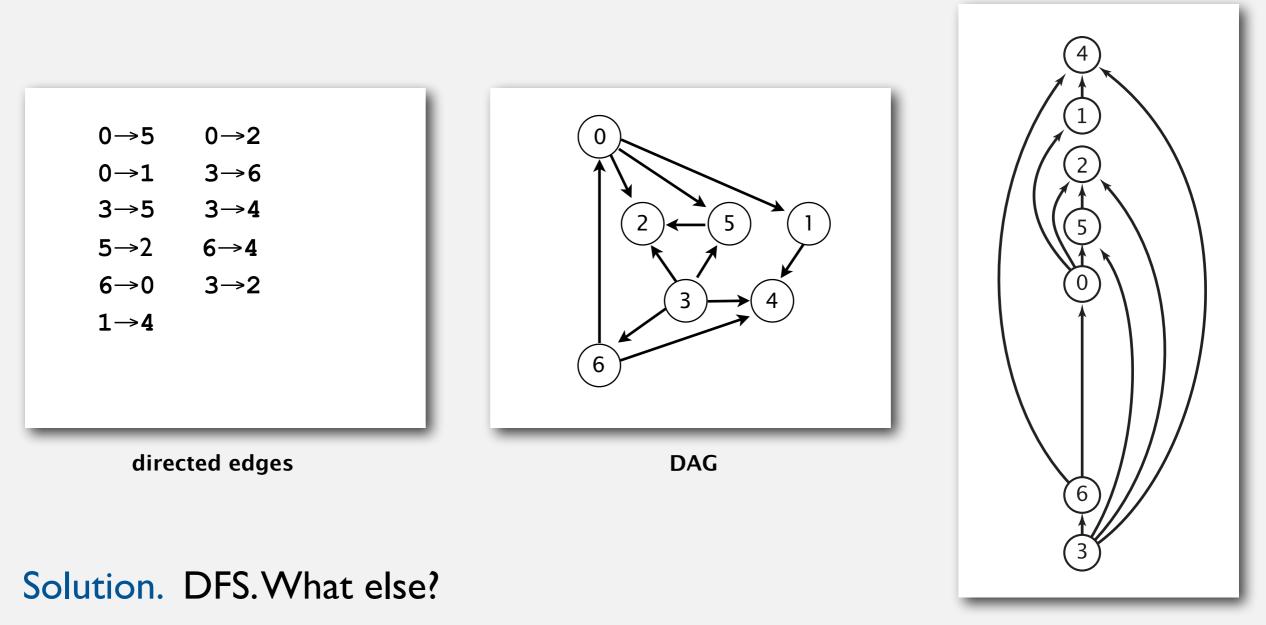
precedence constraint graph



Topological sort

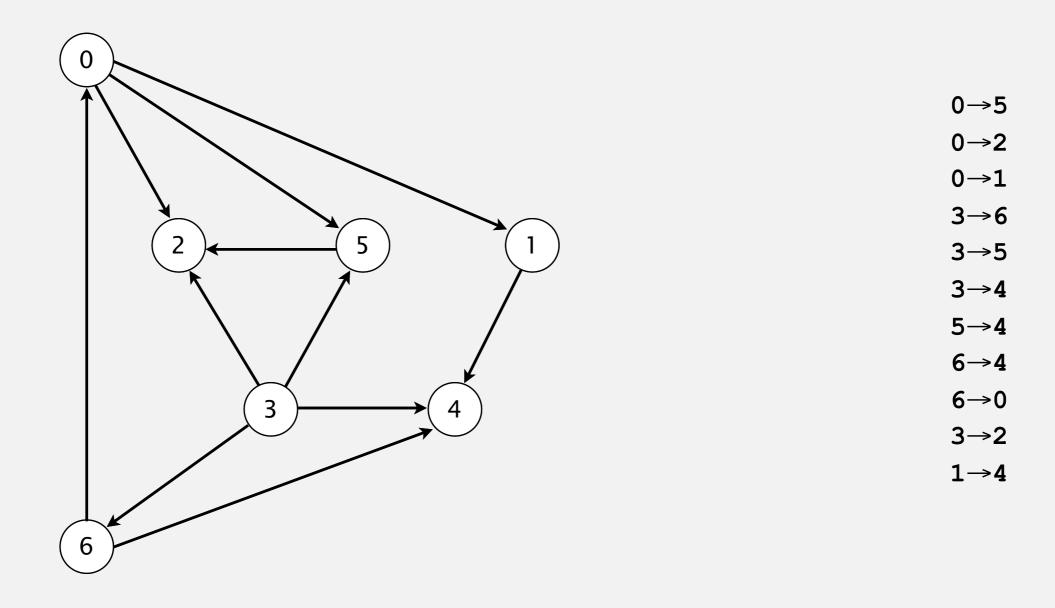
DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.



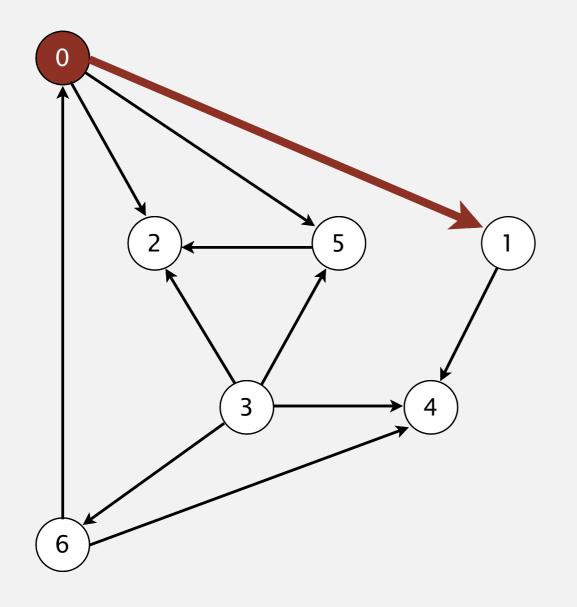
topological order

- Run depth-first search.
- Return vertices in reverse postorder.



a directed acyclic graph

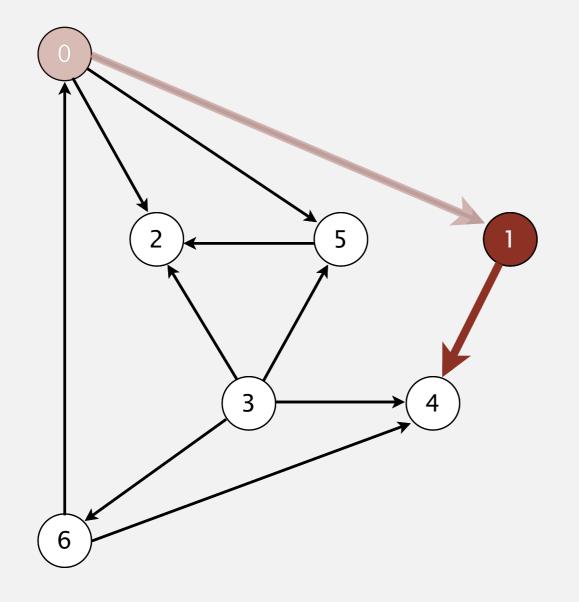
- Run depth-first search.
- Return vertices in reverse postorder.



postorder

visit 0: check 1, check 2, and check 5

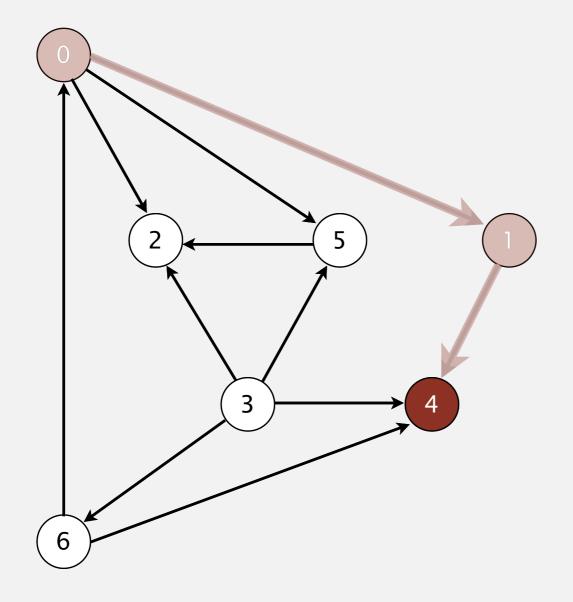
- Run depth-first search.
- Return vertices in reverse postorder.



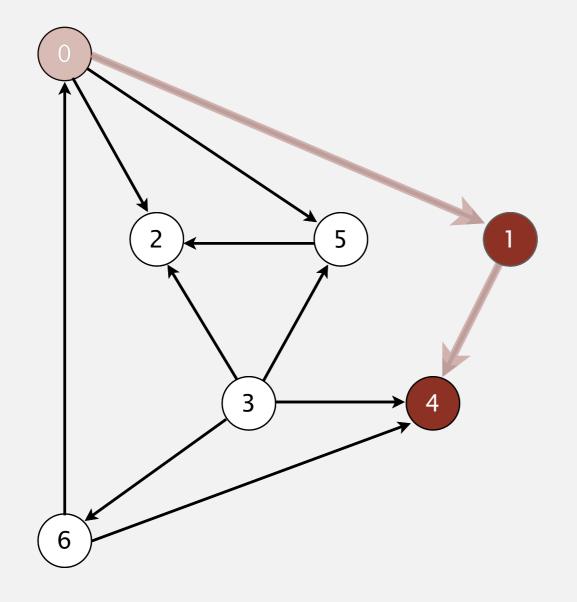
postorder

visit 1: check 4

- Run depth-first search.
- Return vertices in reverse postorder.

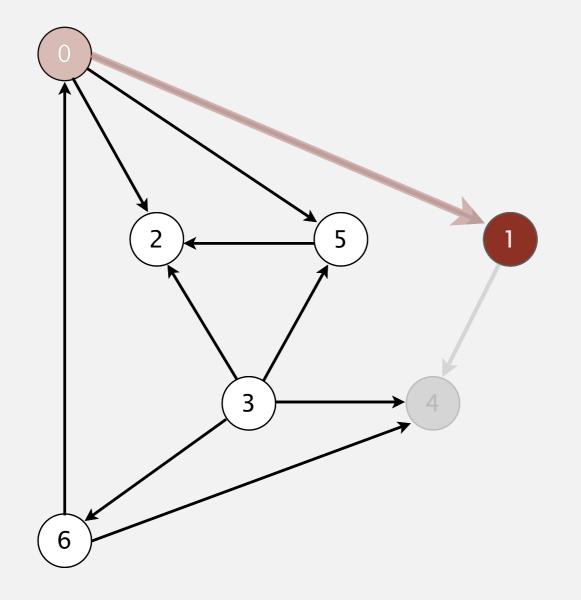


- Run depth-first search.
- Return vertices in reverse postorder.



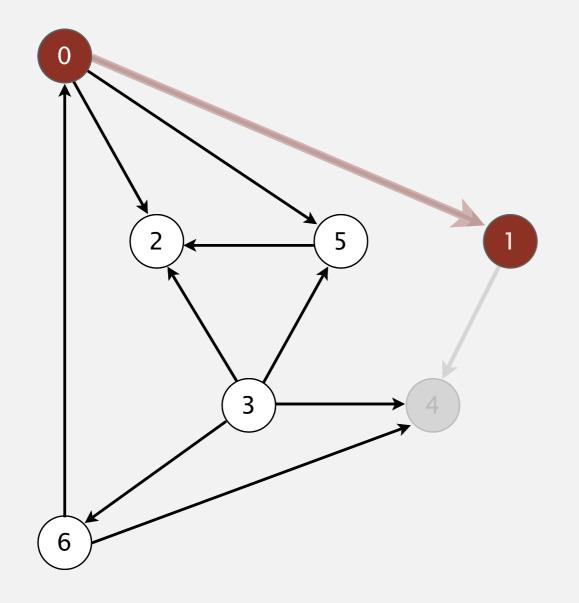
4

- Run depth-first search.
- Return vertices in reverse postorder.



4

- Run depth-first search.
- Return vertices in reverse postorder.

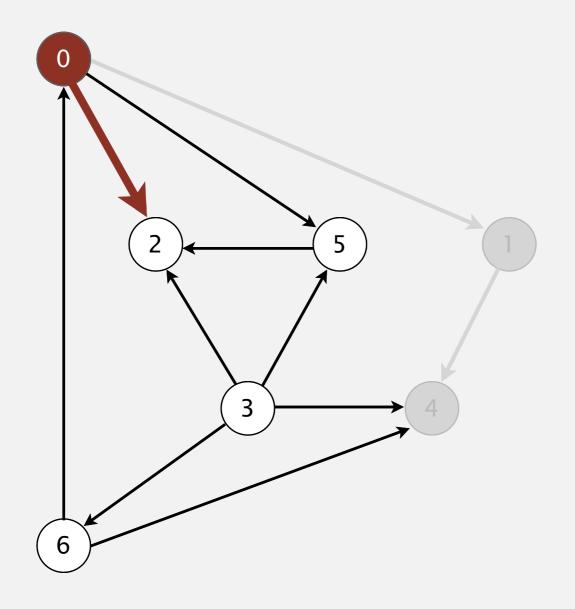


postorder

4 1

1 done

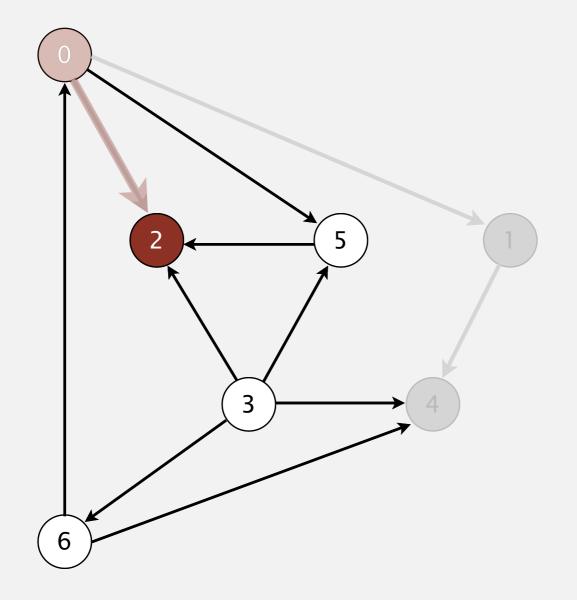
- Run depth-first search.
- Return vertices in reverse postorder.



postorder

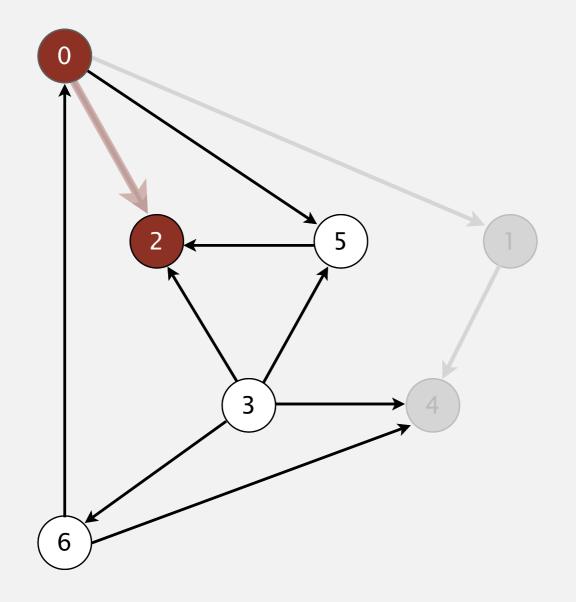
4 1

- Run depth-first search.
- Return vertices in reverse postorder.



4 1

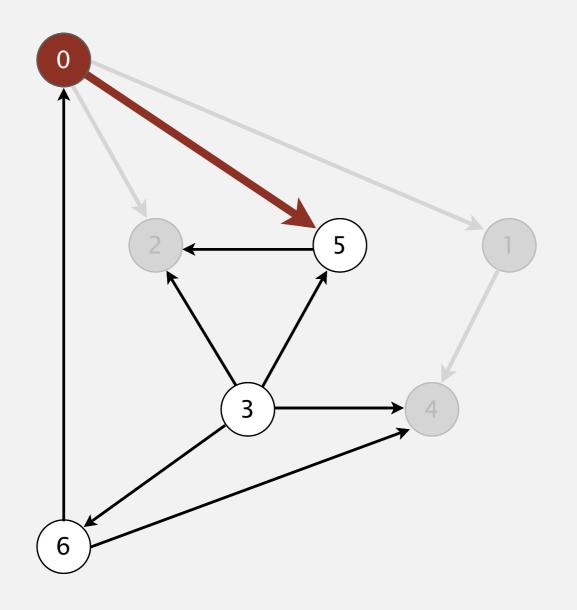
- Run depth-first search.
- Return vertices in reverse postorder.



postorder

4 1 2

- Run depth-first search.
- Return vertices in reverse postorder.

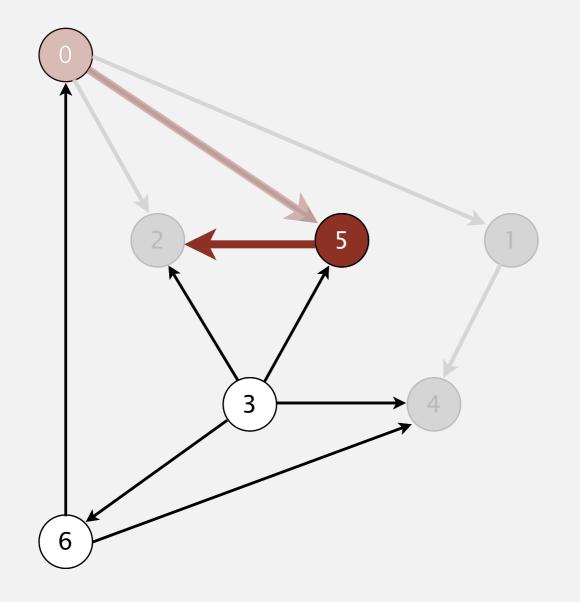


postorder

4 1 2

visit 0: check 1, check 2, and check 5

- Run depth-first search.
- Return vertices in reverse postorder.

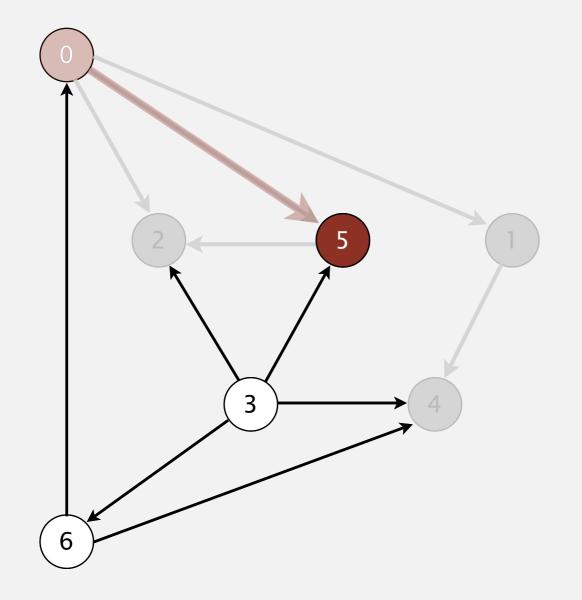


postorder

4 1 2

visit 5: check 2

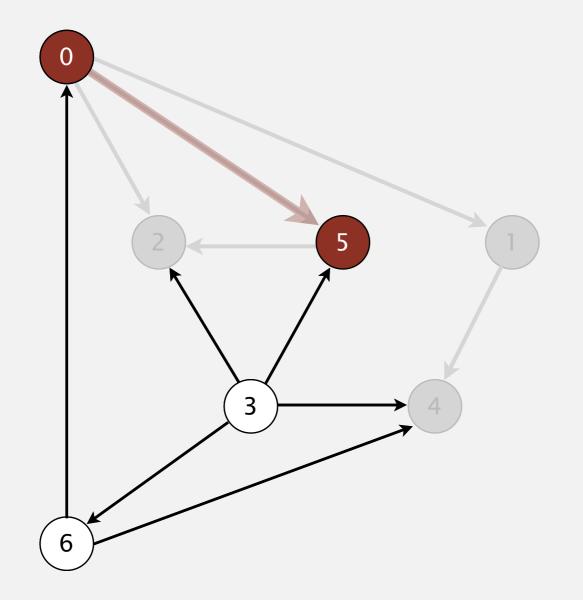
- Run depth-first search.
- Return vertices in reverse postorder.



postorder

4 1 2

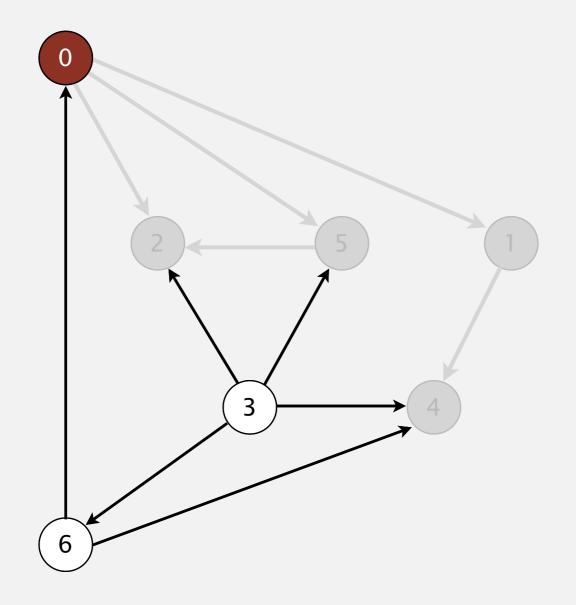
- Run depth-first search.
- Return vertices in reverse postorder.



postorder

4 1 2 5

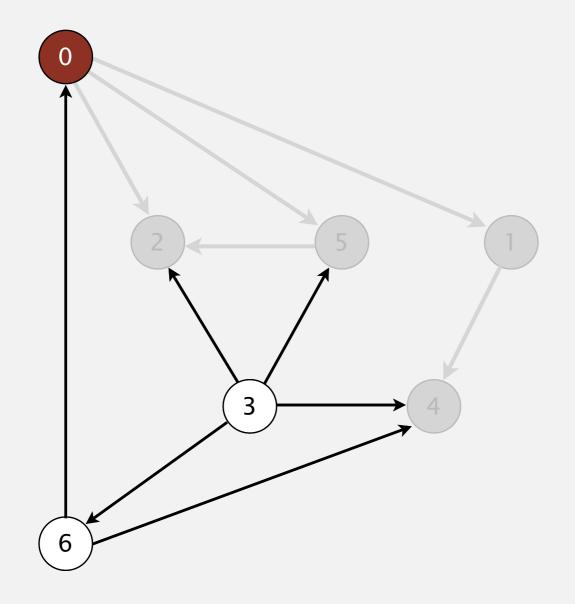
- Run depth-first search.
- Return vertices in reverse postorder.



postorder

4 1 2 5

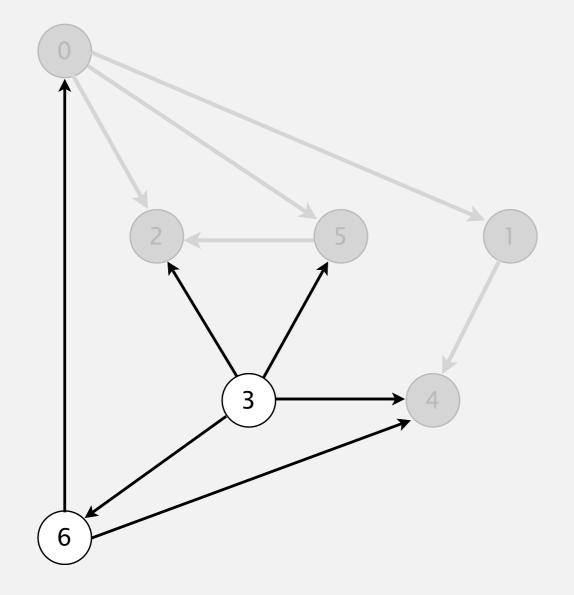
- Run depth-first search.
- Return vertices in reverse postorder.



4 1 2 5 0

0 done

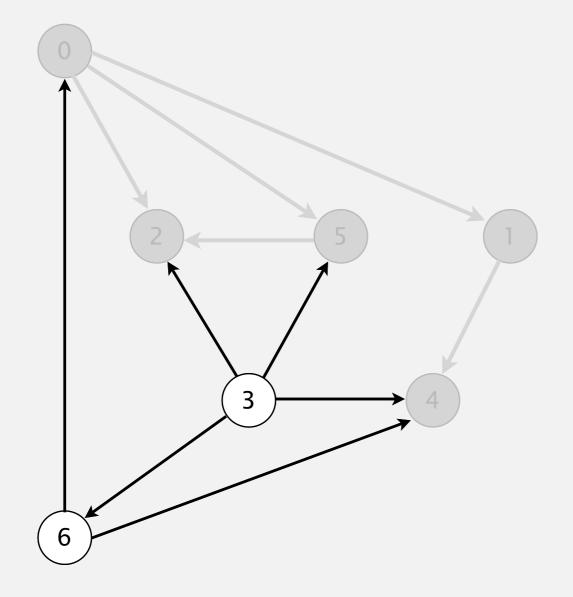
- Run depth-first search.
- Return vertices in reverse postorder.



4 1 2 5 0

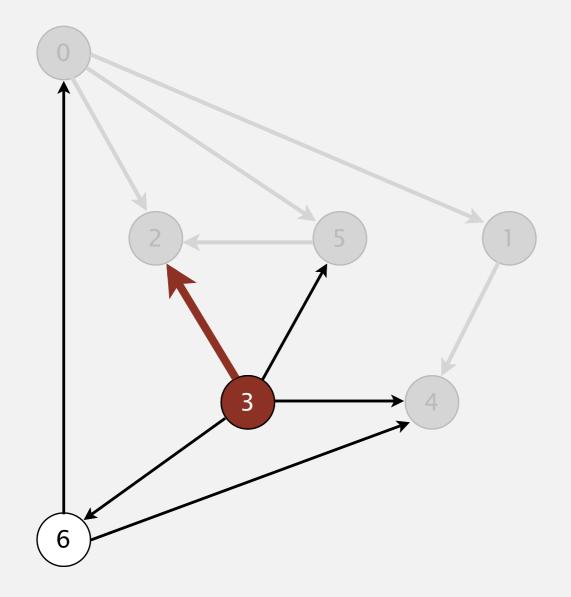
check 1

- Run depth-first search.
- Return vertices in reverse postorder.



4 1 2 5 0

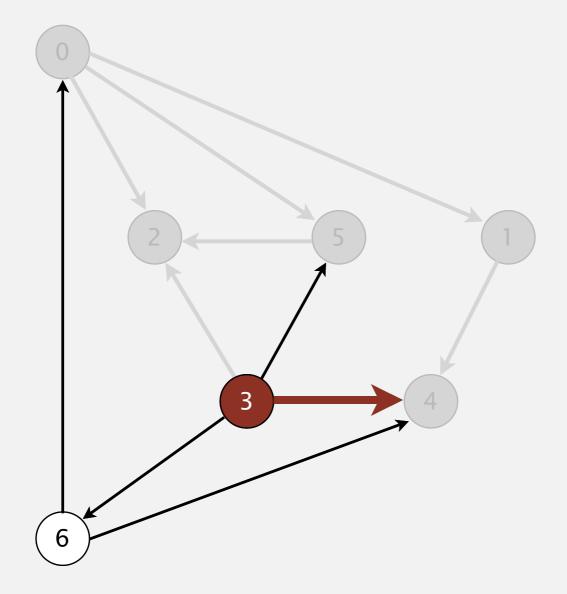
- Run depth-first search.
- Return vertices in reverse postorder.



4 1 2 5 0

visit 3: check 2, check 4, check 5, and check 6

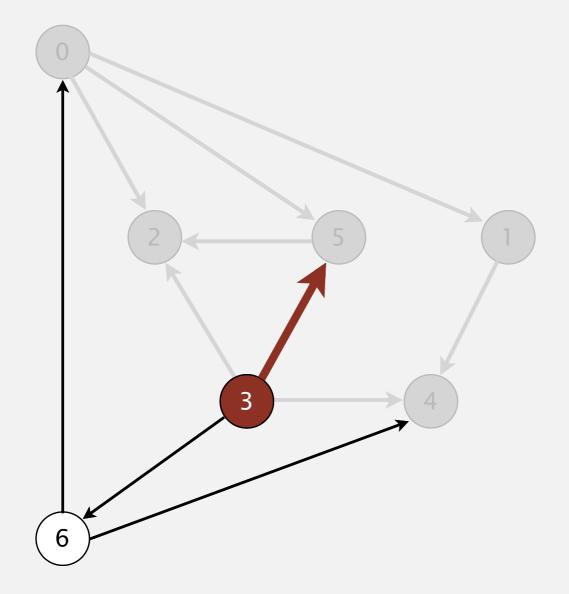
- Run depth-first search.
- Return vertices in reverse postorder.



4 1 2 5 0

visit 3: check 2, check 4, check 5, and check 6

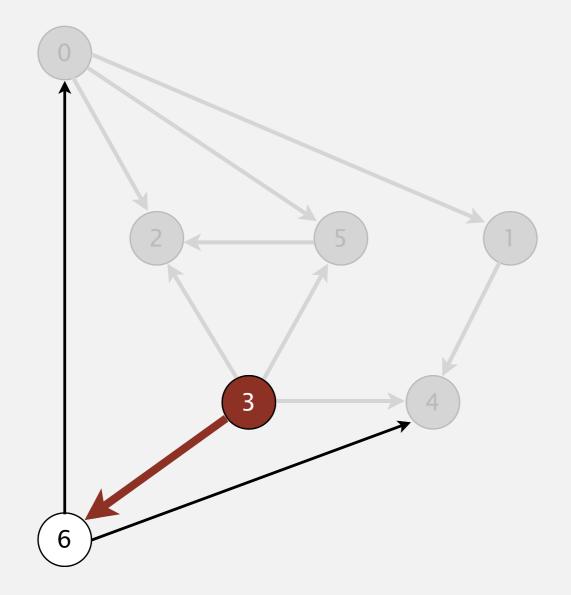
- Run depth-first search.
- Return vertices in reverse postorder.



4 1 2 5 0

visit 3: check 2, check 4, check 5, and check 6

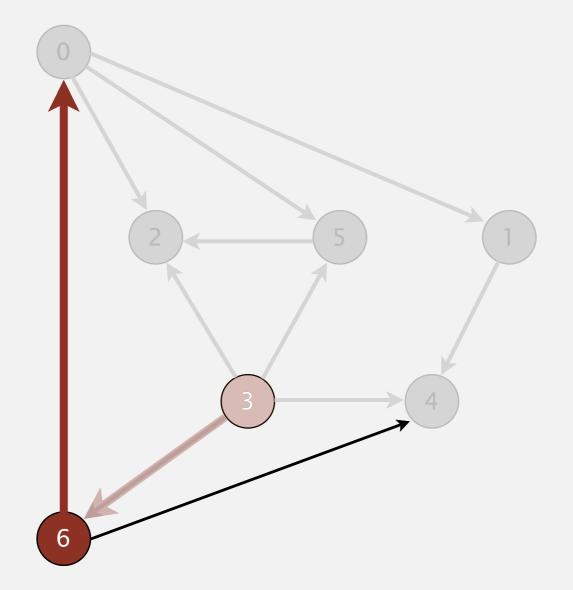
- Run depth-first search.
- Return vertices in reverse postorder.



4 1 2 5 0

visit 3: check 2, check 4, check 5, and check 6

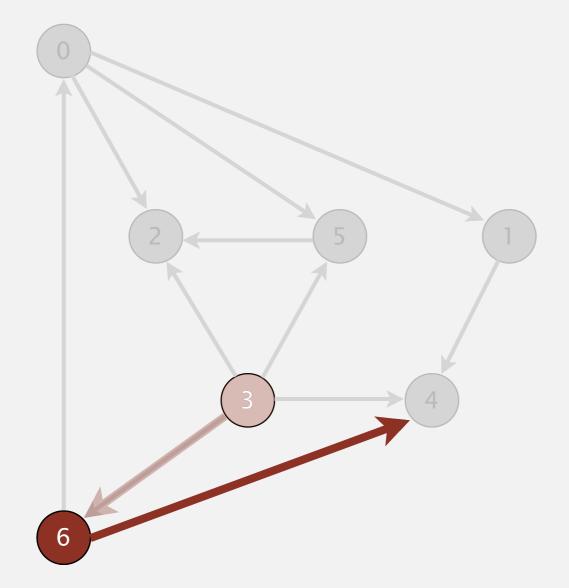
- Run depth-first search.
- Return vertices in reverse postorder.



4 1 2 5 0

visit 6: check 0 and check 4

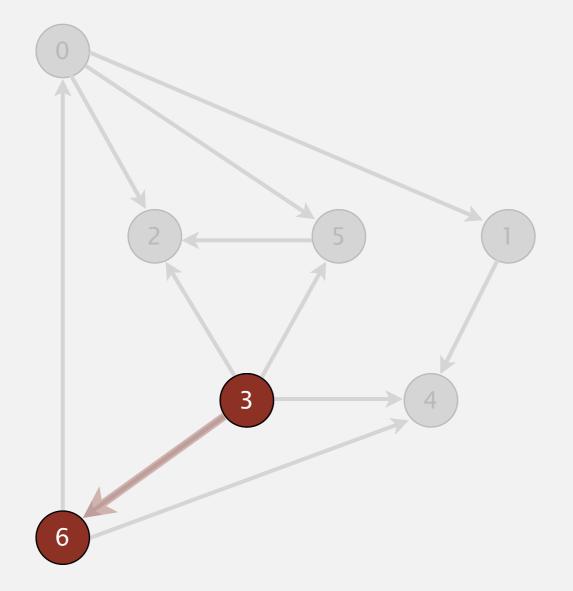
- Run depth-first search.
- Return vertices in reverse postorder.



4 1 2 5 0

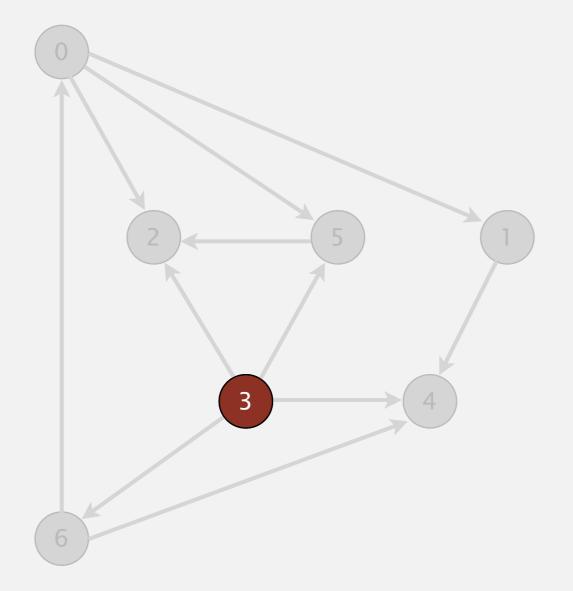
visit 6: check 0 and check 4

- Run depth-first search.
- Return vertices in reverse postorder.



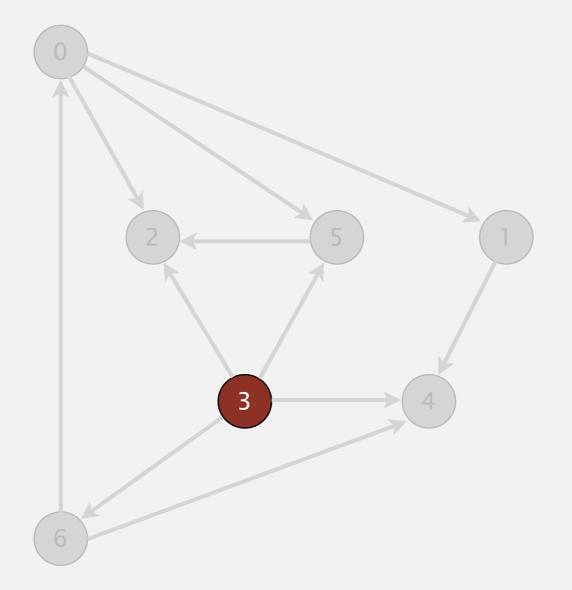
4 1 2 5 0 6

- Run depth-first search.
- Return vertices in reverse postorder.

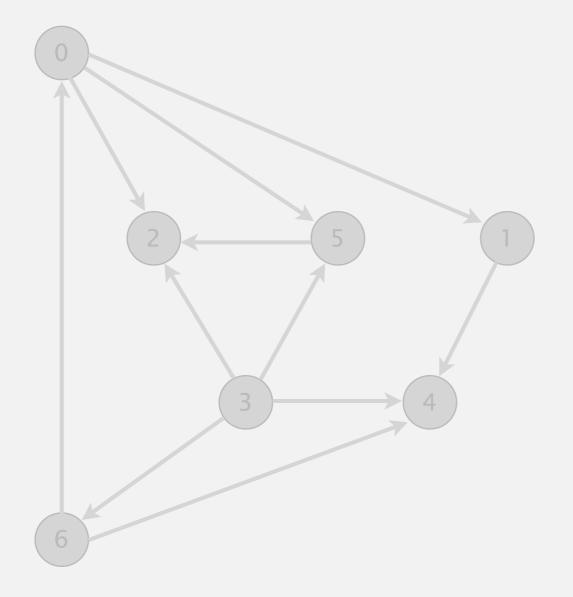


4 1 2 5 0 6

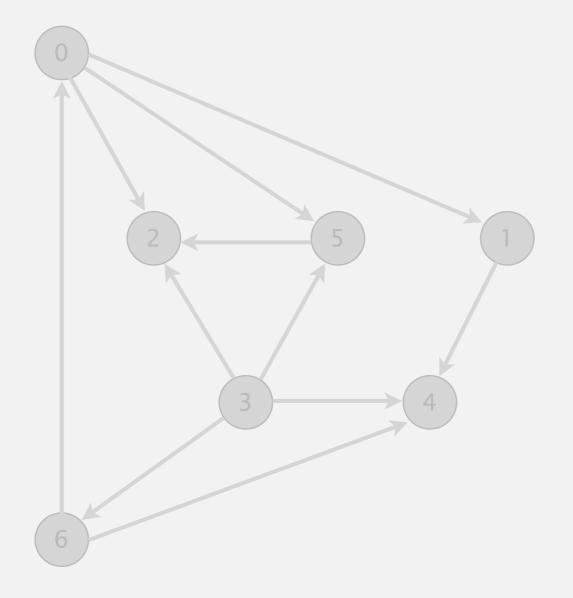
- Run depth-first search.
- Return vertices in reverse postorder.



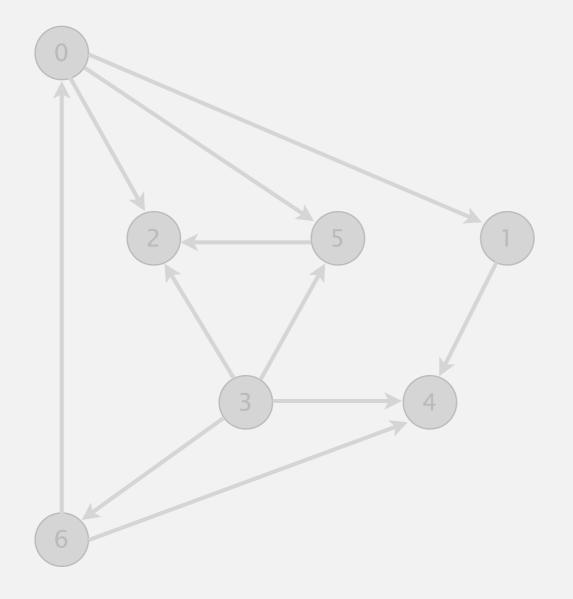
- Run depth-first search.
- Return vertices in reverse postorder.



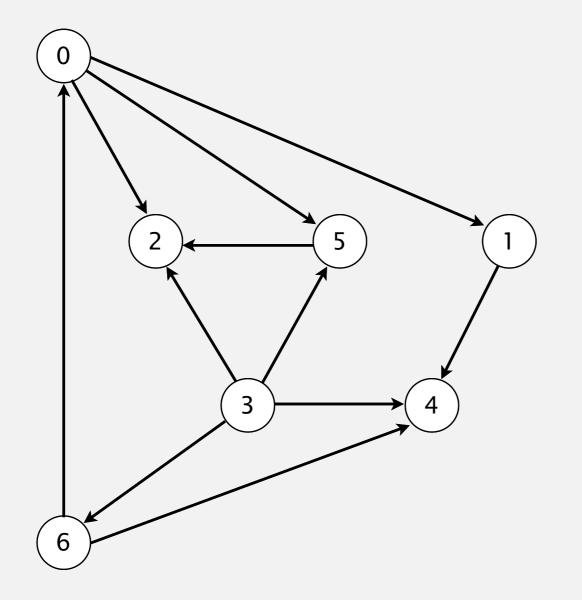
- Run depth-first search.
- Return vertices in reverse postorder.



- Run depth-first search.
- Return vertices in reverse postorder.



- Run depth-first search.
- Return vertices in reverse postorder.



topological order

3 6 0 5 2 1 4

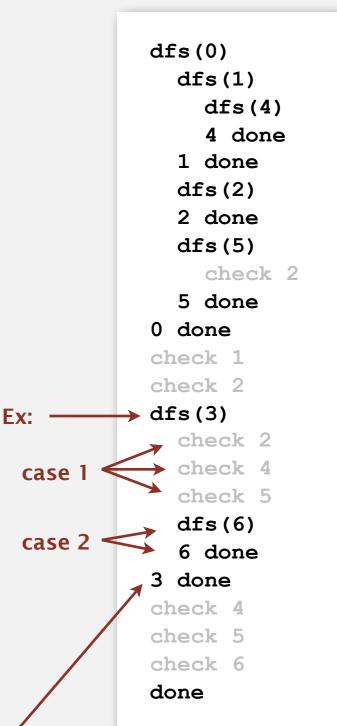
Depth-first search order

```
public class DepthFirstOrder
{
   private boolean[] marked;
   private Stack<Integer> reversePost;
   public DepthFirstOrder(Digraph G)
   {
      reversePost = new Stack<Integer>();
      marked = new boolean[G.V()];
      for (int v = 0; v < G.V(); v++)
         if (!marked[v]) dfs(G, v);
   }
   private void dfs(Digraph G, int v)
      marked[v] = true;
      for (int w : G.adj(v))
         if (!marked[w]) dfs(G, w);
      reversePost.push(v);
   }
                                                       returns all vertices in
   public Iterable<Integer> reversePost()
                                                      "reverse DFS postorder"
   { return reversePost; }
```

Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order. Pf. Consider any edge $v \rightarrow w$. When dfs(v) is called:

- Case I: dfs (w) has already been called and returned.
 Thus, w was done before v.
- Case 2: dfs(w) has not yet been called.
 dfs(w) will get called directly or indirectly
 by dfs(v) and will finish before dfs(v).
 Thus, w will be done before v.
- Case 3: dfs (w) has already been called, but has not yet returned.
 Can't happen in a DAG: function call stack contains path from w to v, so v→w would complete a cycle.

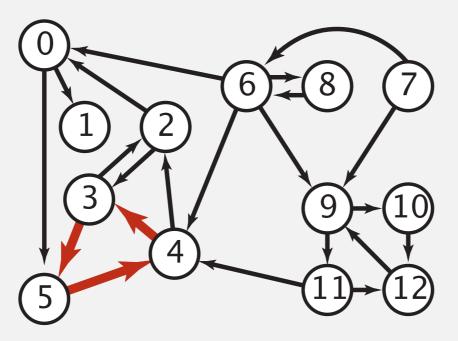


all vertices pointing from 3 are done before 3 is done, so they appear after 3 in topological order

Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle. Pf.

- If directed cycle, topological order impossible.
- If no directed cycle, DFS-based algorithm finds a topological order.



a digraph with a directed cycle

Goal. Given a digraph, find a directed cycle. Solution. DFS.What else? See textbook.

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence constraints, in what order should we schedule the tasks?

PAGE 3						
DEPARTMENT	COURSE	DESCRIPTION	PREREQS			
COMPUTER SCIENCE	_	INTERMEDIATE COMPILER DESIGN, WITH A FOCUS ON DEPENDENCY RESOLUTION.	CPSC 432			
S		When the columnition project				

http://xkcd.com/754

Remark. A directed cycle implies scheduling problem is infeasible.

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

```
public class A extends B
{
    ...
}
public class B extends C
{
    ...
}
```

```
public class C extends A
{
    ...
}
```

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

💿 🔿 📄 Workbook1								
\diamond	Α	В	С	D				
1	"=B1 + 1"	"=C1 + 1"	"=A1 + 1"					
2								
3								
4								
5								
6				_				
7		Microsoft Excel cannot calculate a formula. Cell references in the formula refer to the formula's result, creating a circular reference. Try one of the following: • If you accidentally created the circular reference, click OK. This will display the Circular Reference toolbar and help for using it to correct your formula. • To continue leaving the formula as it is, click Cancel. Cancel OK						
8								
9	f							
10								
11	ł							
12								
13								
14								
15								
16								
17								
18								
E Sheet1 Sheet3								

Directed cycle detection applications

- Causalities.
- Email loops.
- Compilation units.
- Class inheritance.
- Course prerequisites.
- Deadlocking detection.
- Precedence scheduling.
- Temporal dependencies.
- Pipeline of computing jobs.
- Check for symbolic link loop.
- Evaluate formula in spreadsheet.

DIRECTED GRAPHS

- Digraph API
- Digraph search
- Topological sort
- Strong components

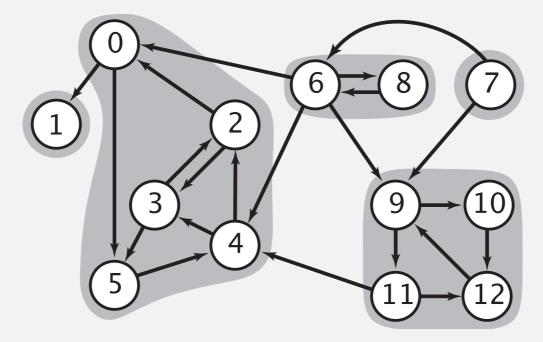
Strongly-connected components

Def. Vertices v and w are strongly connected if there is a directed path from v to w and a directed path from w to v.

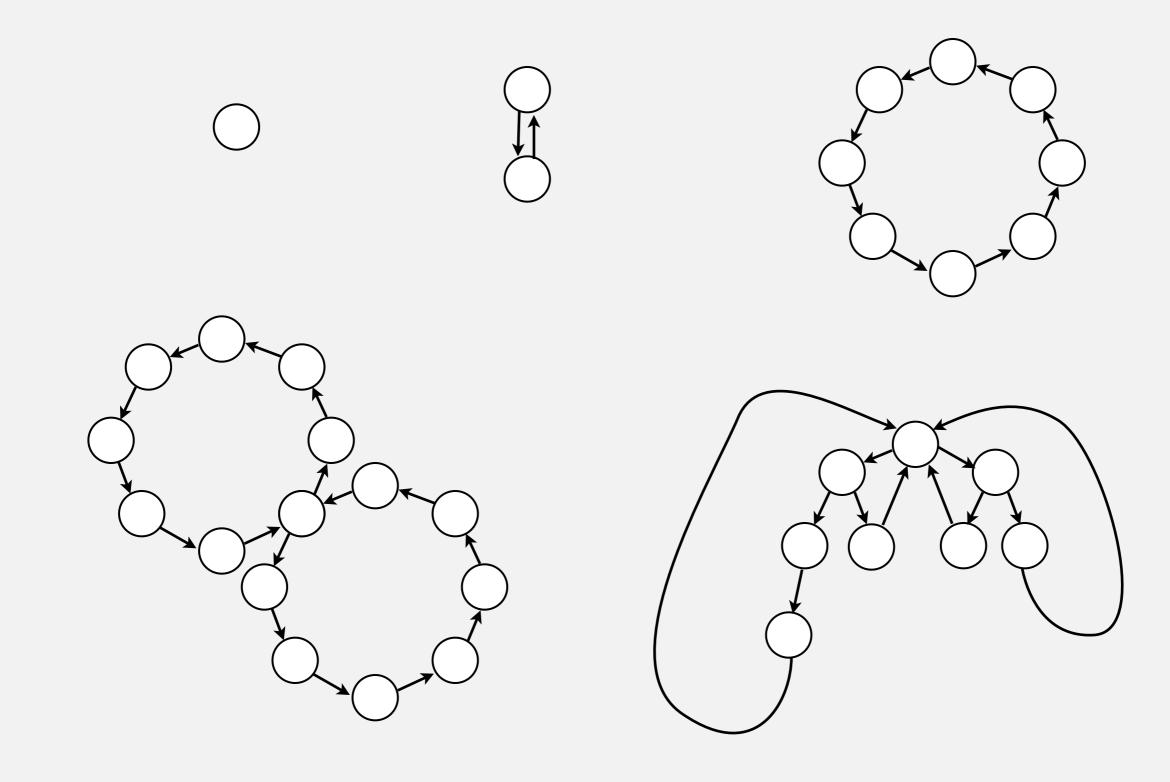
Key property. Strong connectivity is an equivalence relation:

- v is strongly connected to v.
- If v is strongly connected to w, then w is strongly connected to v.
- If v is strongly connected to w and w to x, then v is strongly connected to x.

Def. A strong component is a maximal subset of strongly-connected vertices.

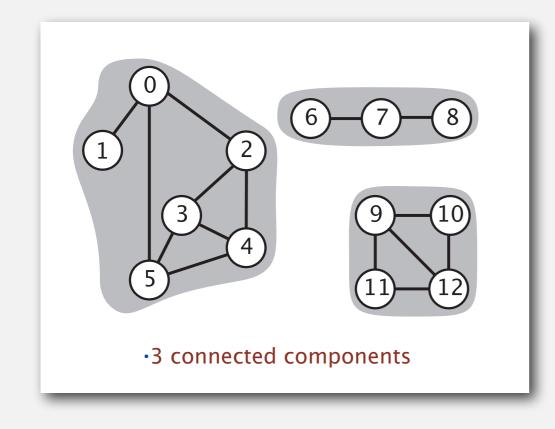


Examples of strongly-connected digraphs



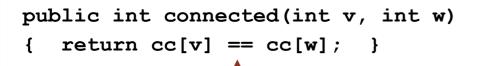
Connected components vs. strongly-connected components

 v and w are connected if there is a path between v and w



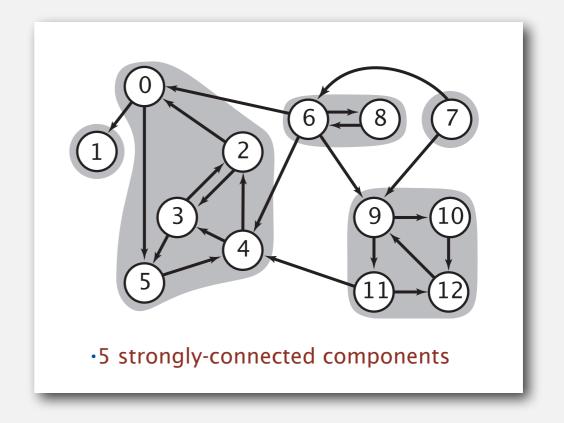
connected component id (easy to compute with DFS)

	0	1	2	3	4	5	6	7	8	9	10	11	12
cc[]	0	0	0	0	0	0	1	1	1	2	2	2	2



constant-time client connectivity query

•v and w are strongly connected if there is a directed path from v to w and a directed path from w to v



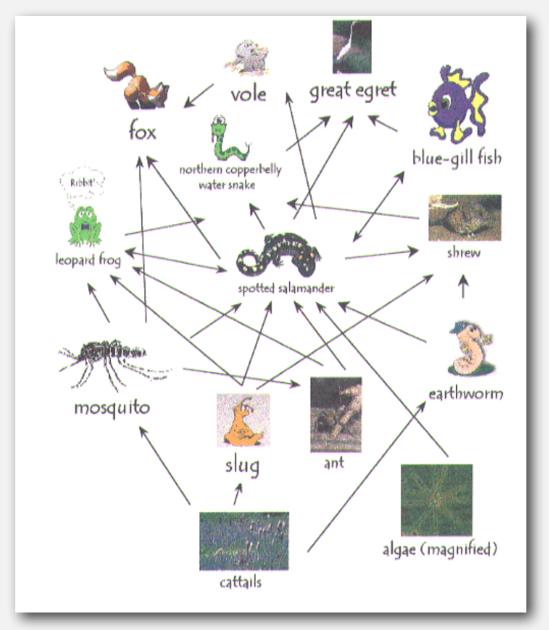
strongly-connected component id (how to compute?)

	0	1	2	3	4	5	6	7	8	9	10	11	12
scc[]	1	0	1	1	1	1	3	4	3	2	2	2	2
<pre>public int stronglyConnected(int v, int w)</pre>													
{ return scc[v] == scc[w]; }													
1													

constant-time client strong-connectivity query

Strong component application: ecological food webs

Food web graph.Vertex = species; edge = from producer to consumer.



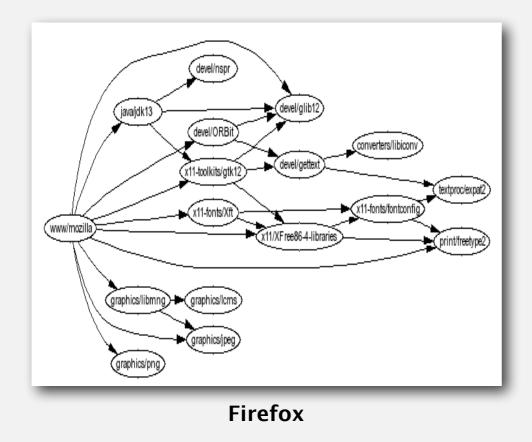
http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.gif

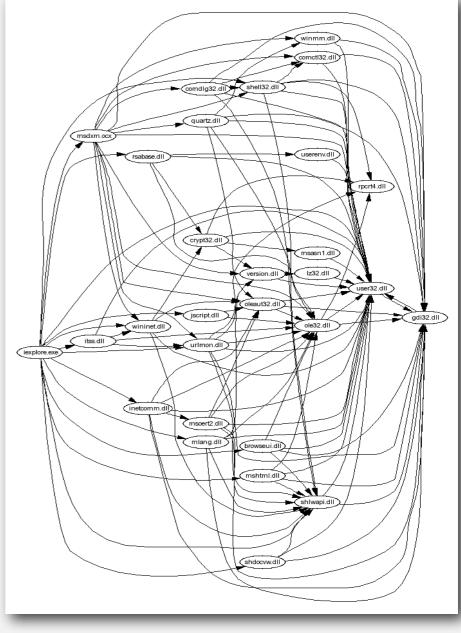
Strong component. Subset of species with common energy flow.

Strong component application: software modules

Software module dependency graph.

- Vertex = software module.
- Edge: from module to dependency.





Internet Explorer

Strong component. Subset of mutually interacting modules.Approach I. Package strong components together.Approach 2. Use to improve design!

Strong components algorithms: brief history

1960s: Core OR problem.

- Widely studied; some practical algorithms.
- Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

- Classic algorithm.
- Level of difficulty: Algs4++.
- Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).

- Forgot notes for lecture; developed algorithm in order to teach it!
- Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.

- Gabow: fixed old OR algorithm.
- Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

Kosaraju's algorithm: intuition

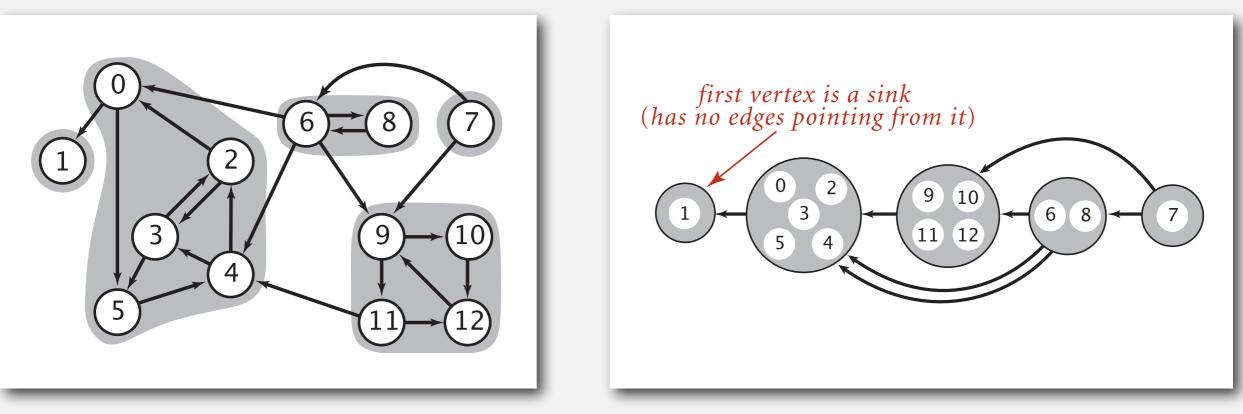
Reverse graph. Strong components in G are same as in G^R .

Kernel DAG. Contract each strong component into a single vertex.

Idea.

how to compute?

- Compute topological order (reverse postorder) in kernel DAG.
- Run DFS, considering vertices in reverse topological order.

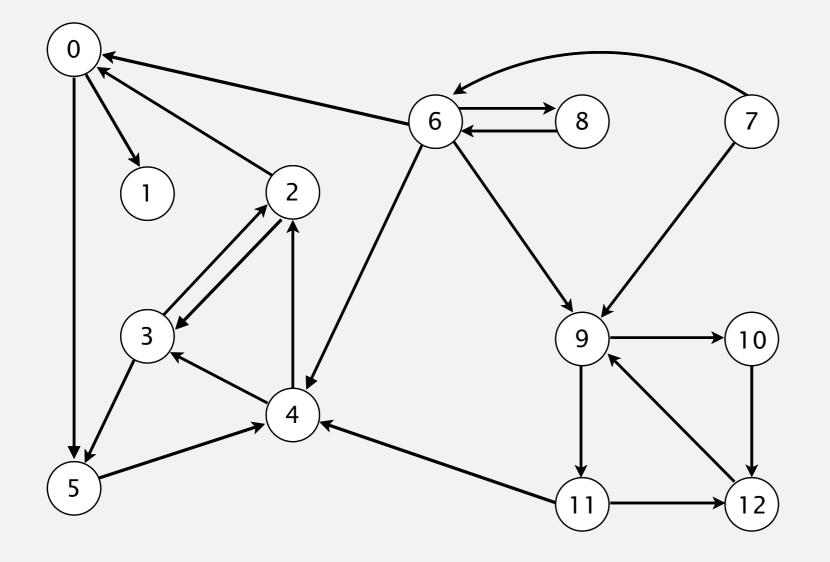


kernel DAG of G (in reverse topological order)

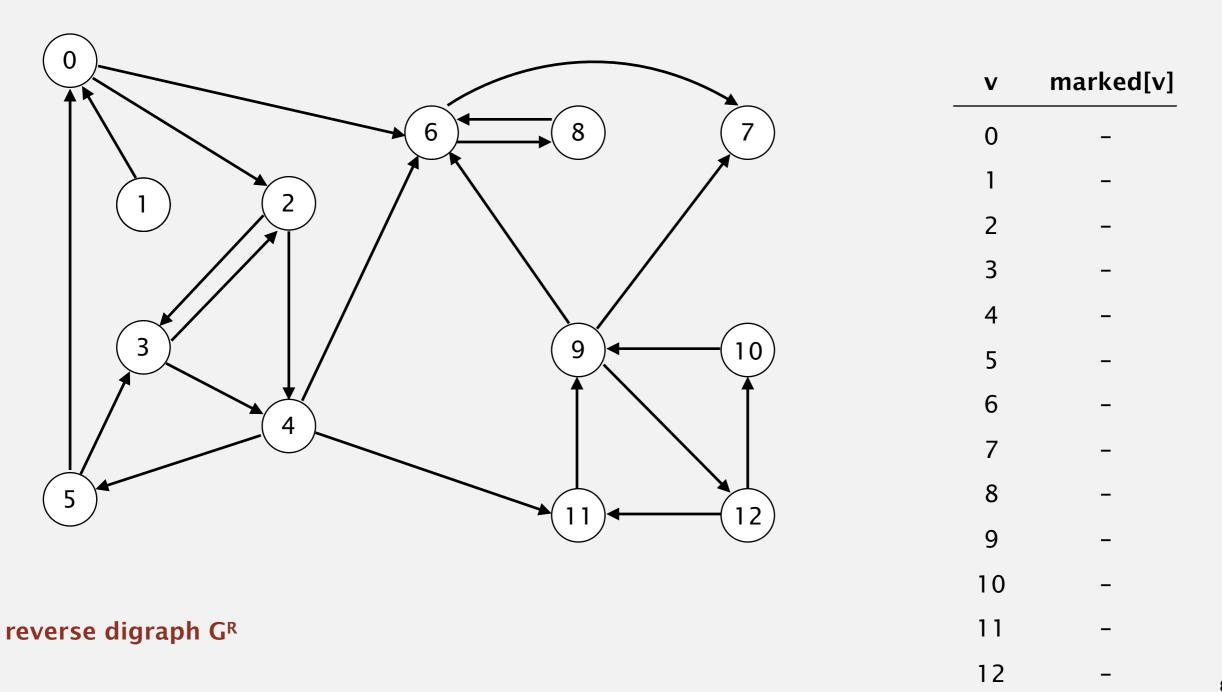
digraph G and its strong components

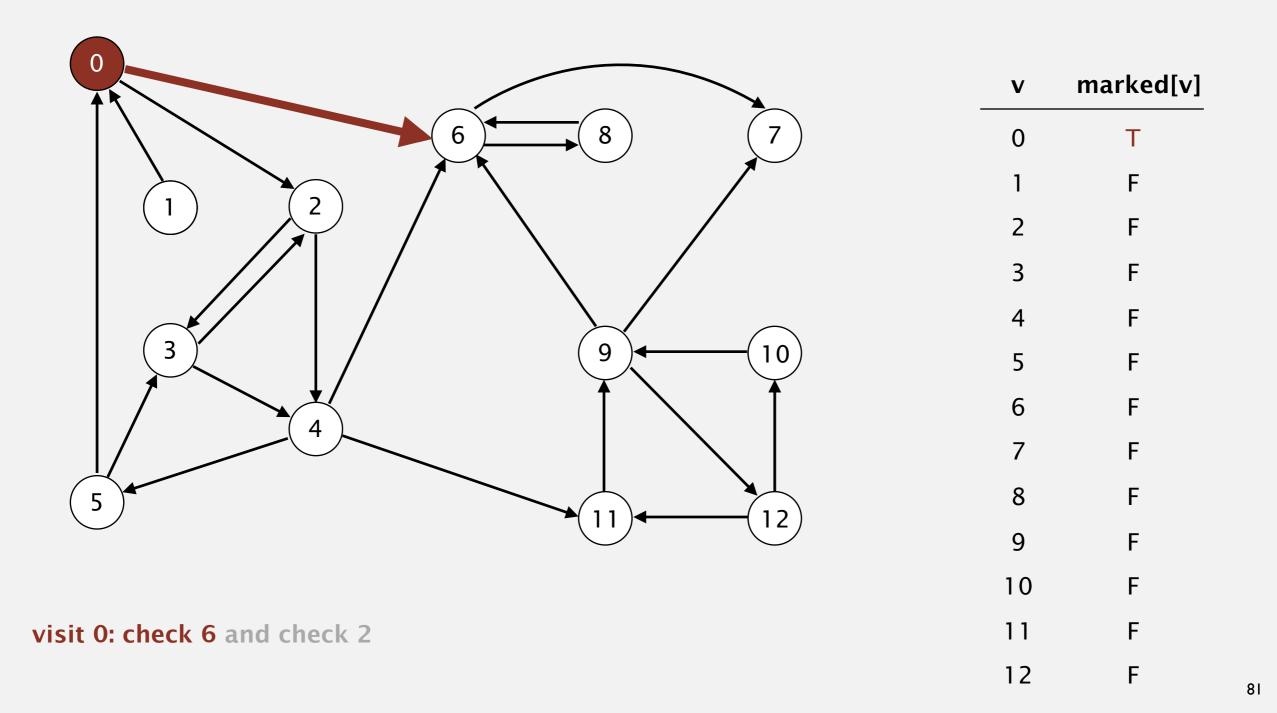
KOSARAJU'S ALGORITHM

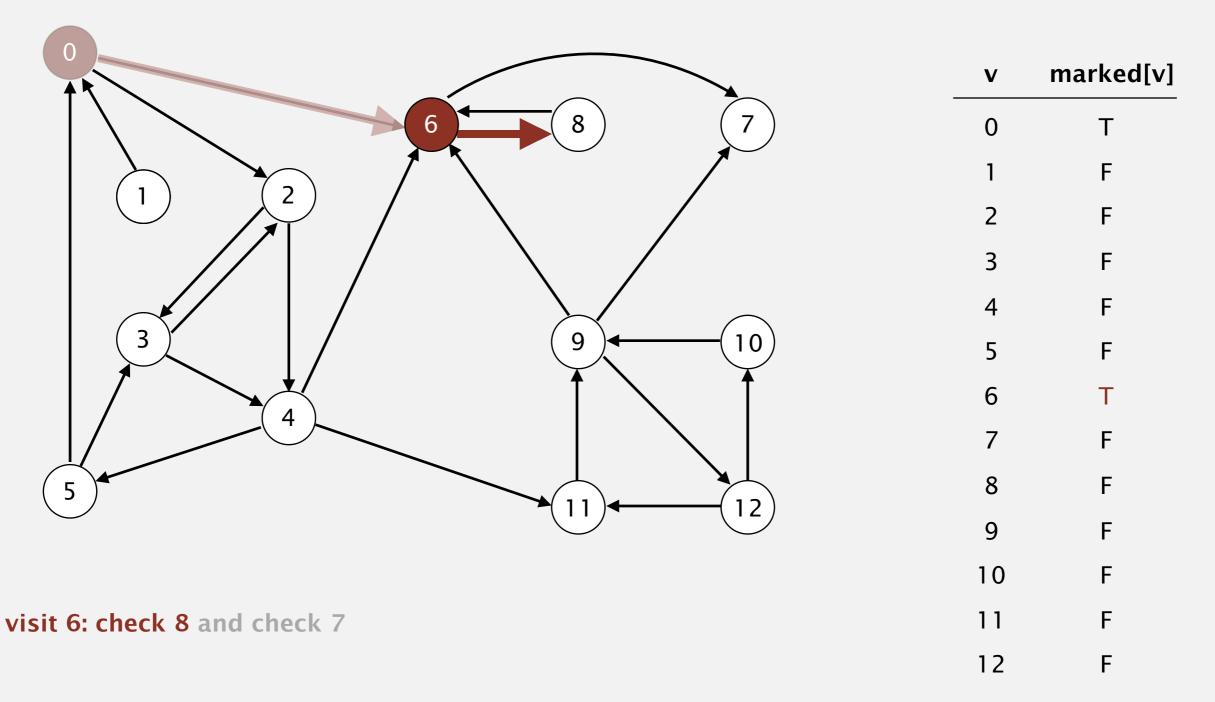
- DFS in reverse graph
- DFS in original graph

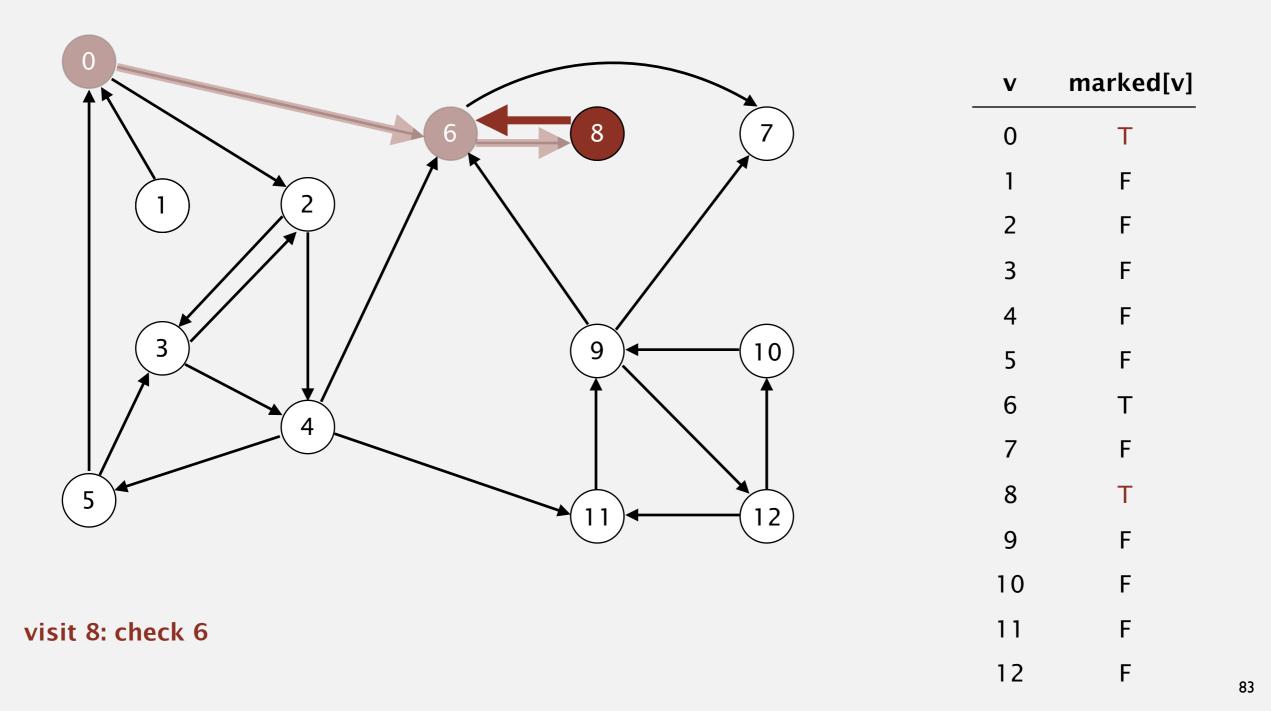


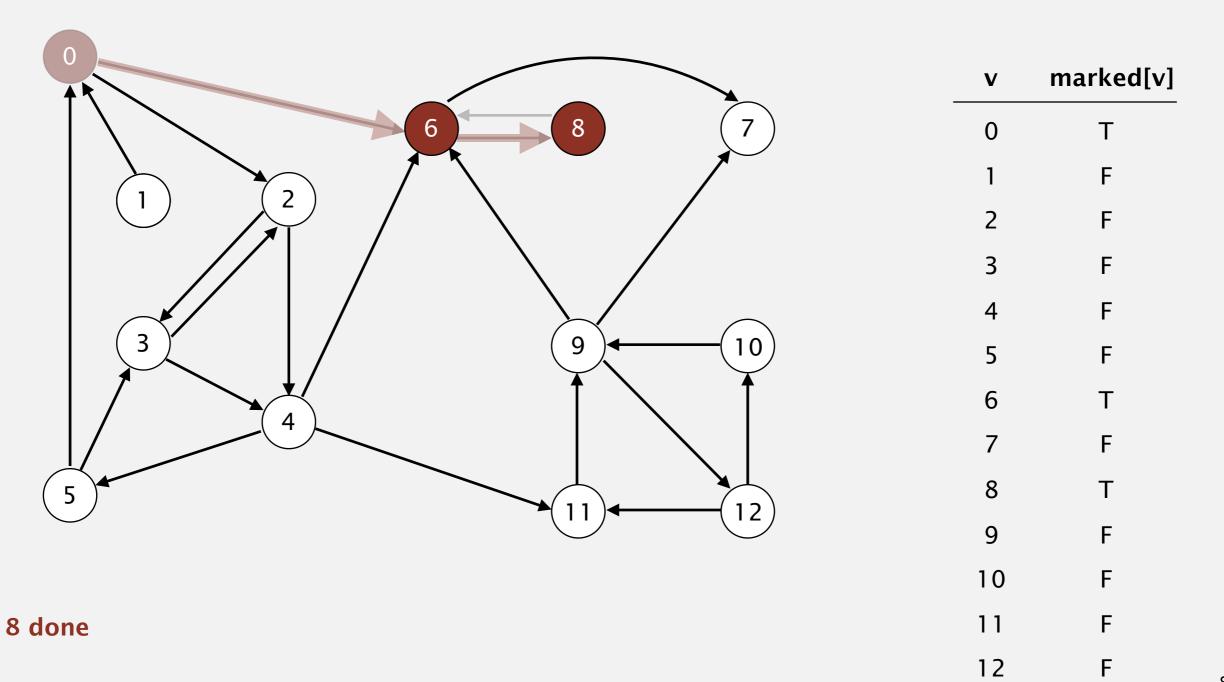
Phase I. Compute reverse postorder in G^R .









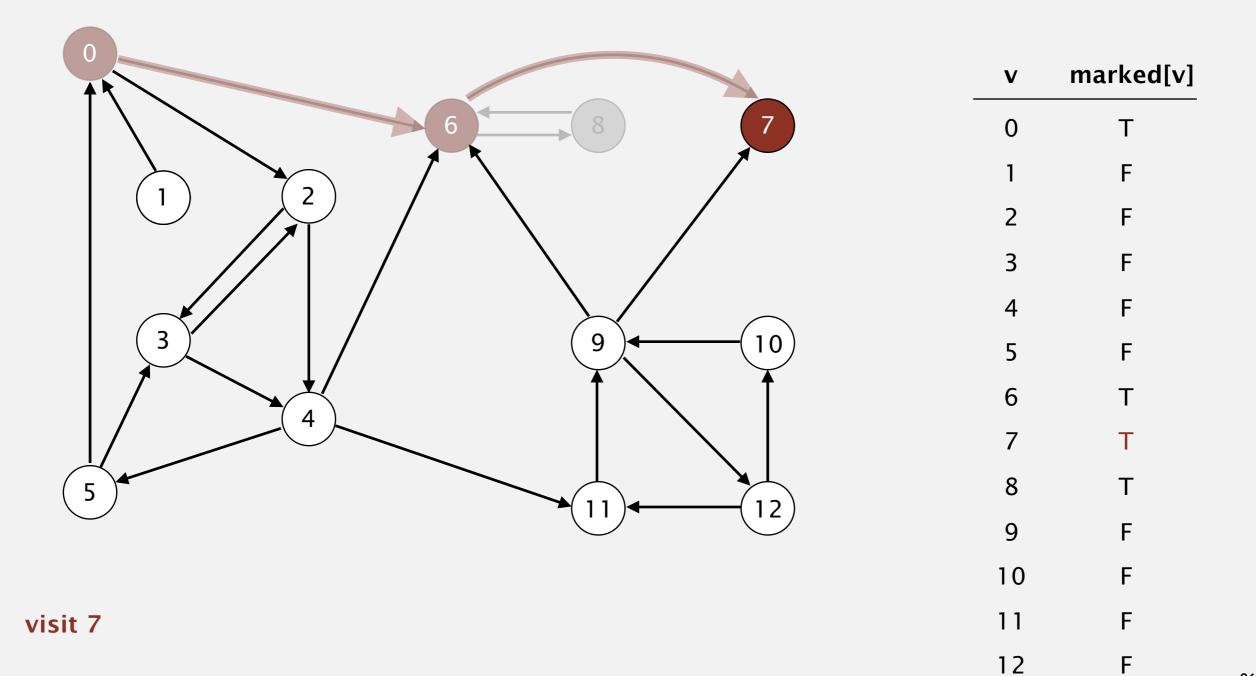


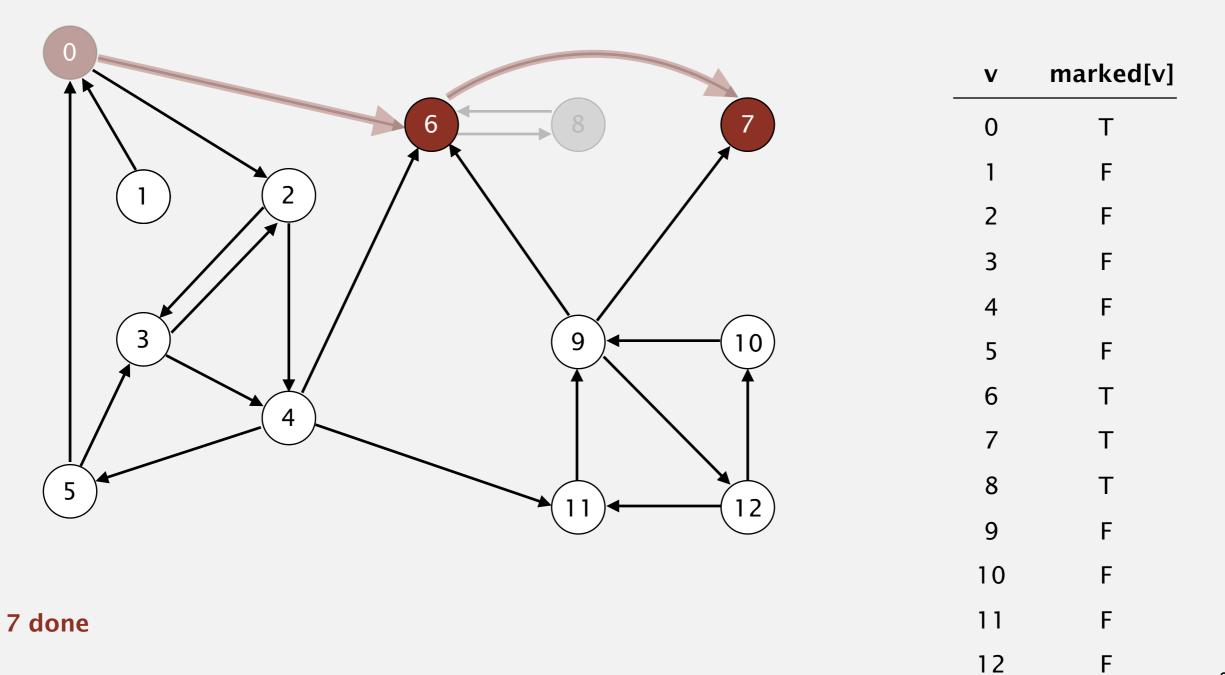
Phase I. Compute reverse postorder in G^R .

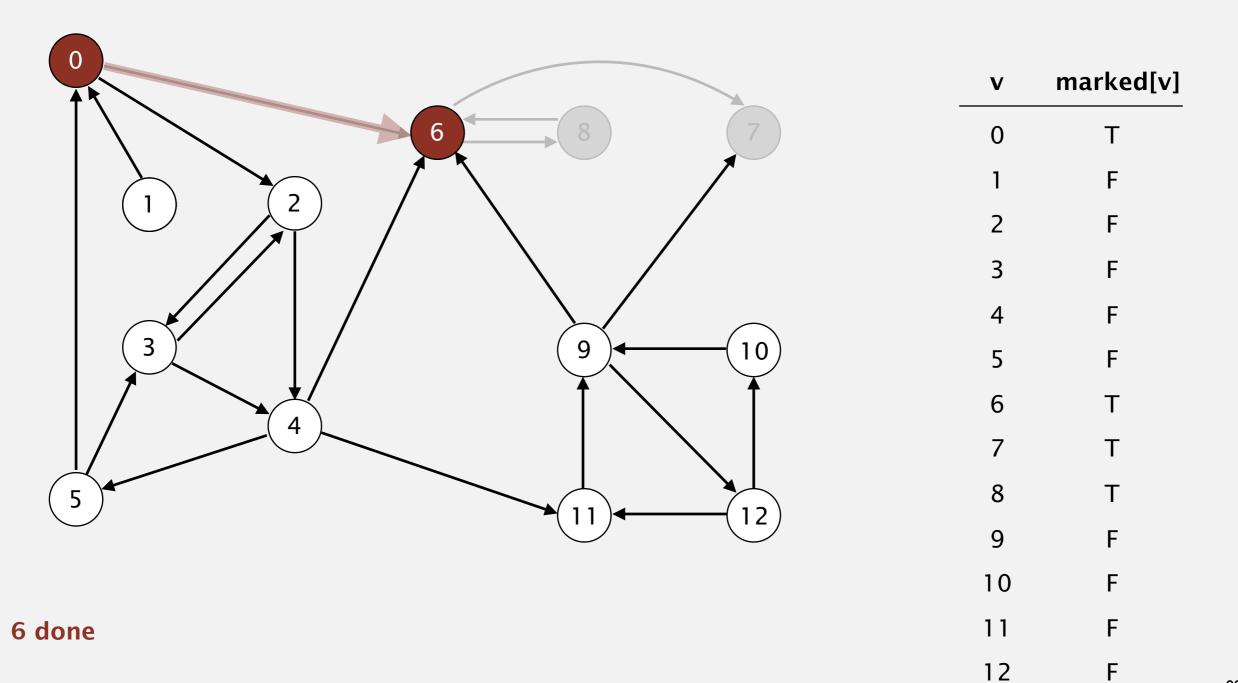


Phase I. Compute reverse postorder in G^R .

8

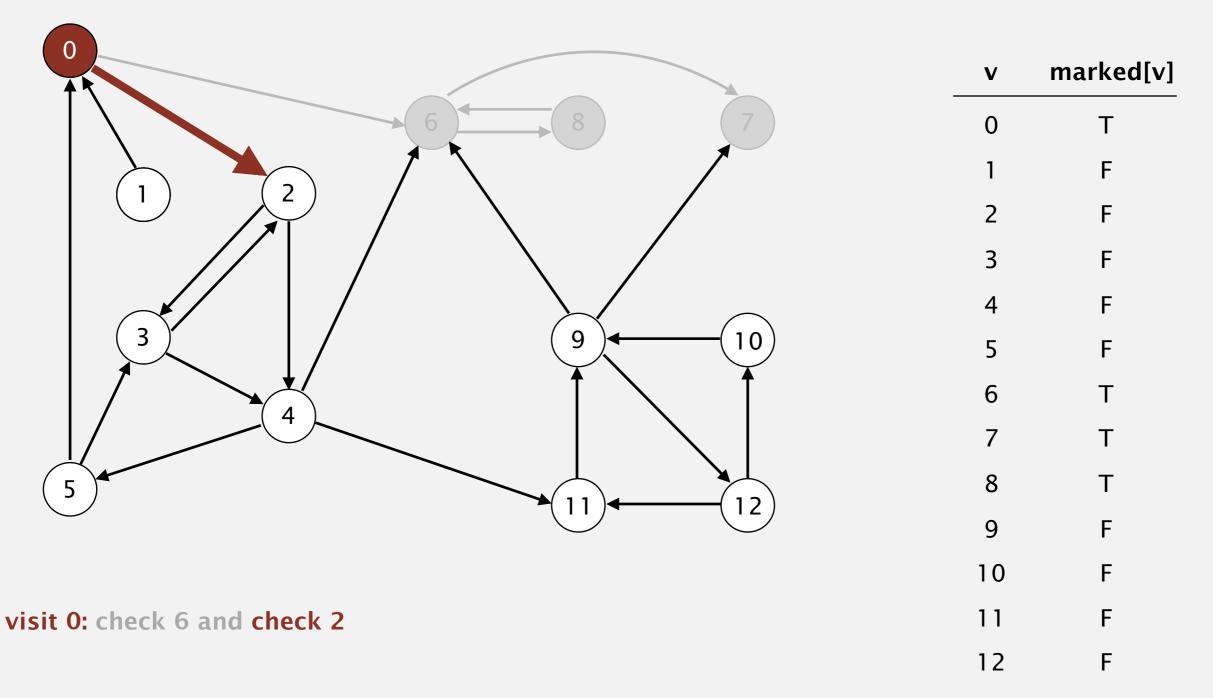




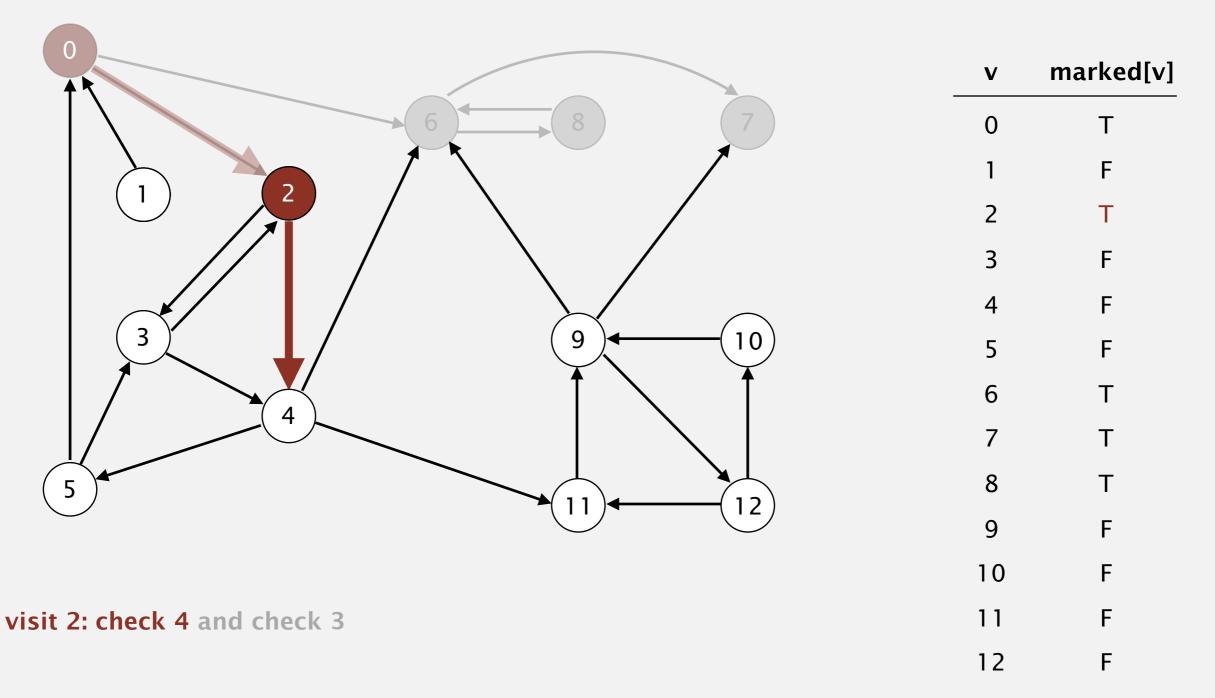


Phase I. Compute reverse postorder in G^R .

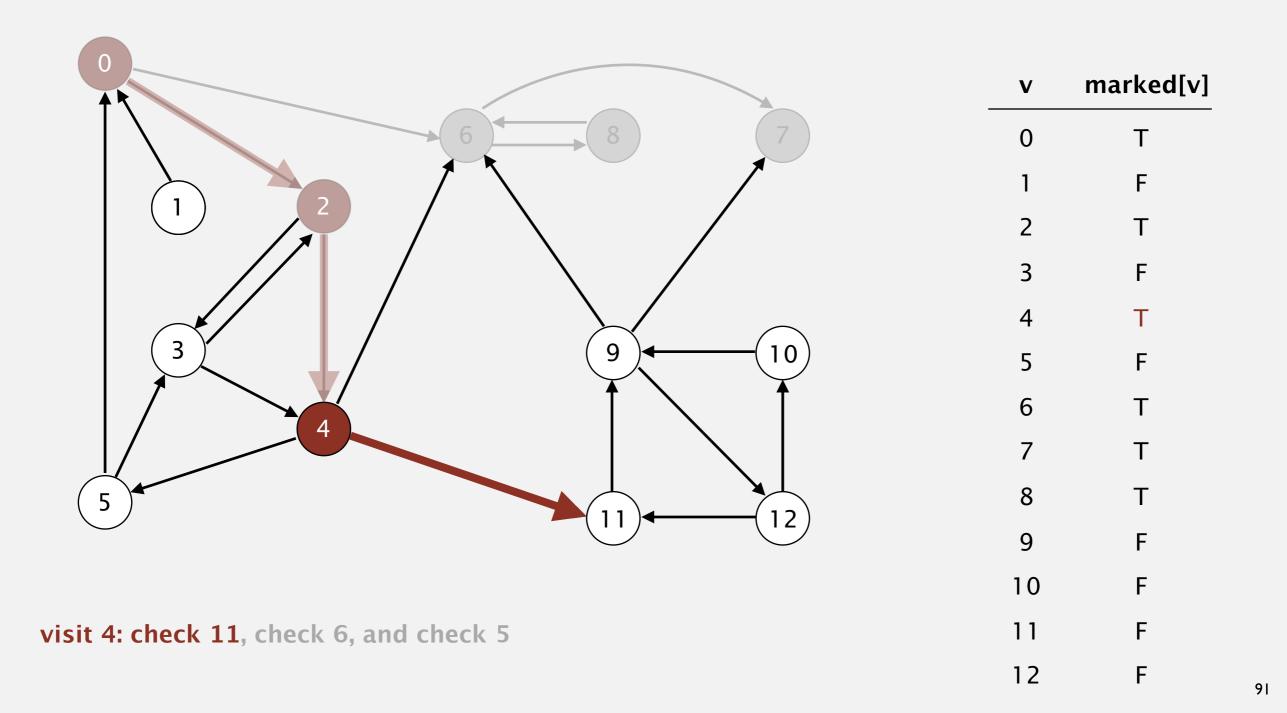
6 7 8



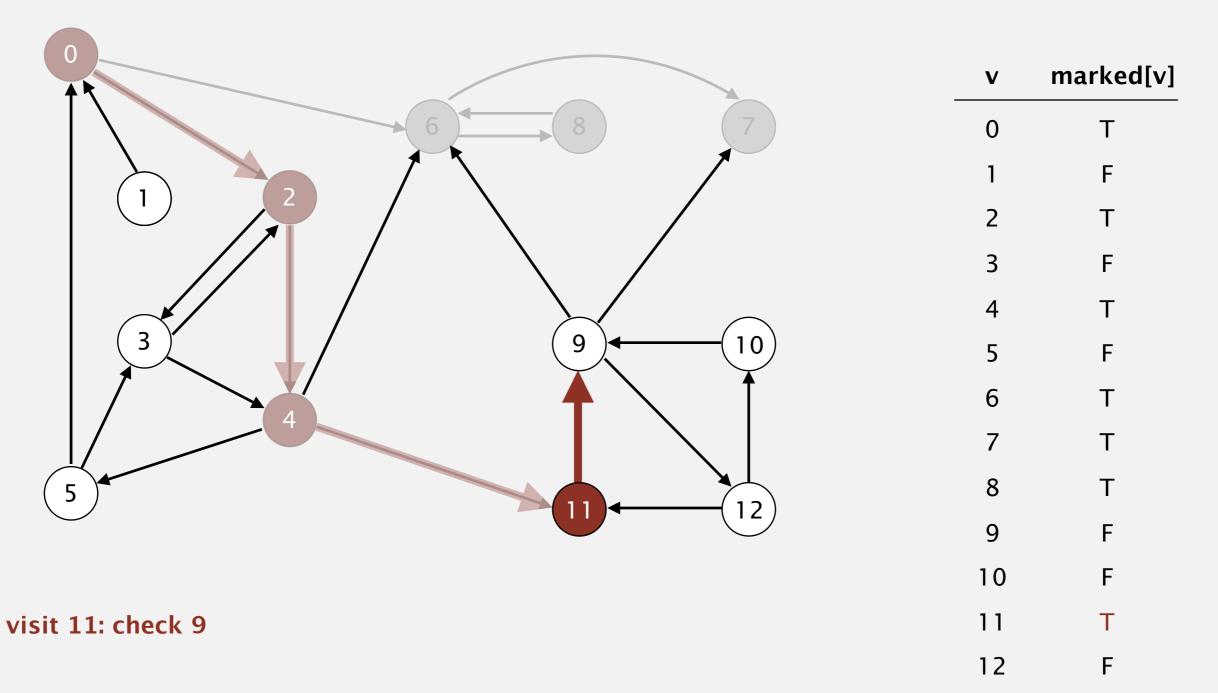
Phase I. Compute reverse postorder in G^R .



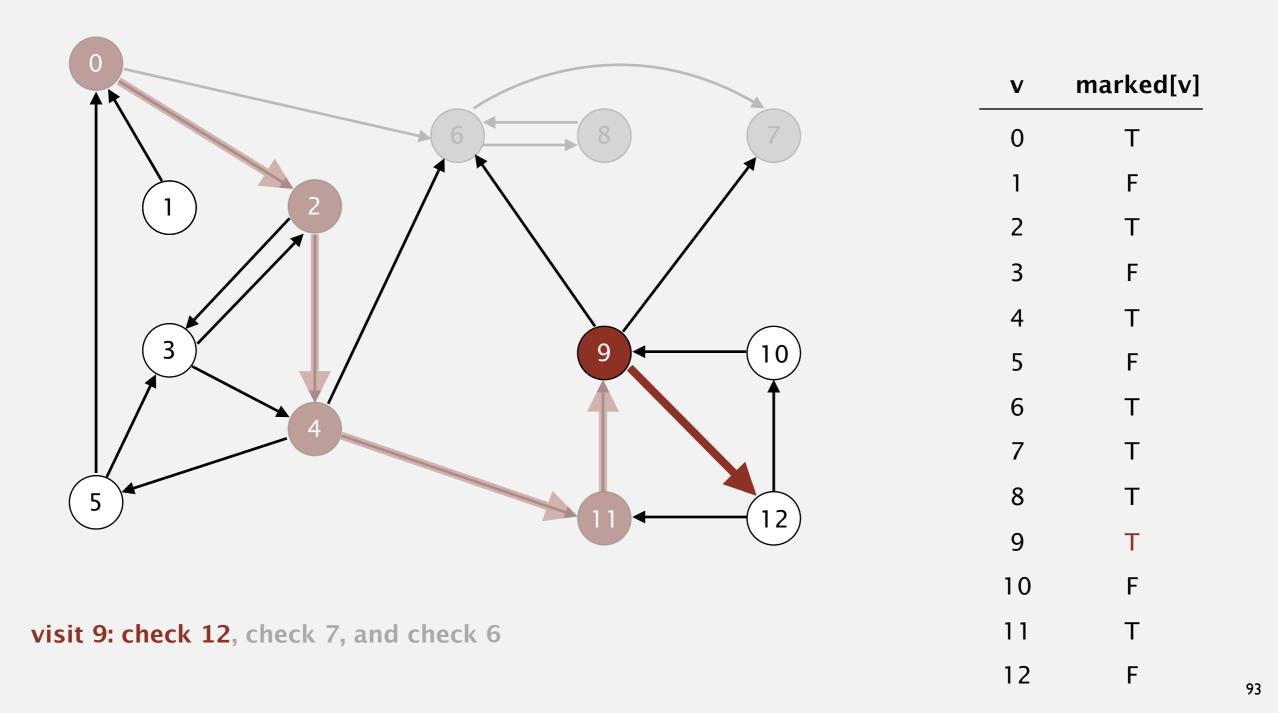
Phase I. Compute reverse postorder in G^R .



Phase I. Compute reverse postorder in G^R .

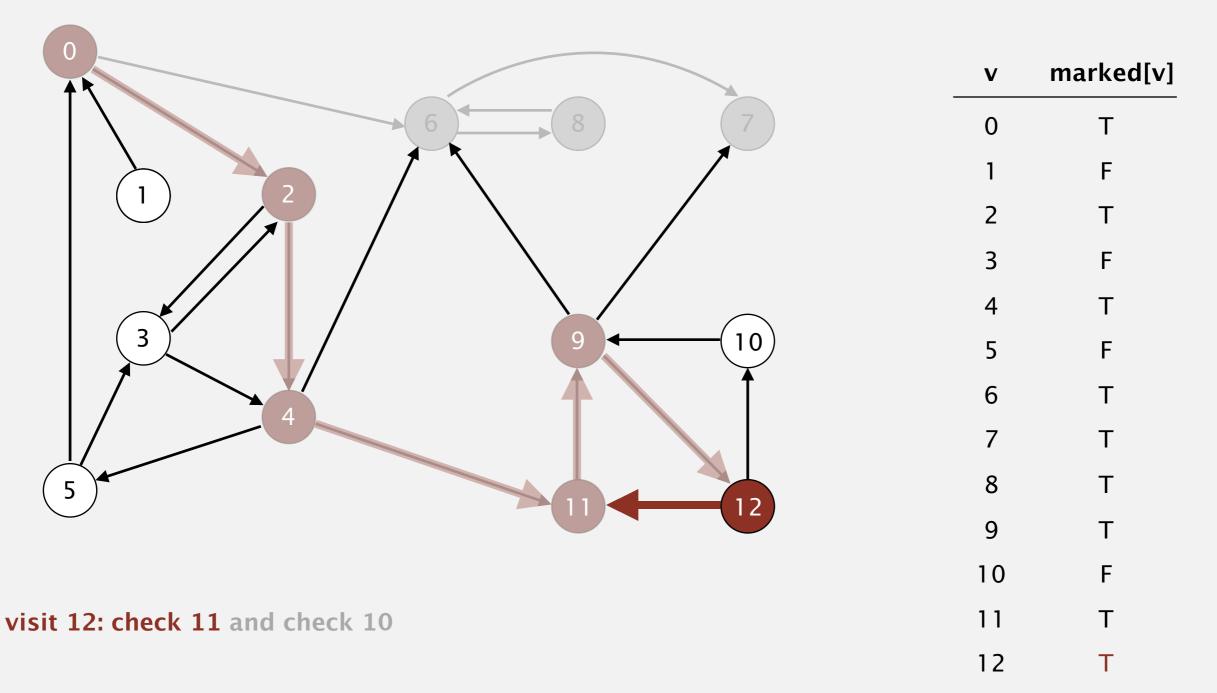


Phase I. Compute reverse postorder in G^R .



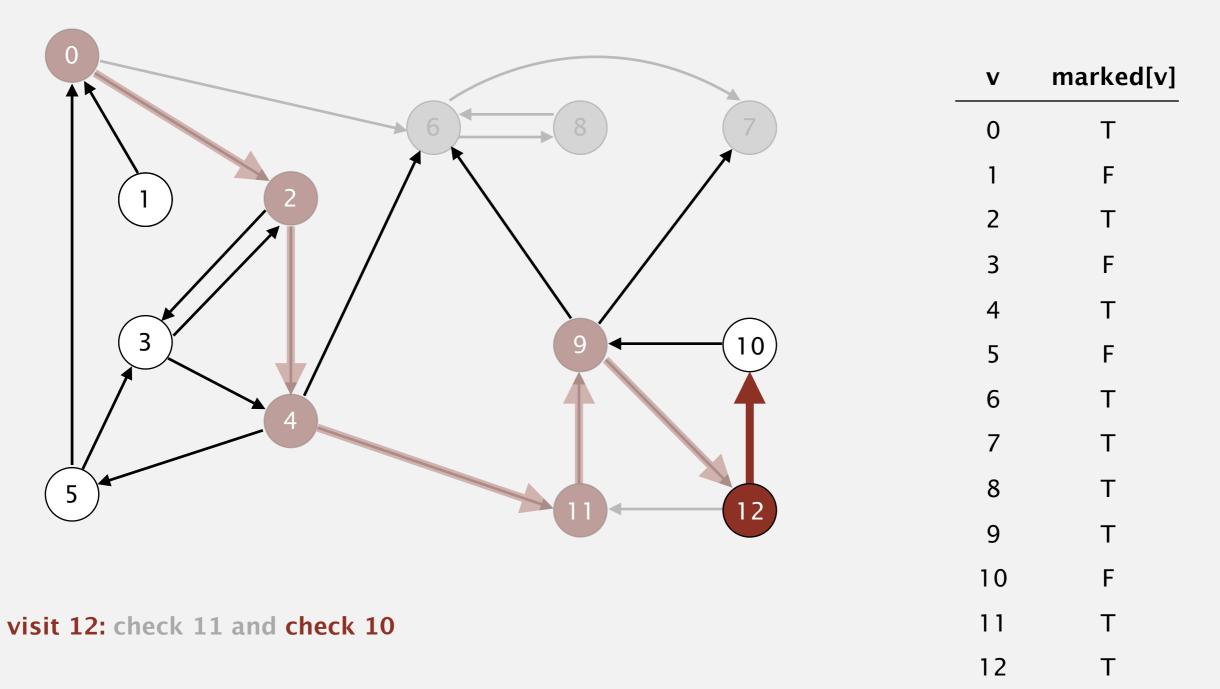
Phase I. Compute reverse postorder in G^R .

6 7 8



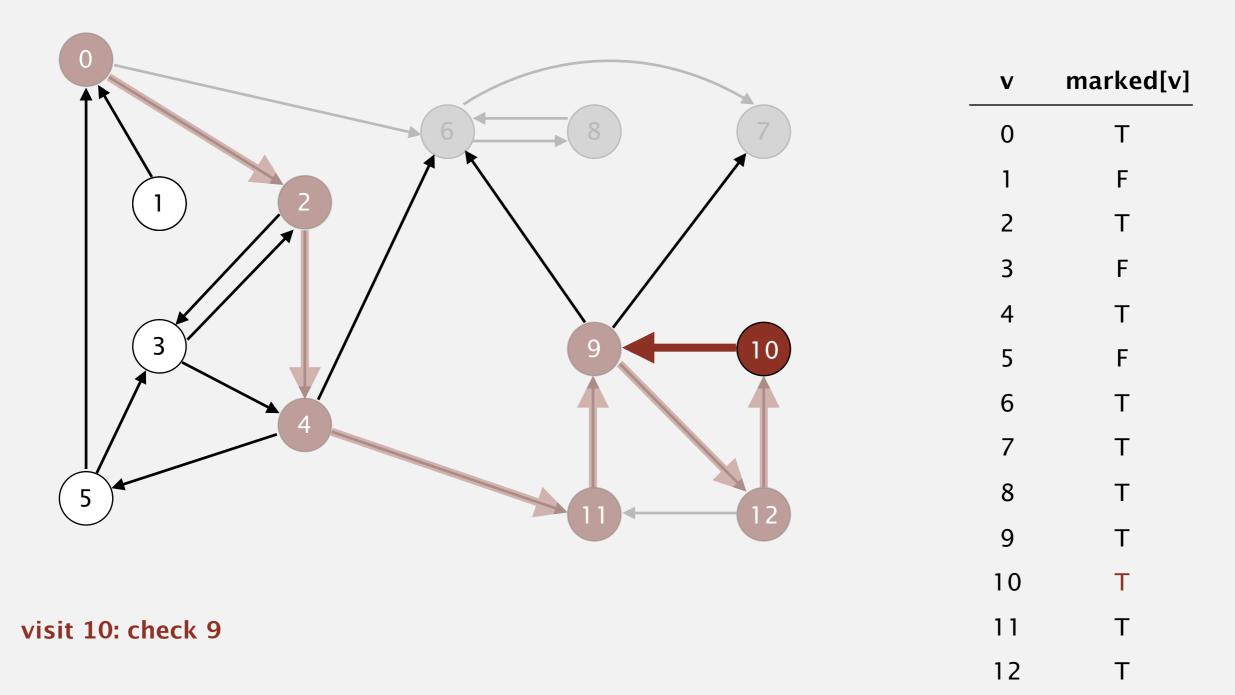
Phase I. Compute reverse postorder in G^R .

6 7 8



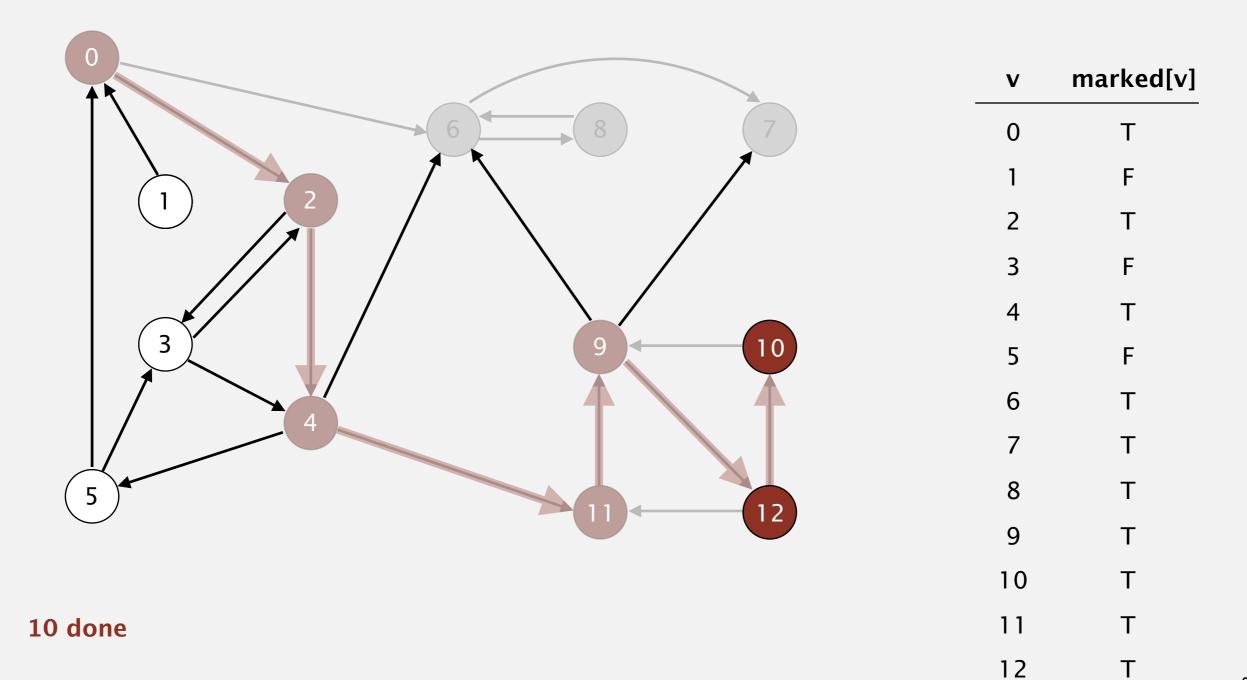
Phase I. Compute reverse postorder in G^R .

6 7 8



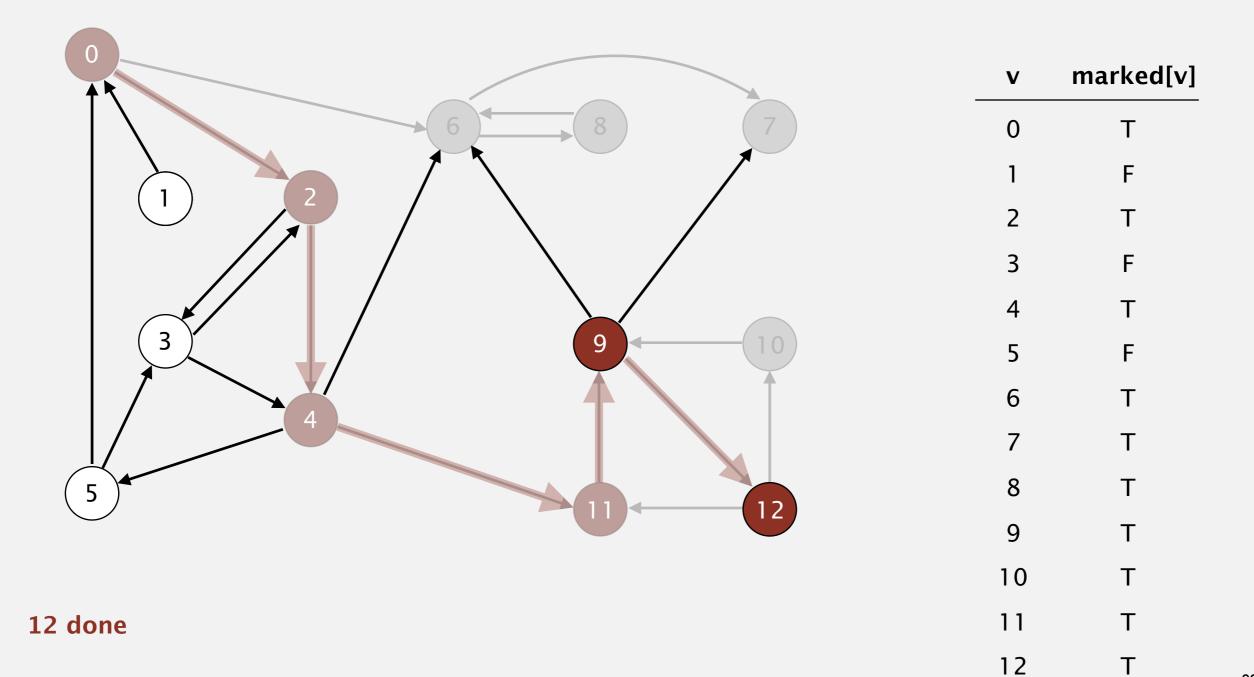
Phase I. Compute reverse postorder in G^R .

10 6 7 8



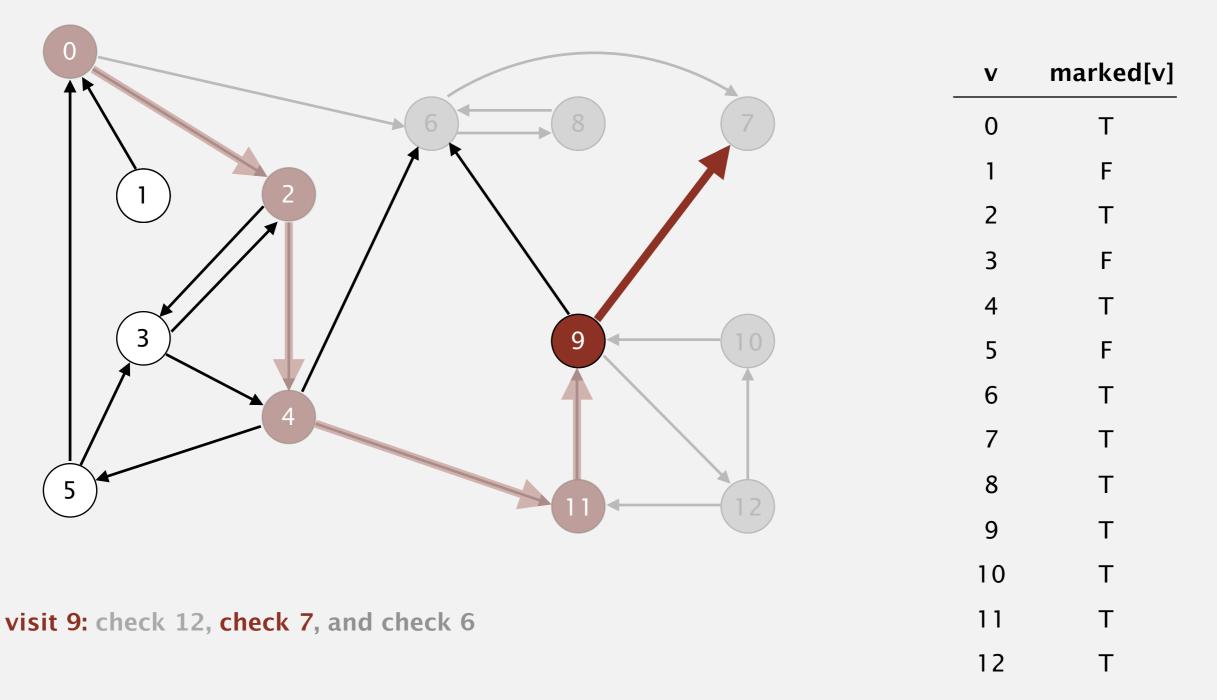
Phase I. Compute reverse postorder in G^R .

12 10 6 7 8



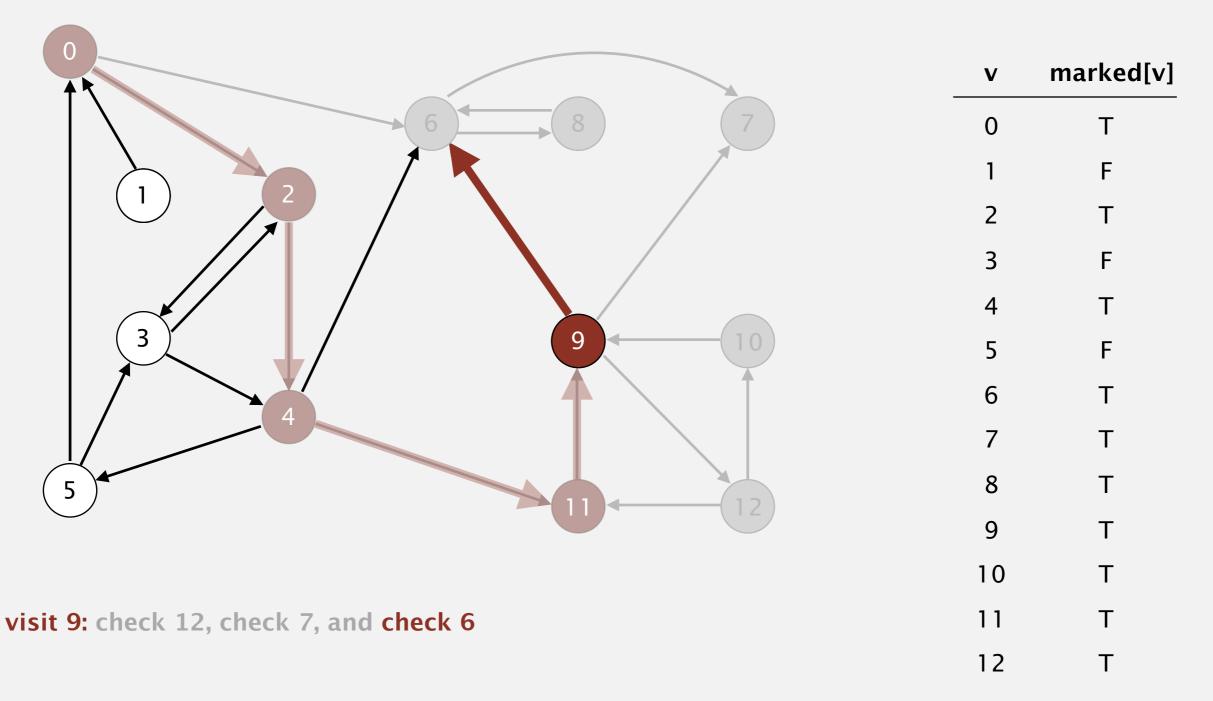
Phase I. Compute reverse postorder in G^R .

12 10 6 7 8



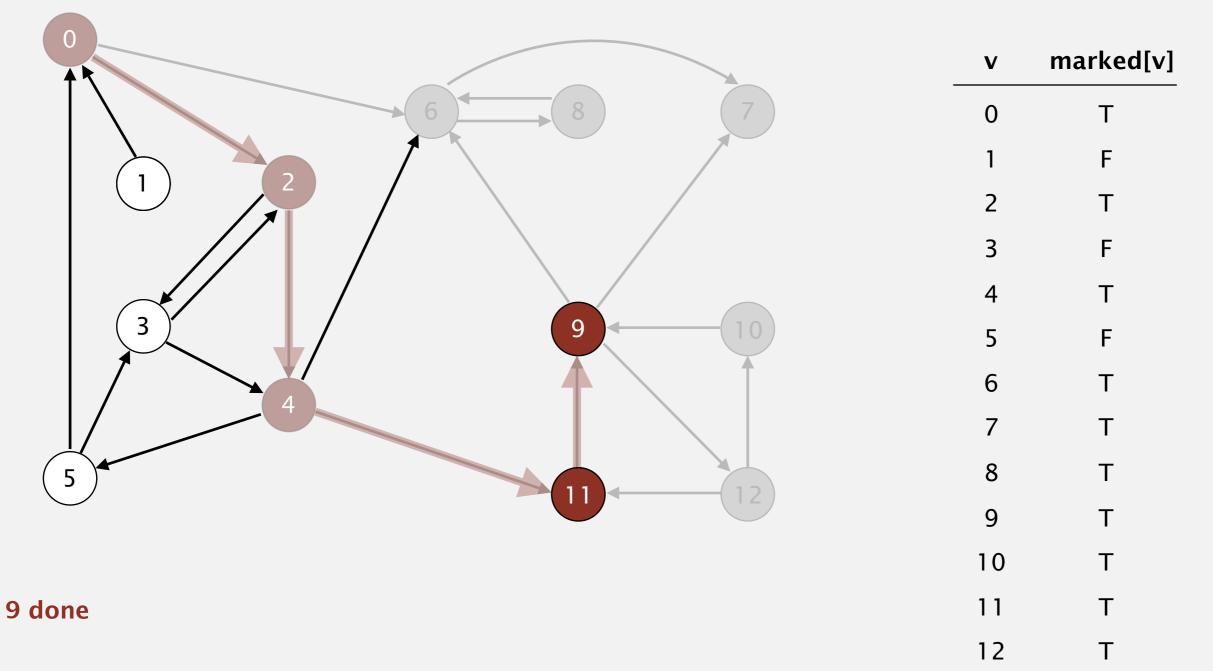
Phase I. Compute reverse postorder in G^R .

12 10 6 7 8

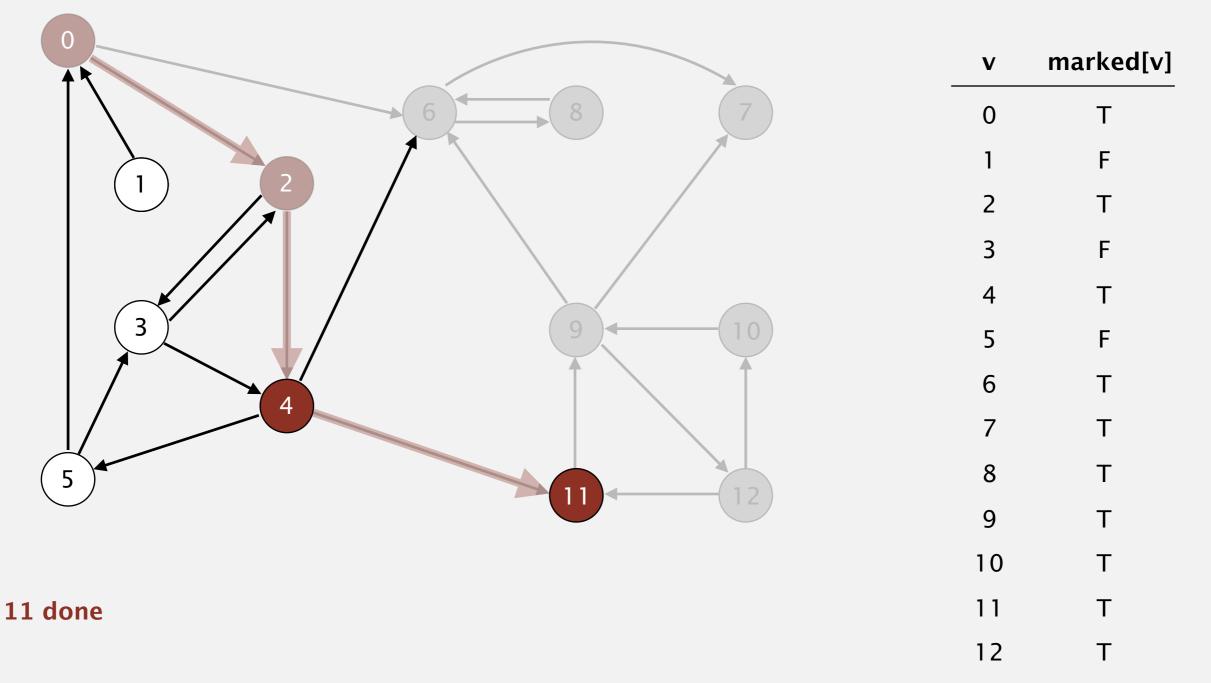


Phase I. Compute reverse postorder in G^R .

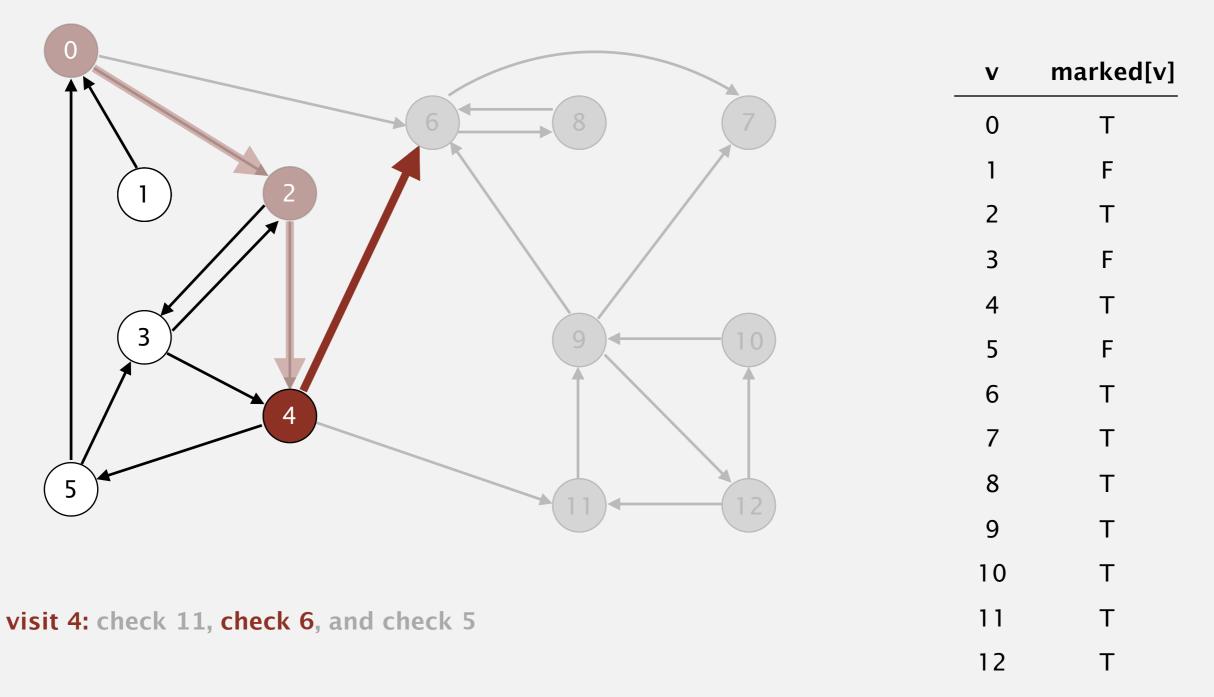
9 12 10 6 7 8



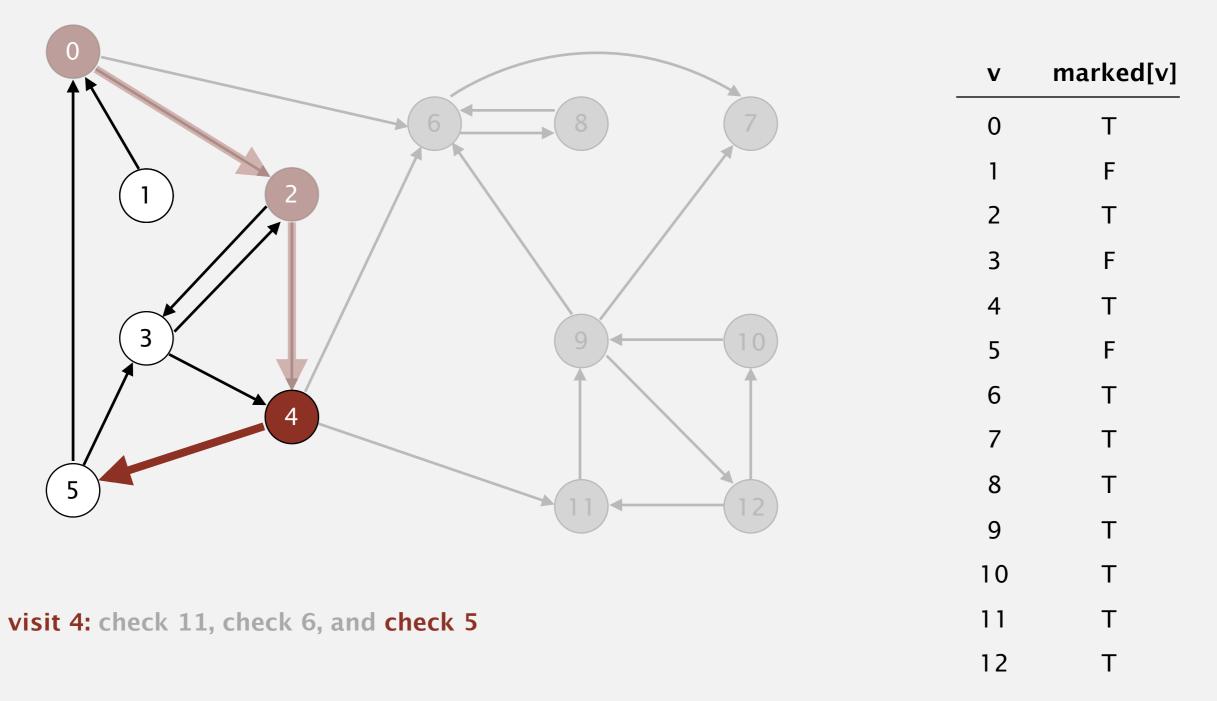
Phase I. Compute reverse postorder in G^R . (11) 9 12 10 6 7 8



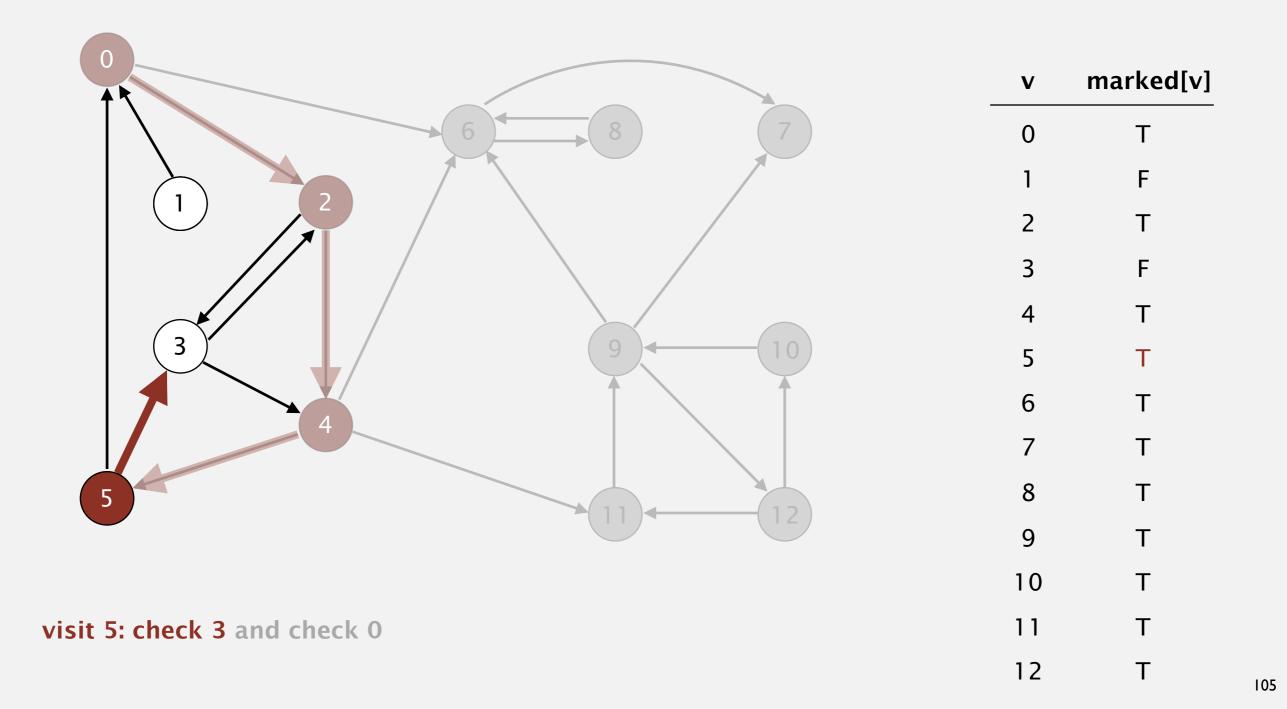
Phase I. Compute reverse postorder in G^R .



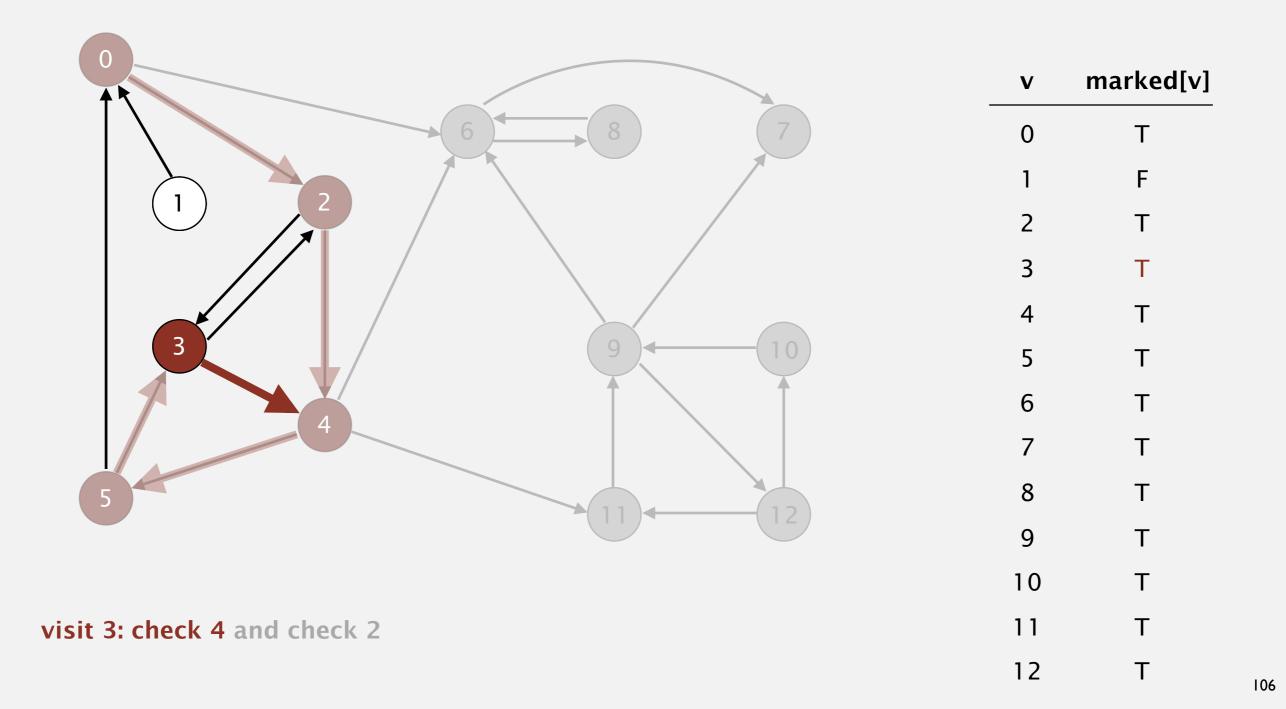
Phase I. Compute reverse postorder in G^R .



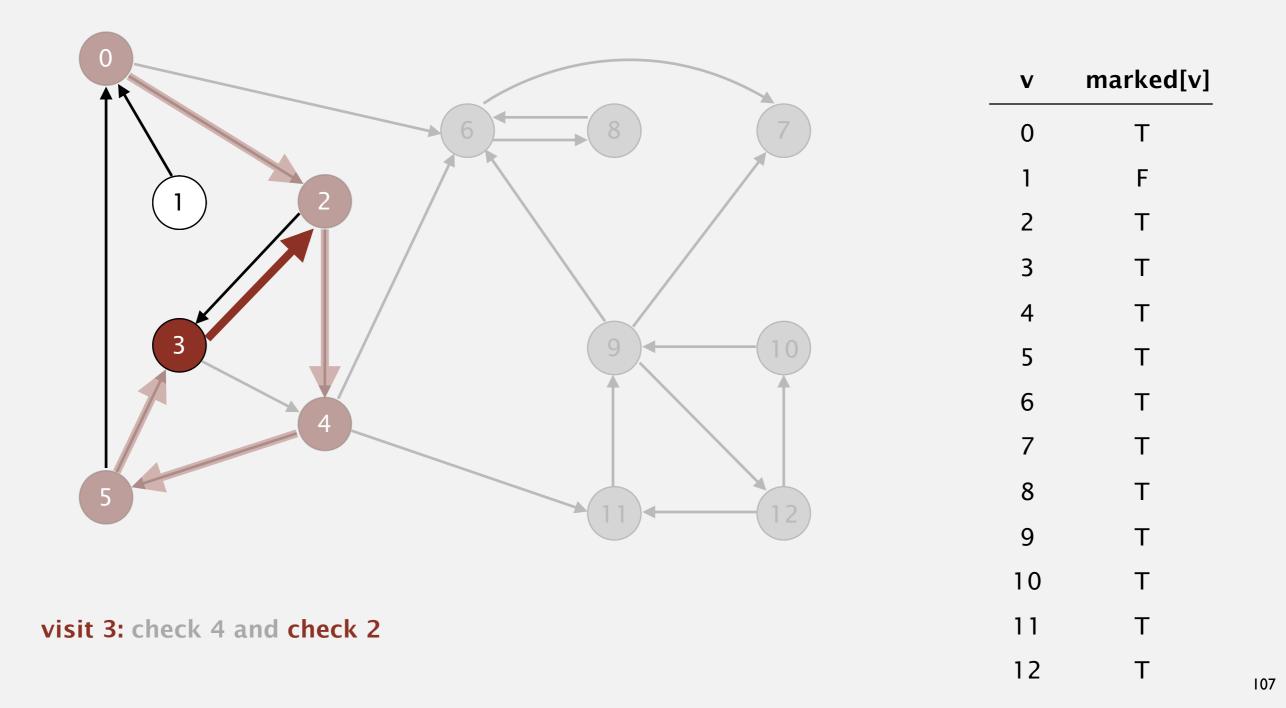
Phase I. Compute reverse postorder in G^R .



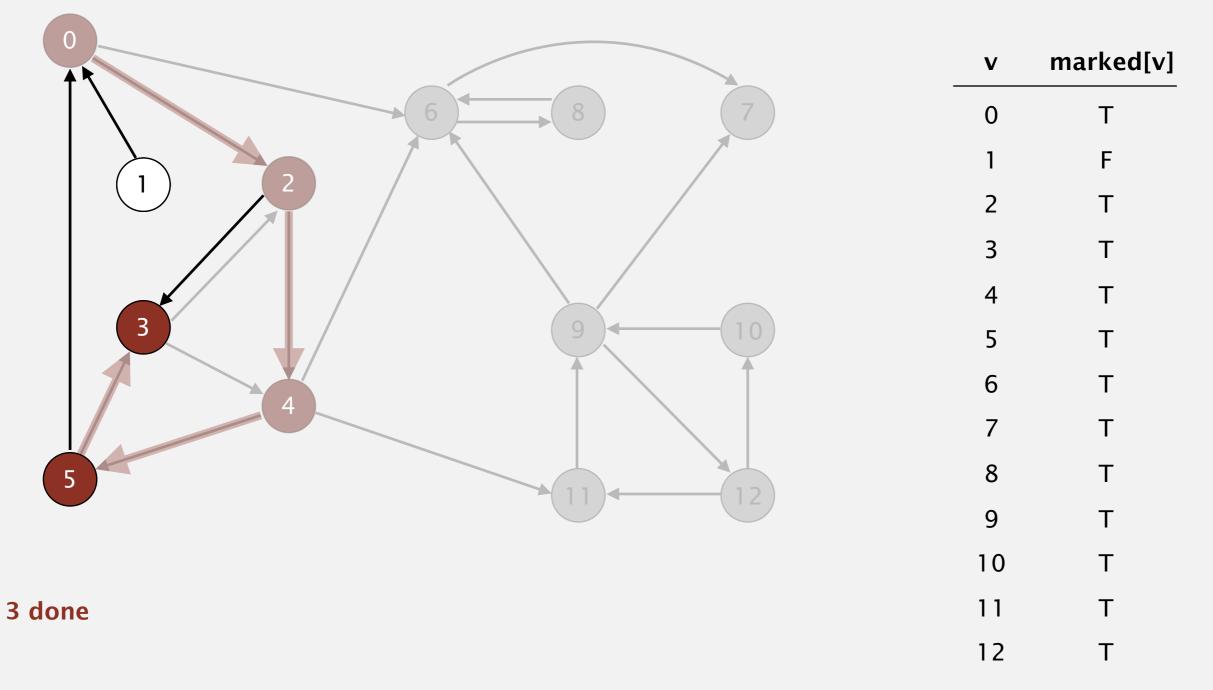
Phase I. Compute reverse postorder in G^R .



Phase I. Compute reverse postorder in G^R .

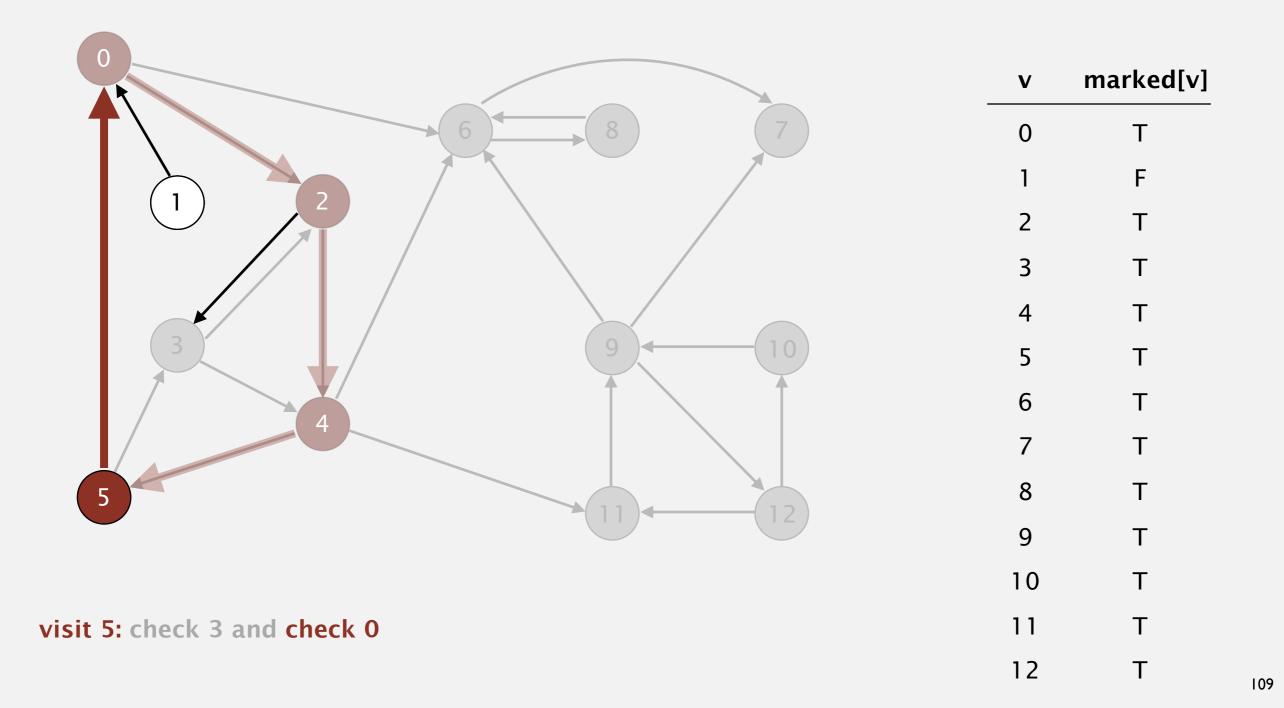


Phase I. Compute reverse postorder in G^R . **3** 11 9 12 10 6 7 8



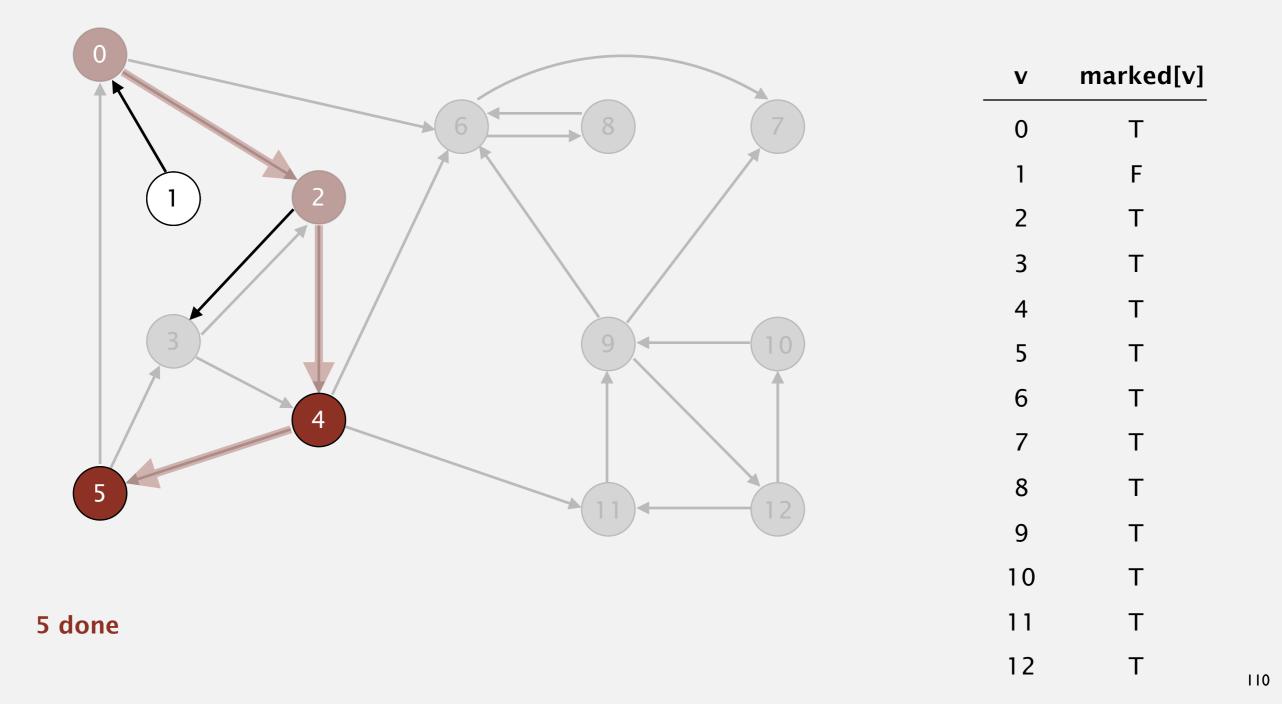
Phase I. Compute reverse postorder in G^R .

3 11 9 12 10 6 7 8



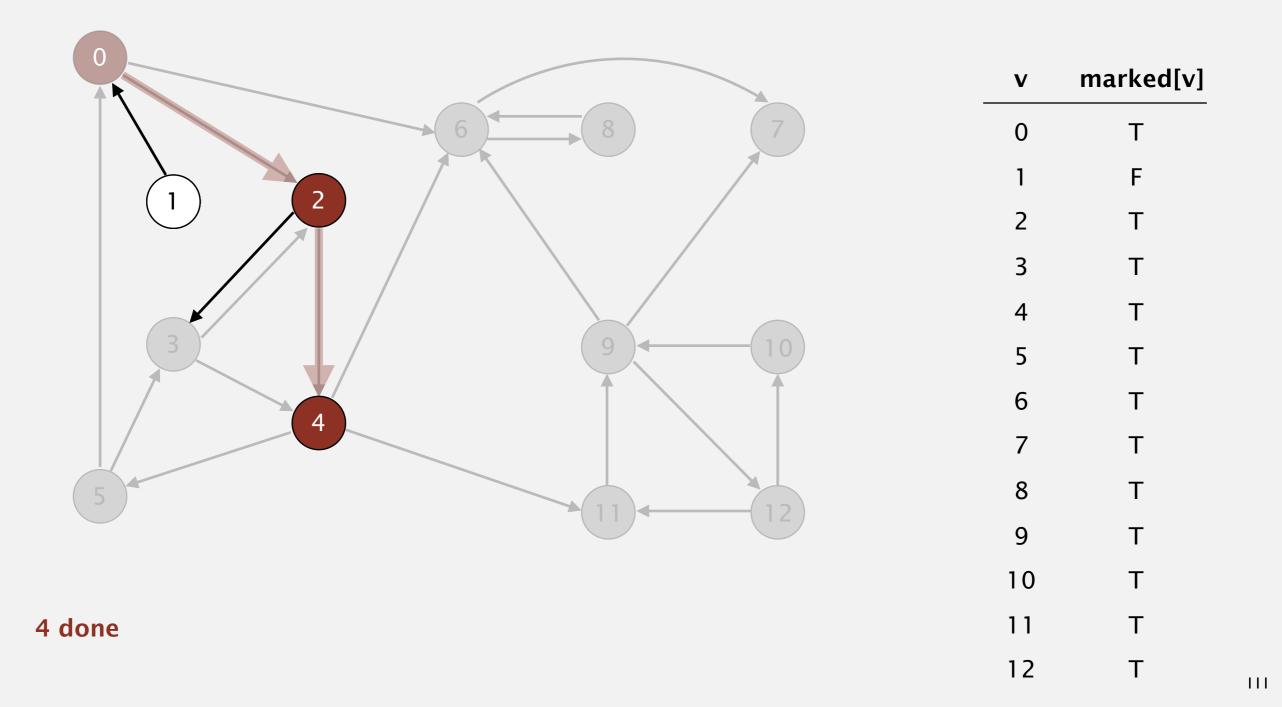
Phase I. Compute reverse postorder in G^R .

5 3 11 9 12 10 6 7 8



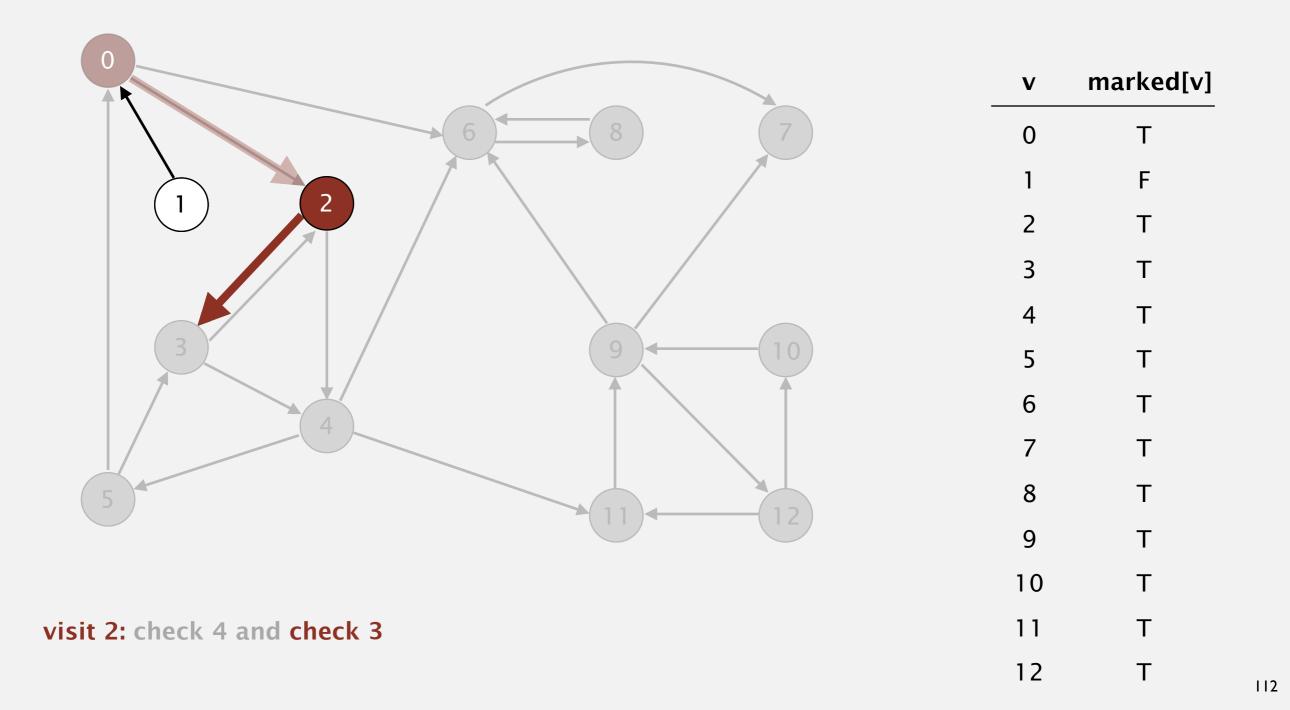
Phase I. Compute reverse postorder in G^R .

(4) 5 3 11 9 12 10 6 7 8

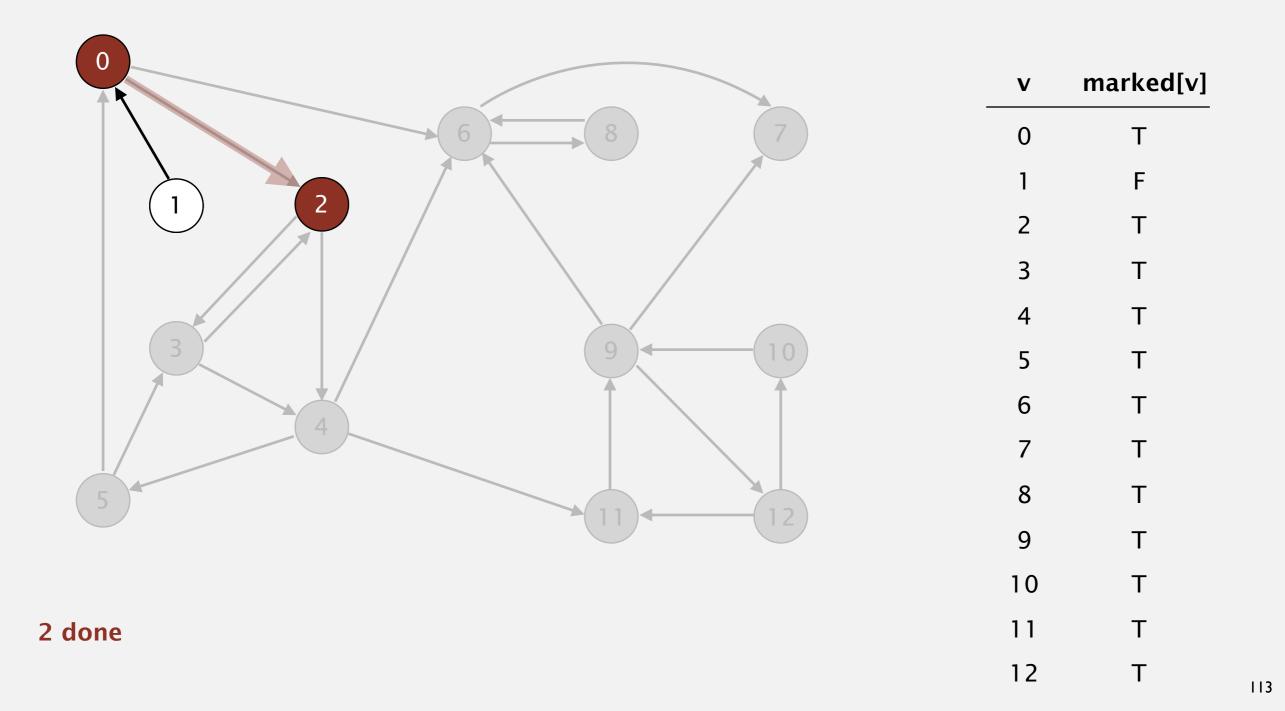


Phase I. Compute reverse postorder in G^R .

4 5 3 11 9 12 10 6 7 8

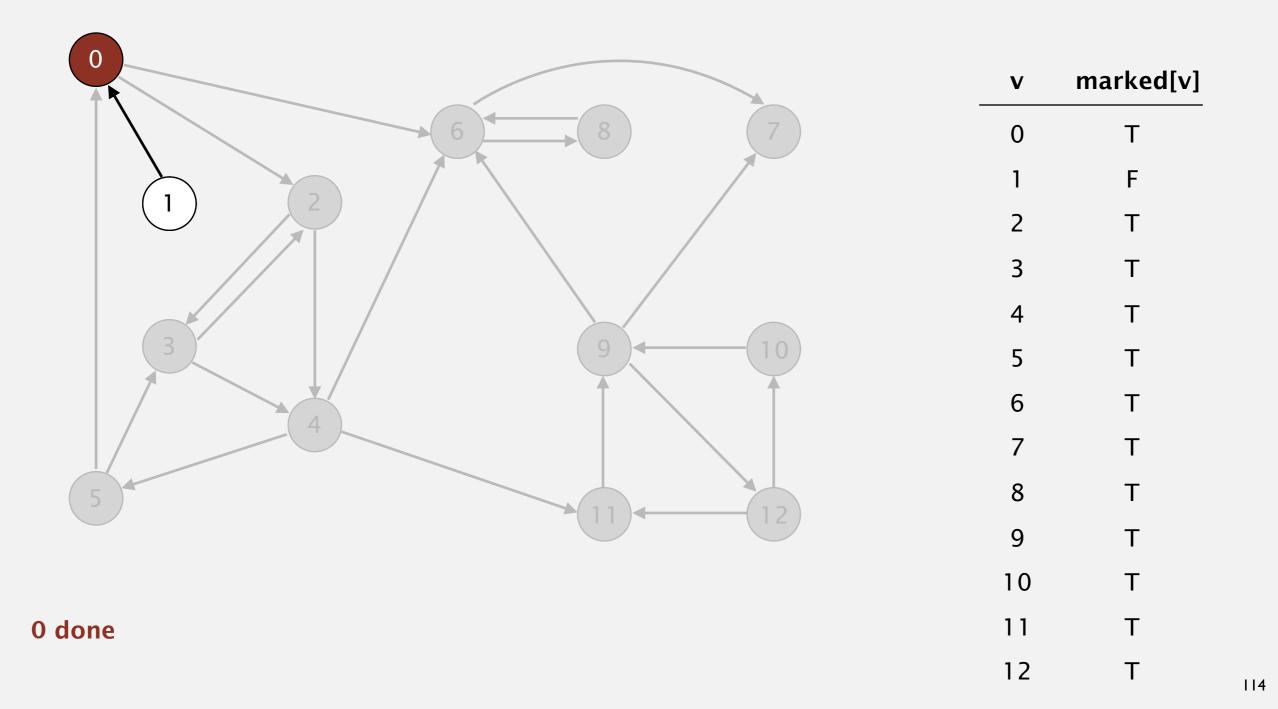


Phase I. Compute reverse postorder in G^R . **2** 4 5 3 11 9 12 10 6 7 8



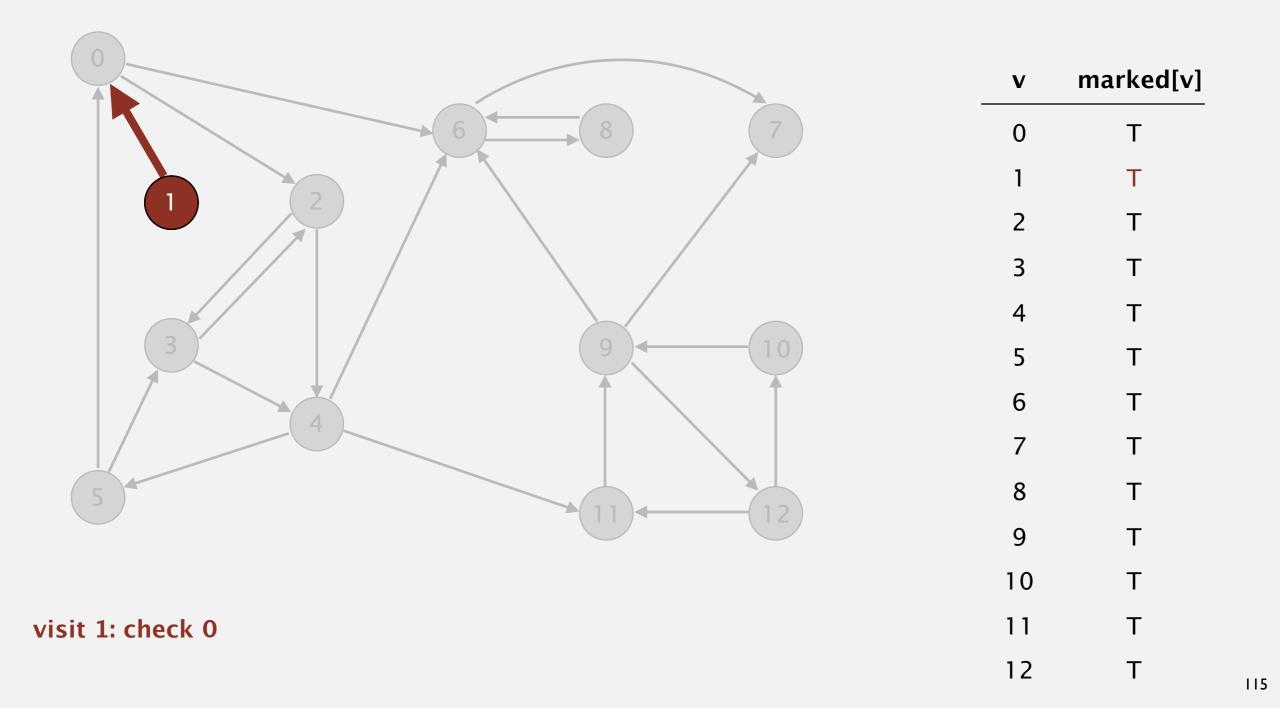
Phase I. Compute reverse postorder in G^R .

0 2 4 5 3 11 9 12 10 6 7 8



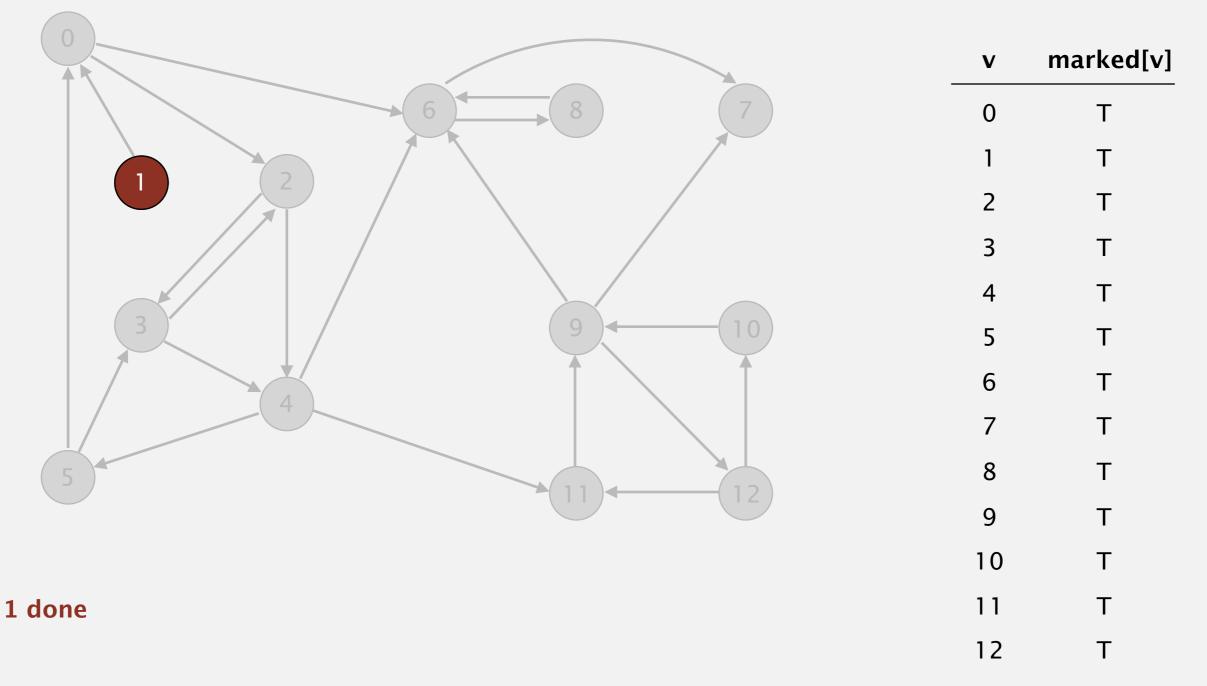
Phase I. Compute reverse postorder in G^R .

0 2 4 5 3 11 9 12 10 6 7 8



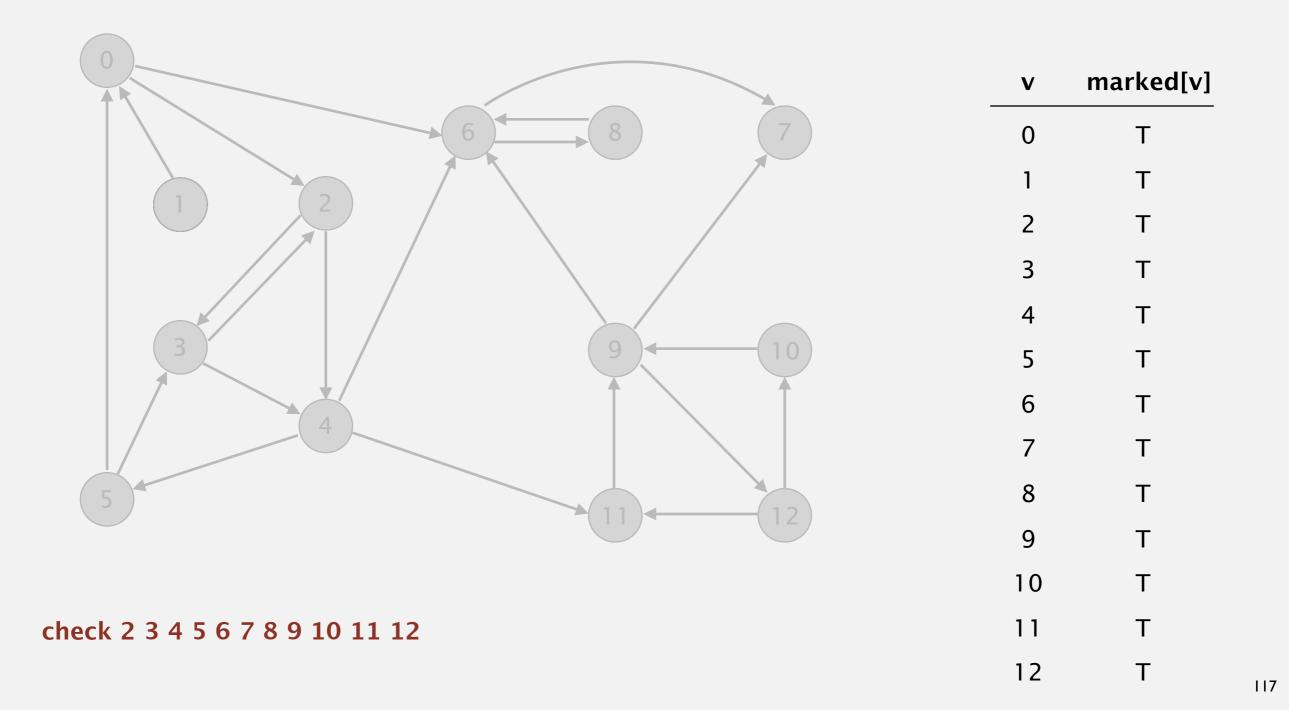
Phase I. Compute reverse postorder in G^R .

1 0 2 4 5 3 11 9 12 10 6 7 8



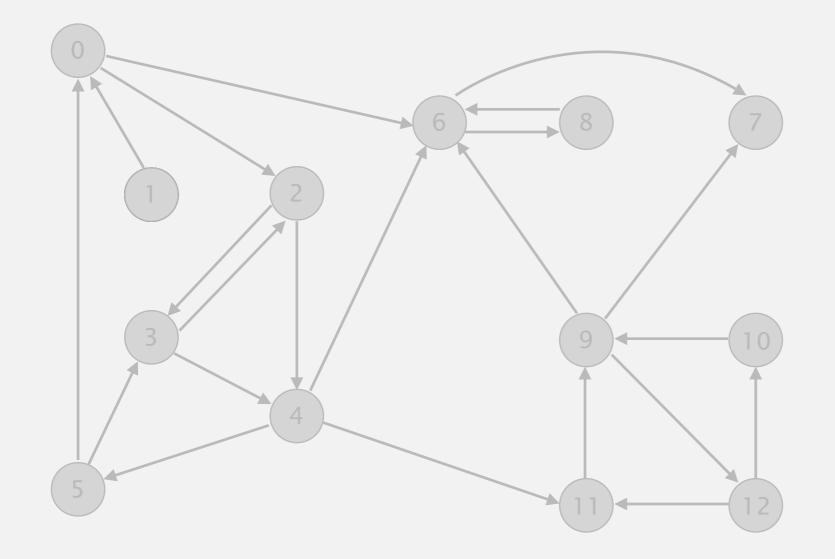
Phase I. Compute reverse postorder in G^R .

1 0 2 4 5 3 11 9 12 10 6 7 8



Phase I. Compute reverse postorder in G^R .

1 0 2 4 5 3 11 9 12 10 6 7 8

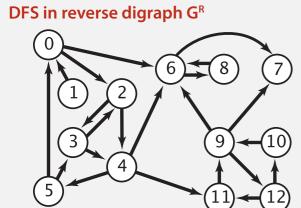


reverse digraph G^R

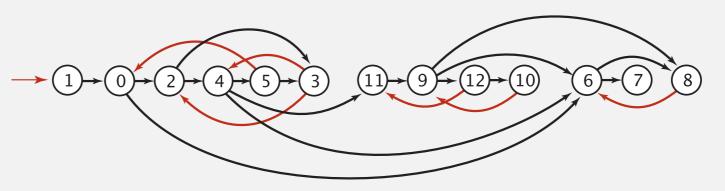
Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components.

- Run DFS on G^R to compute reverse postorder.
- Run DFS on G, considering vertices in order given by first DFS.



check unmarked vertices in the order 0 1 2 3 4 5 6 7 8 9 10 11 12



reverse postorder for use in second dfs() 1 0 2 4 5 3 11 9 12 10 6 7 8

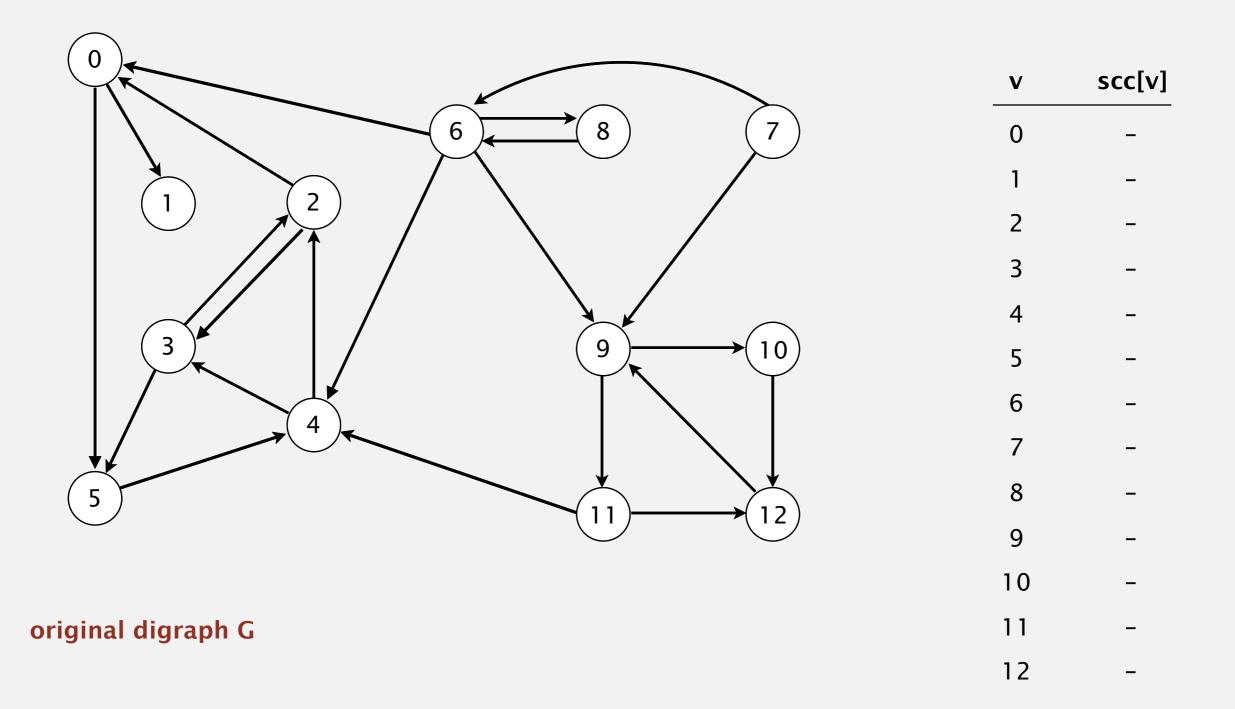
dfs(0) dfs(6) dfs(8) check 6 8 done dfs(7) 7 done
6 done
dfs(2)
dfs(4)
dfs(11)
dfs(9)
dfs(12)
check 11
dfs(10)
check 9
10 done
12 done
check 7
check 6

• • •

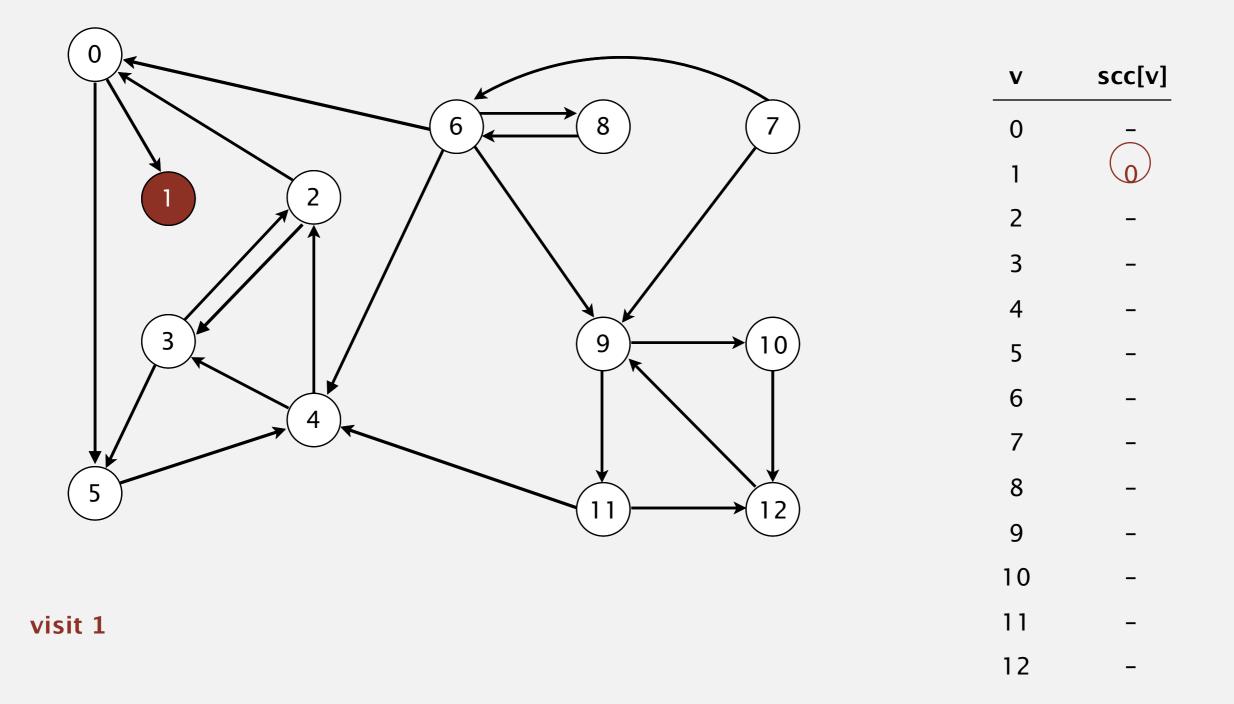
KOSARAJU'S ALGORITHM

- DFS in reverse graph
- DFS in original graph

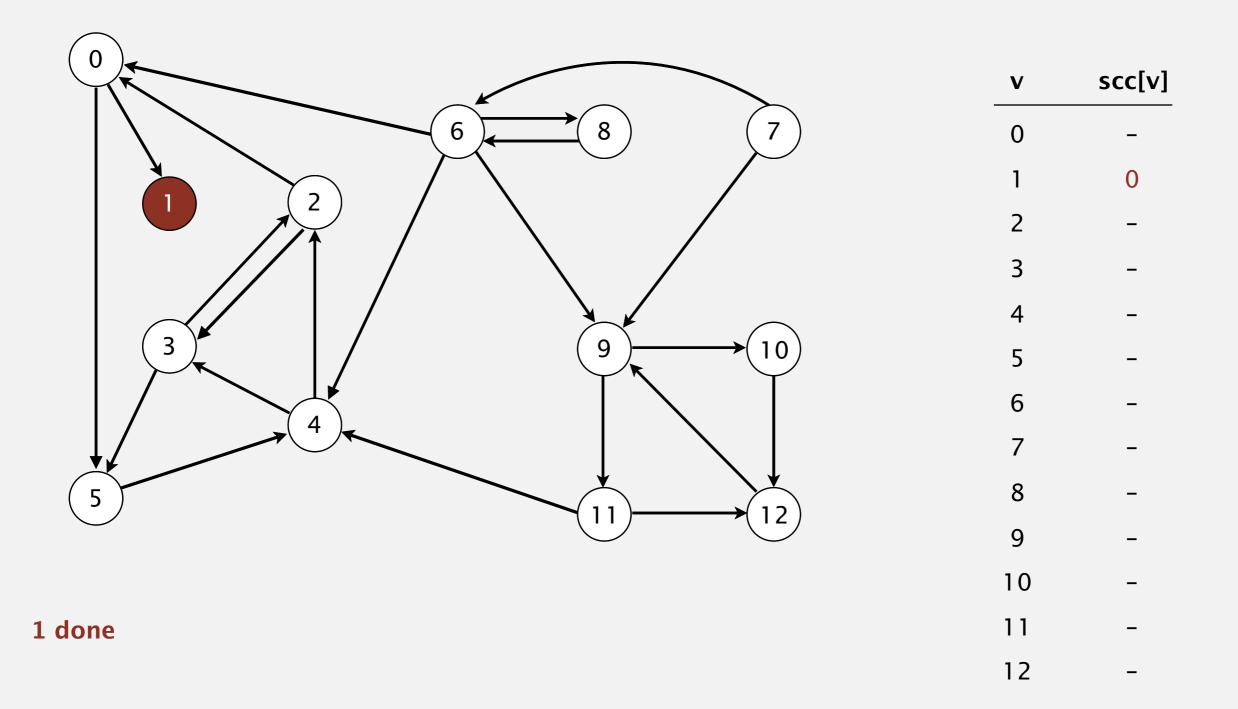
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8



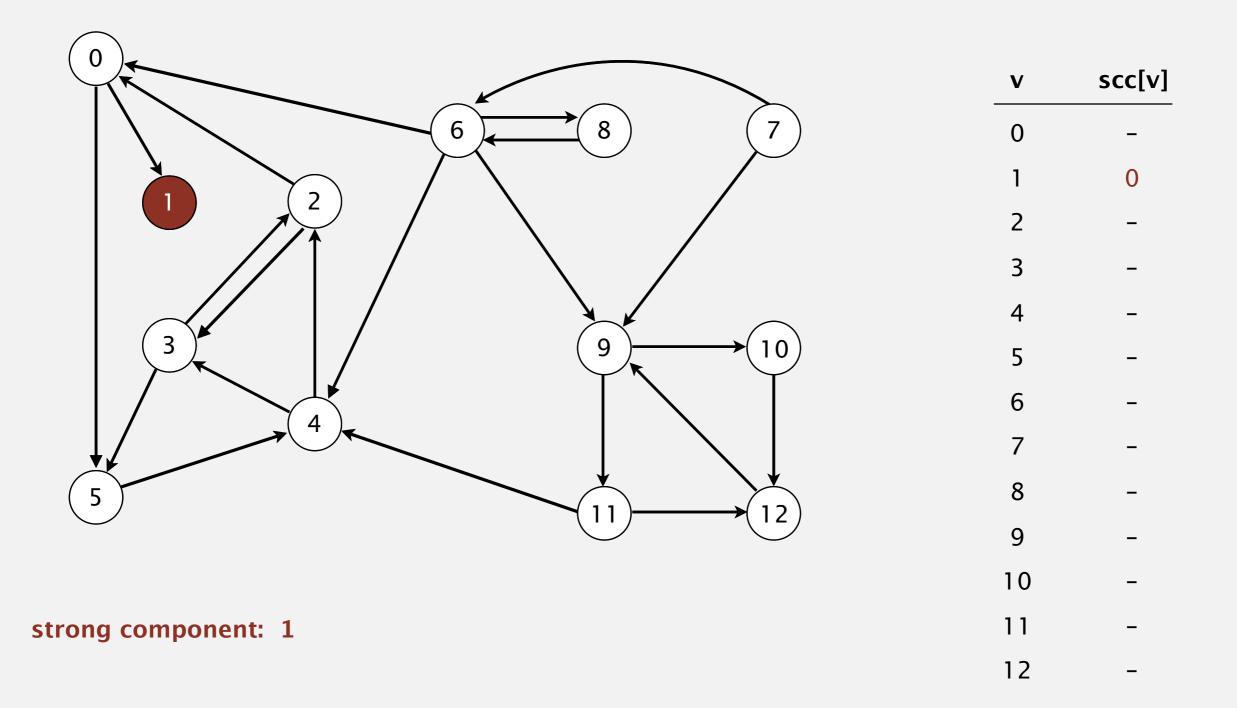
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8



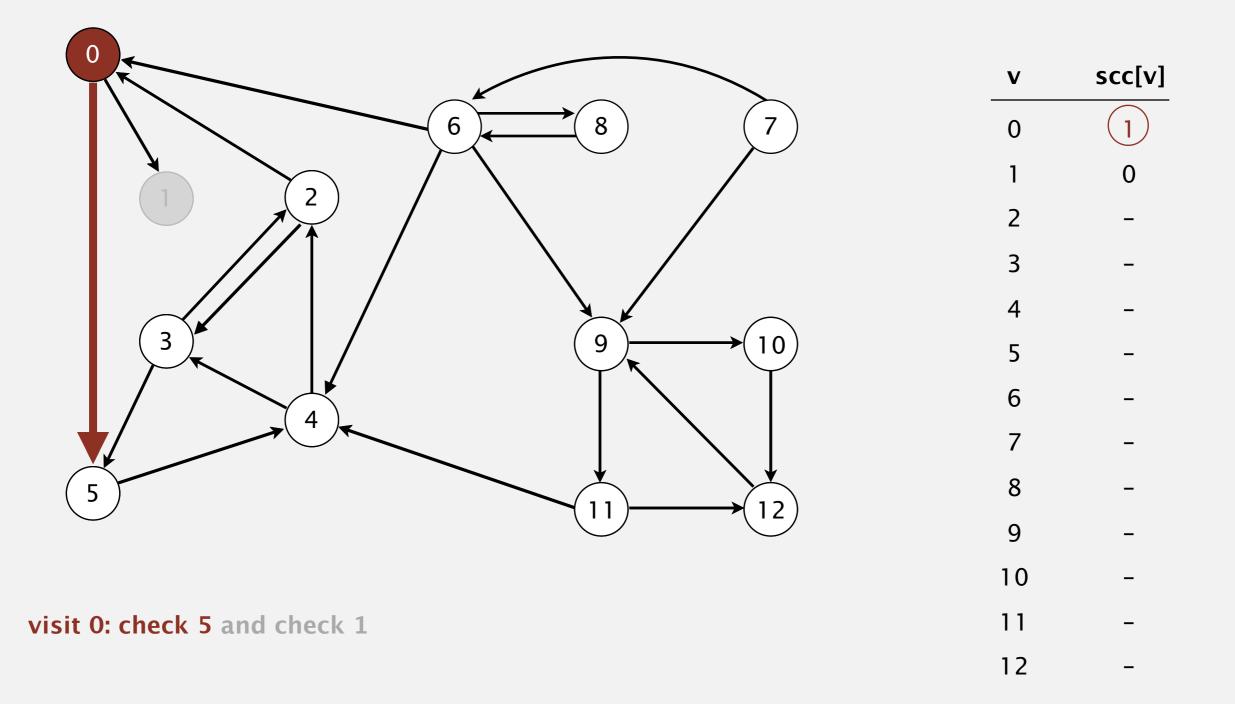
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8



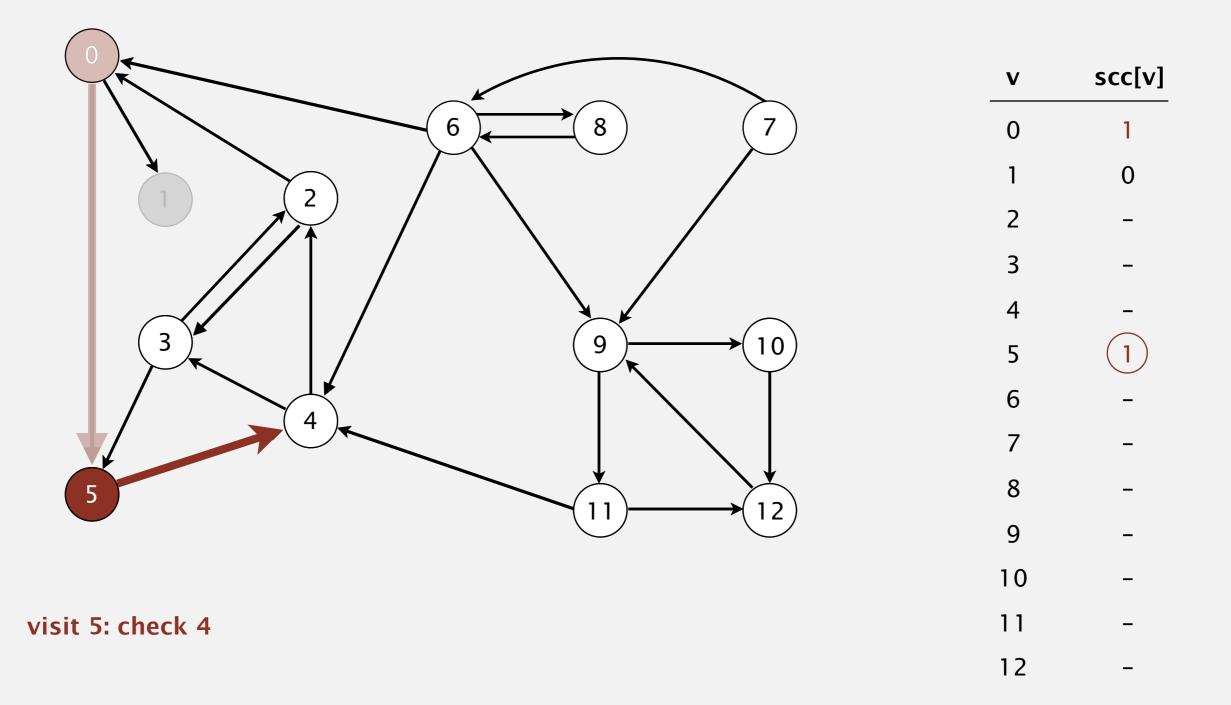
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8



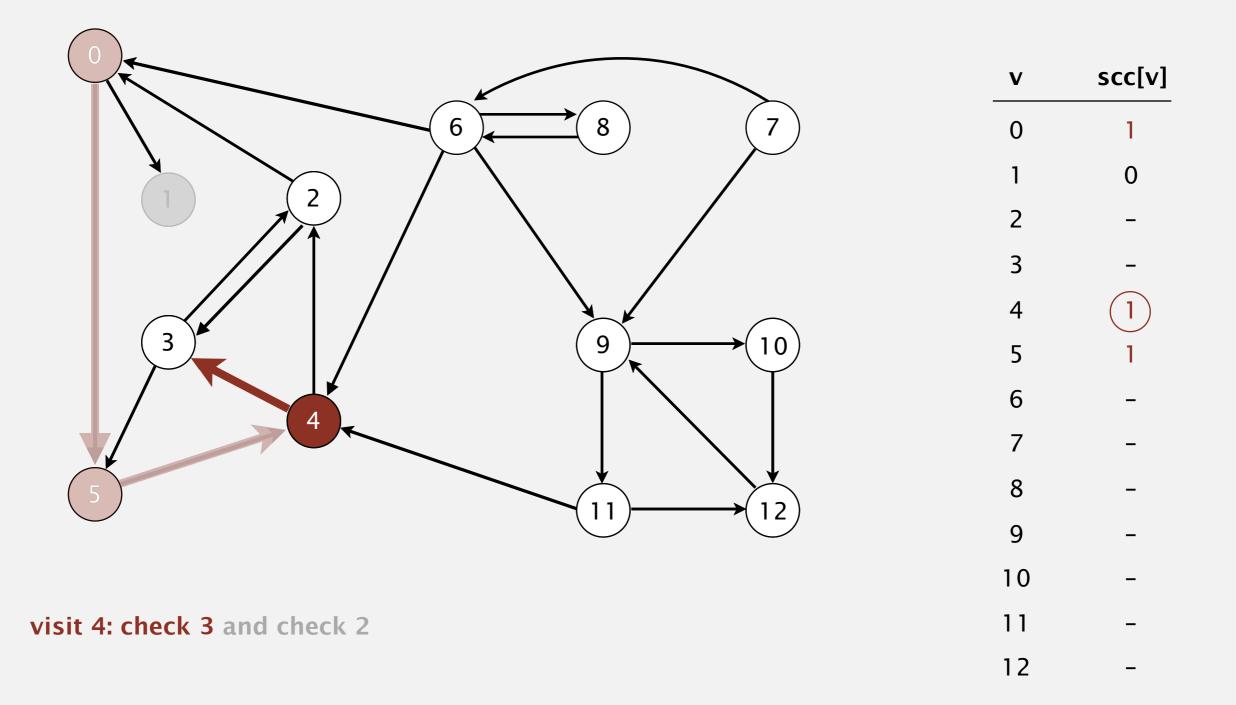
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8



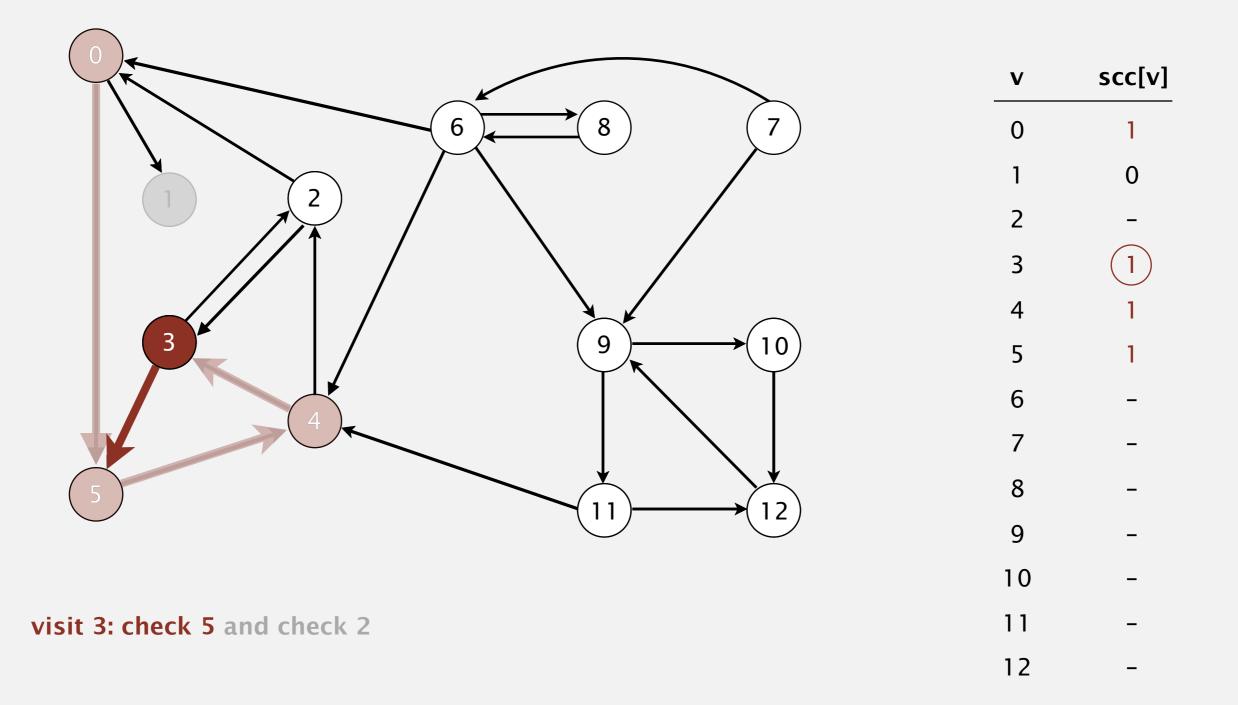
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8



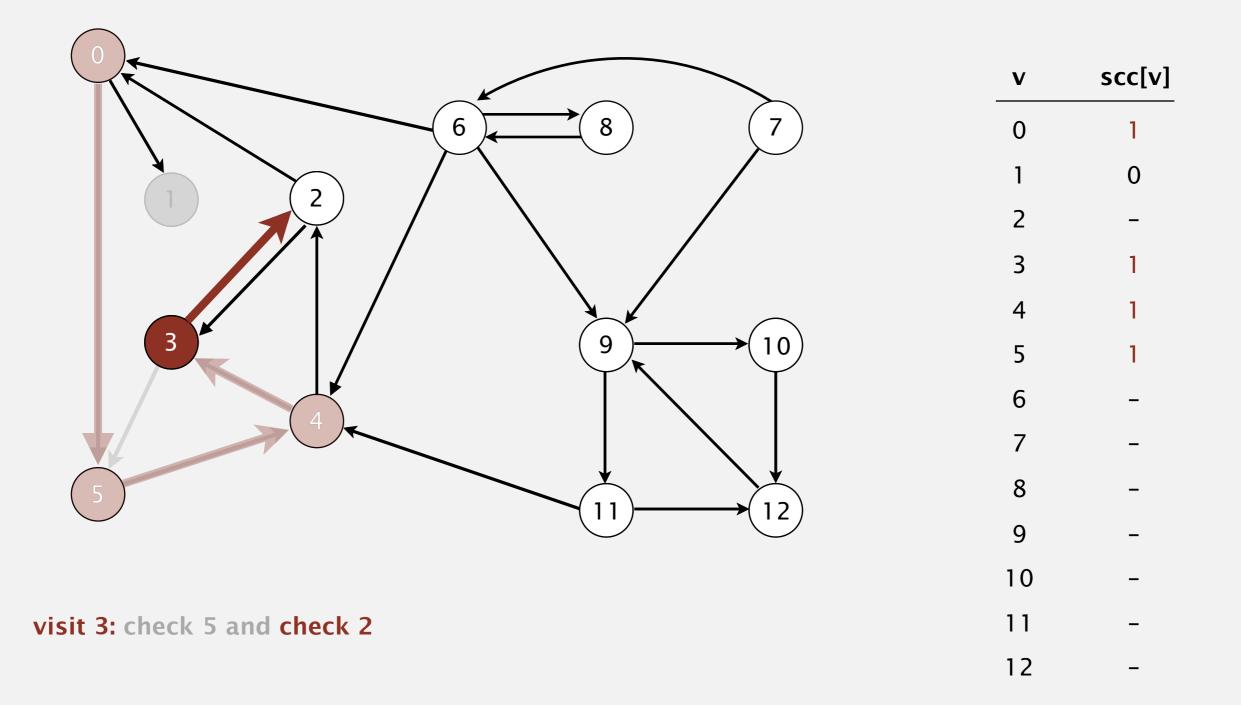
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8



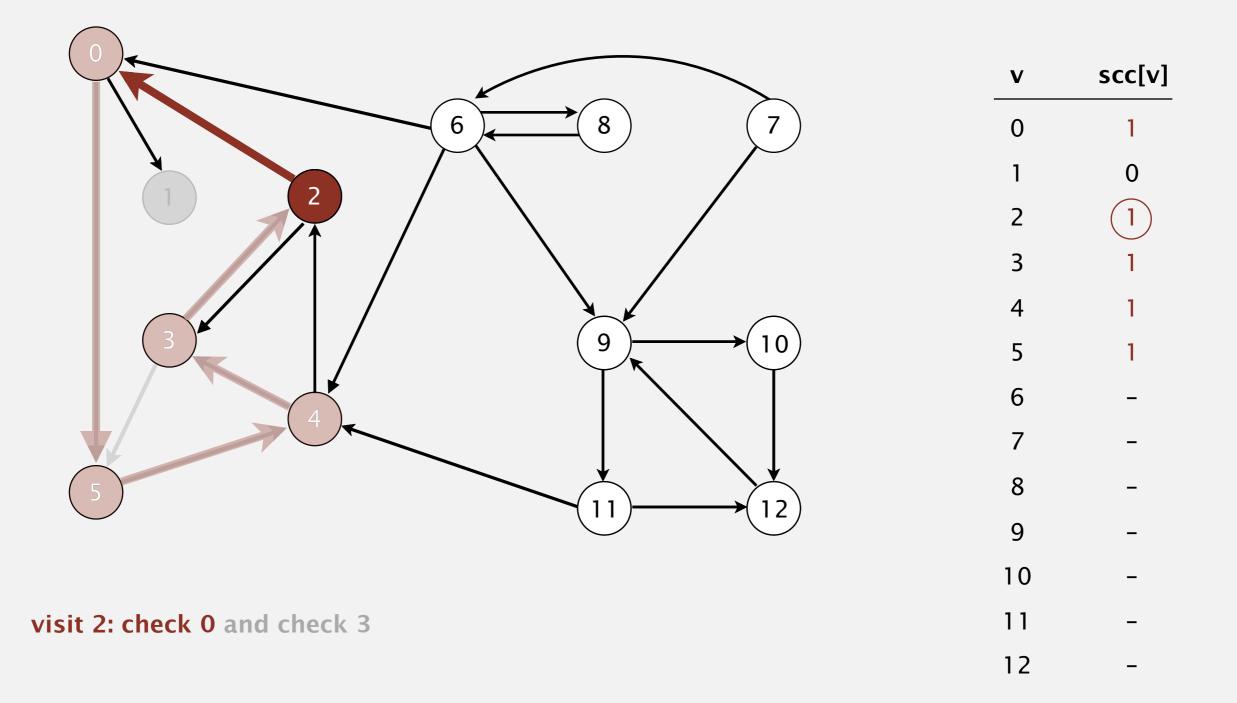
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8



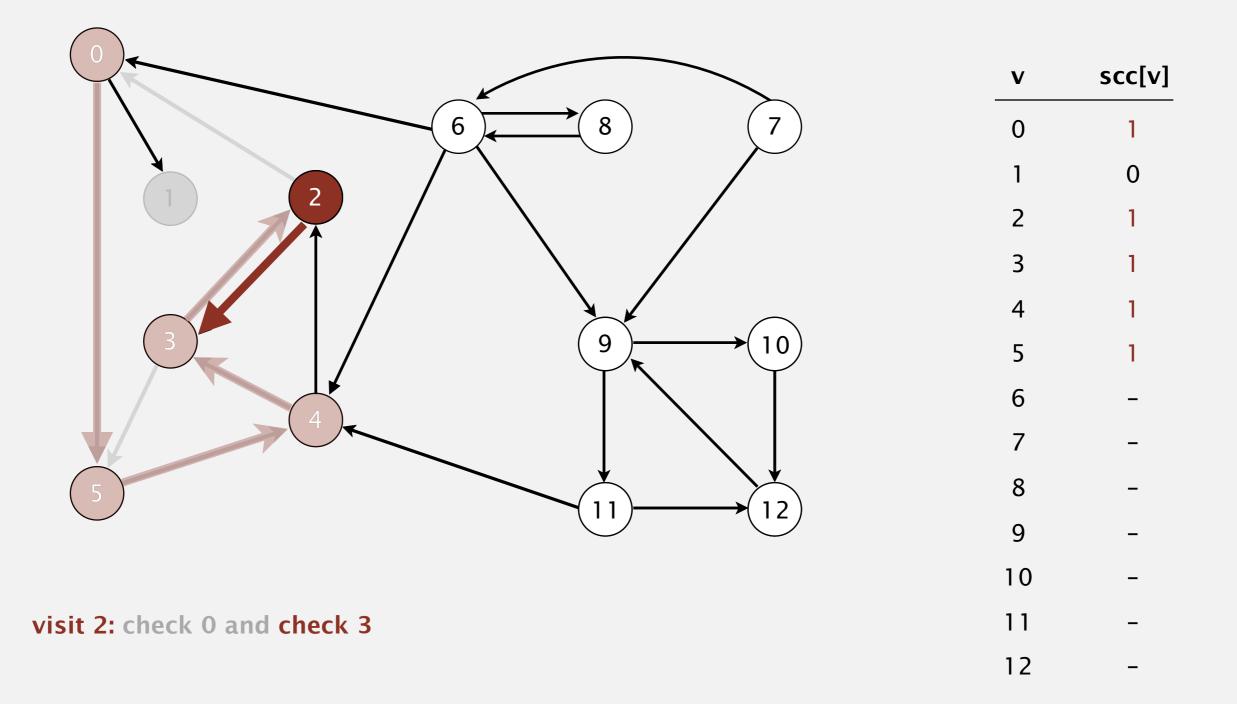
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8



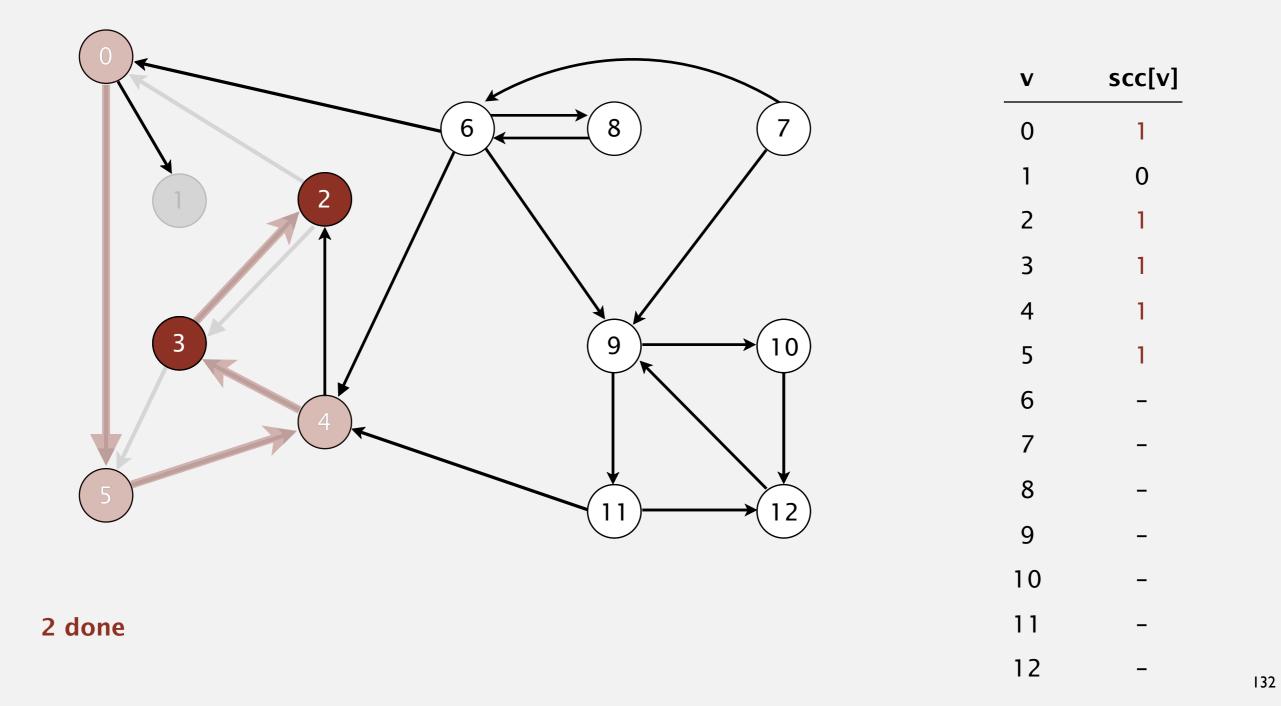
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8



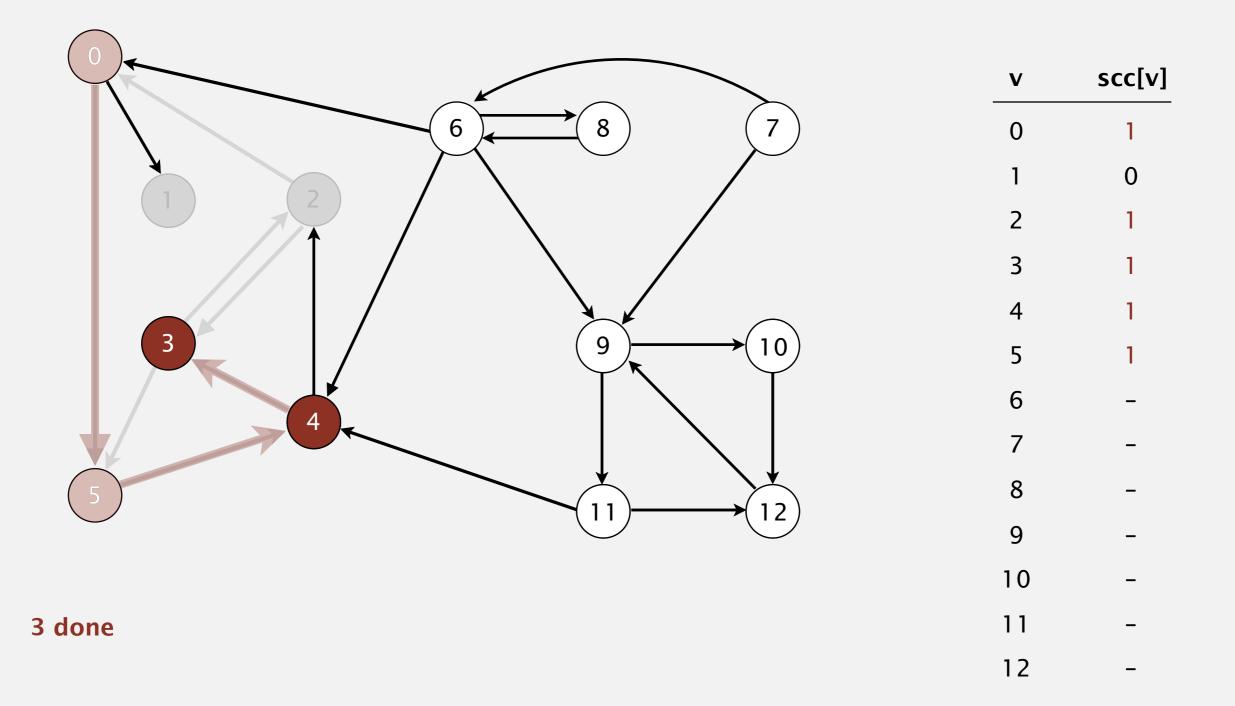
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8



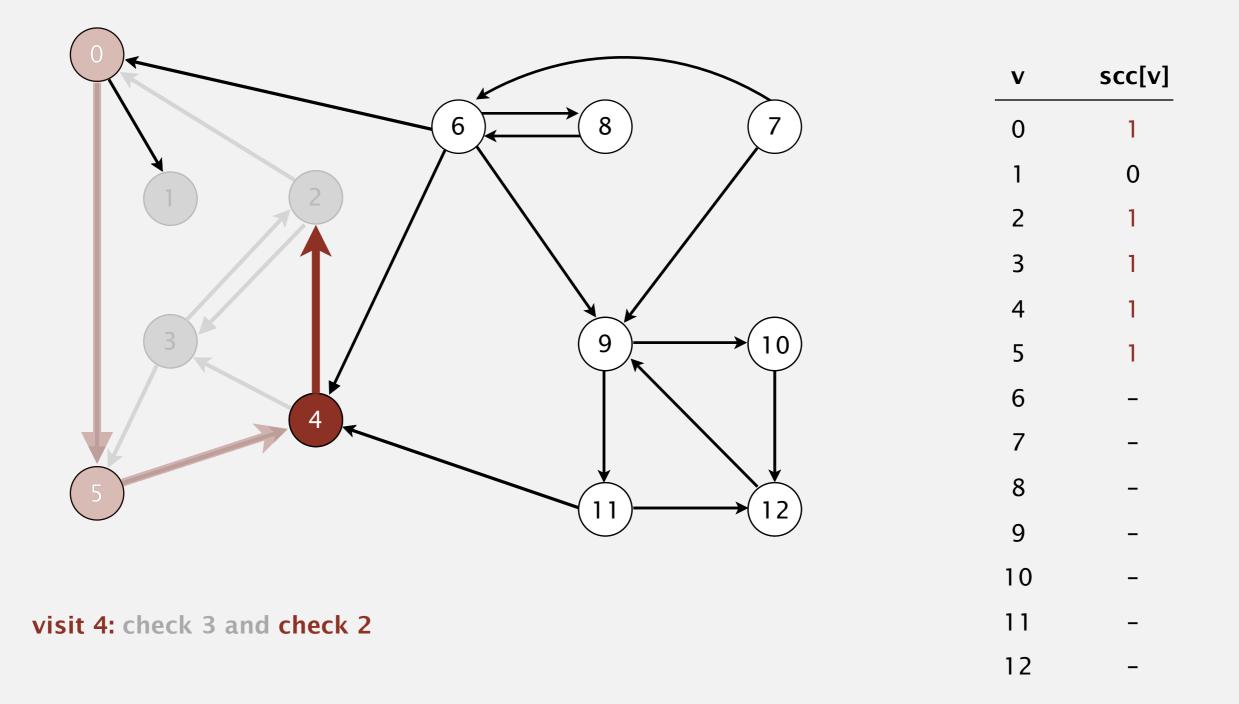
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8



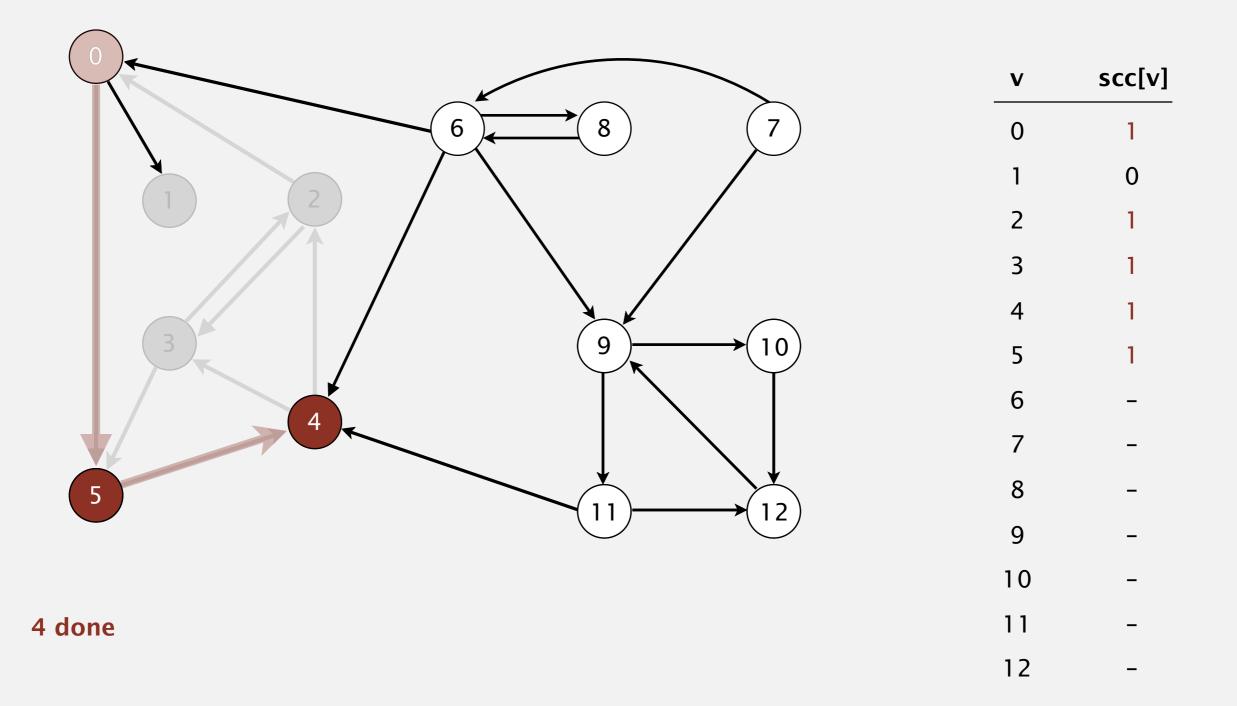
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8



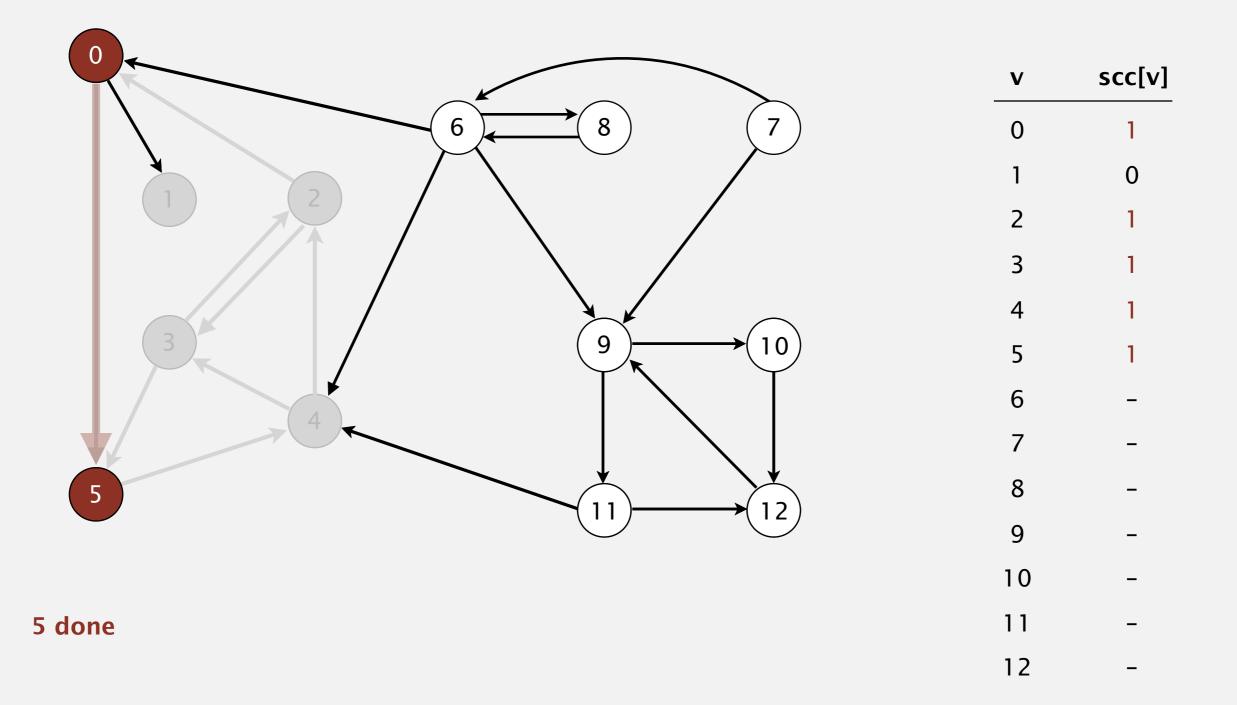
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8



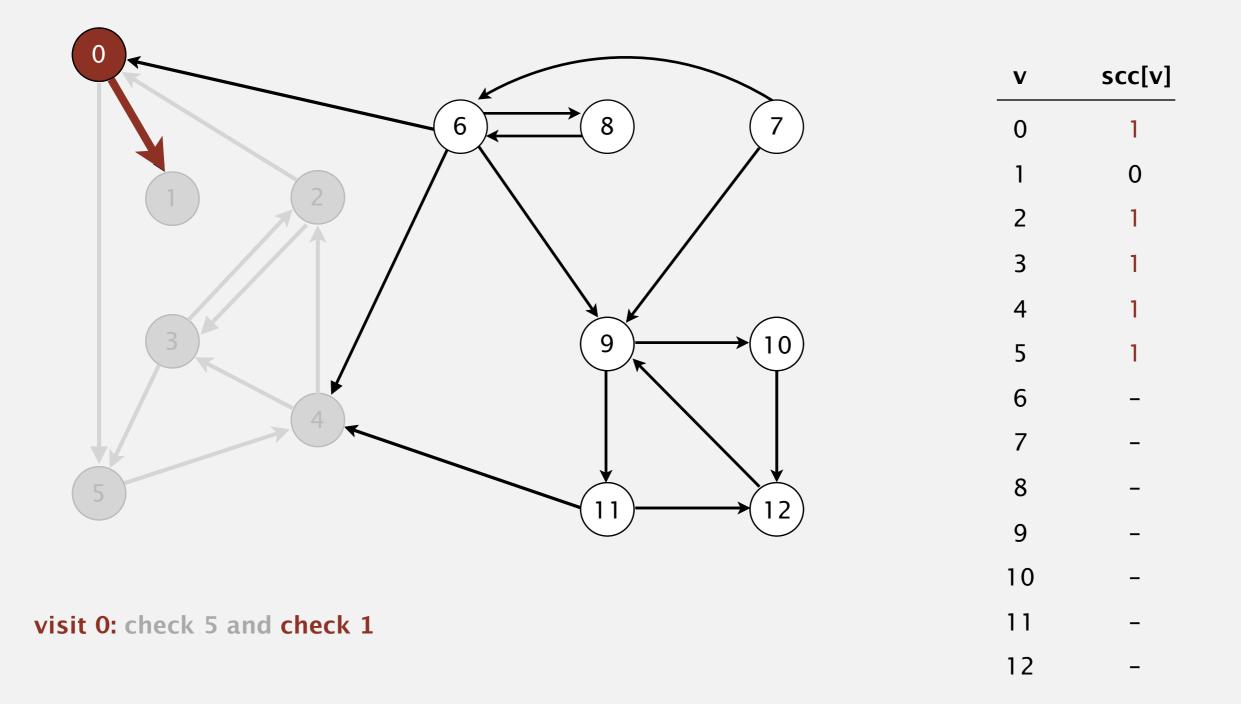
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8



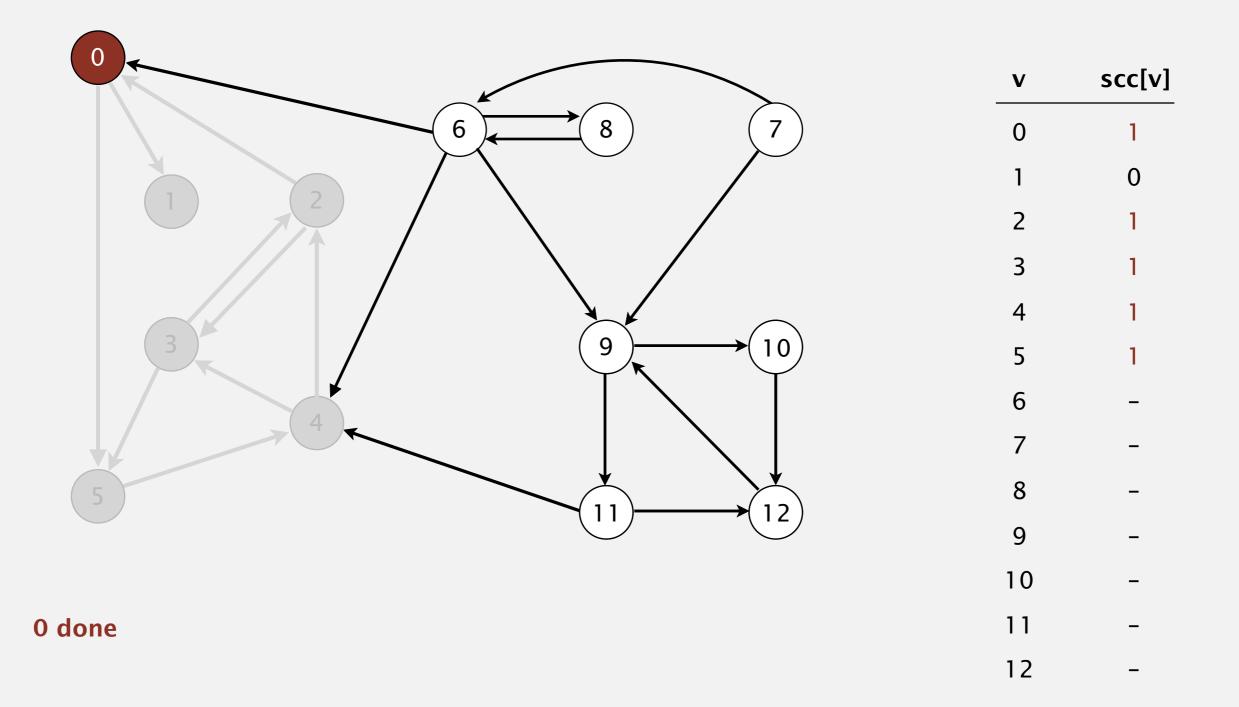
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8



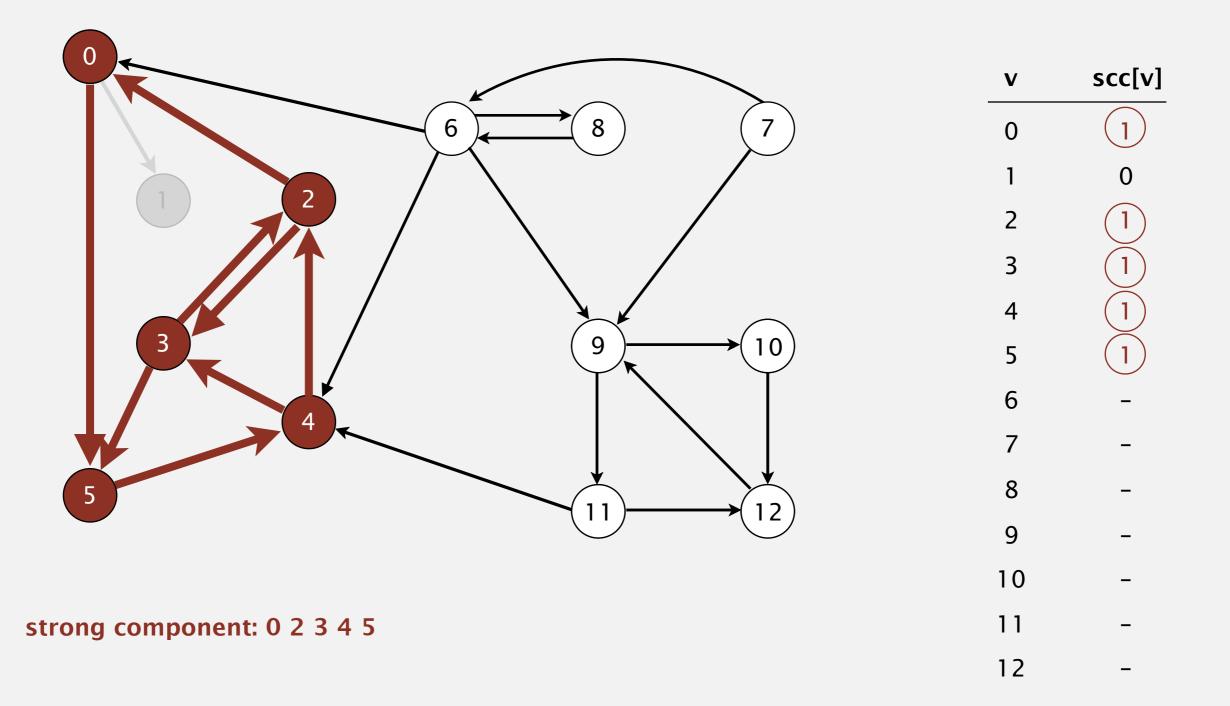
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8



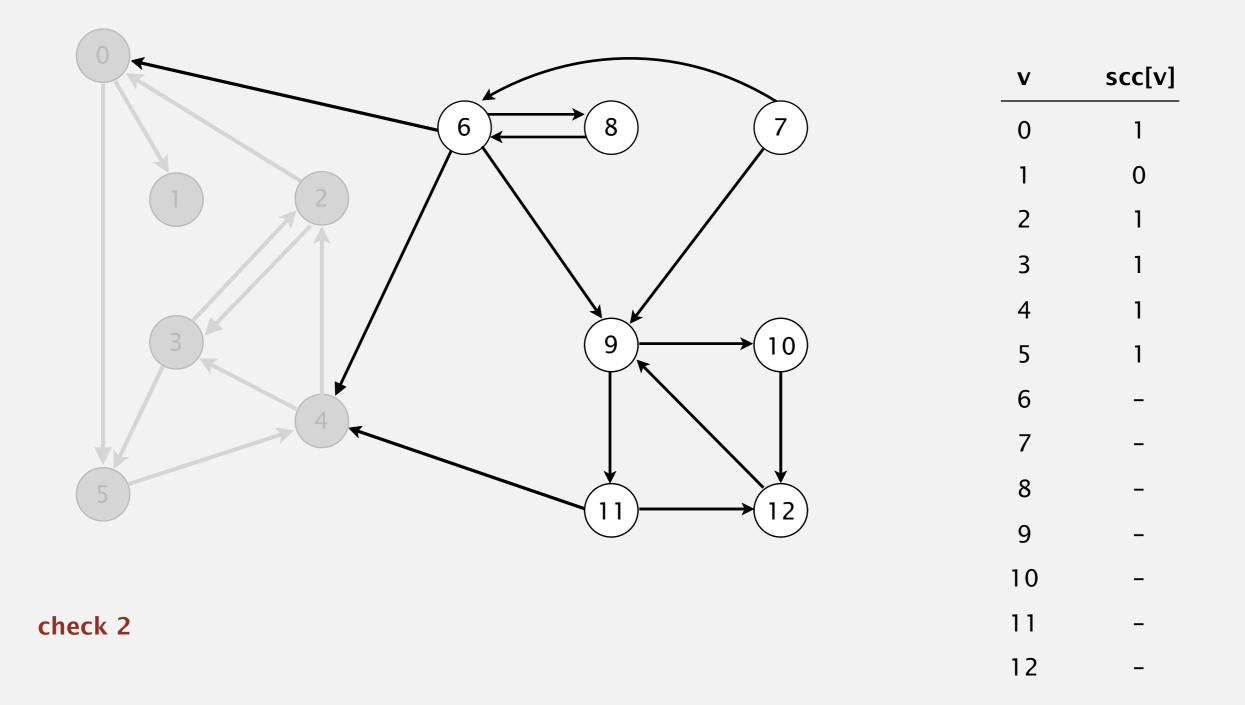
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8



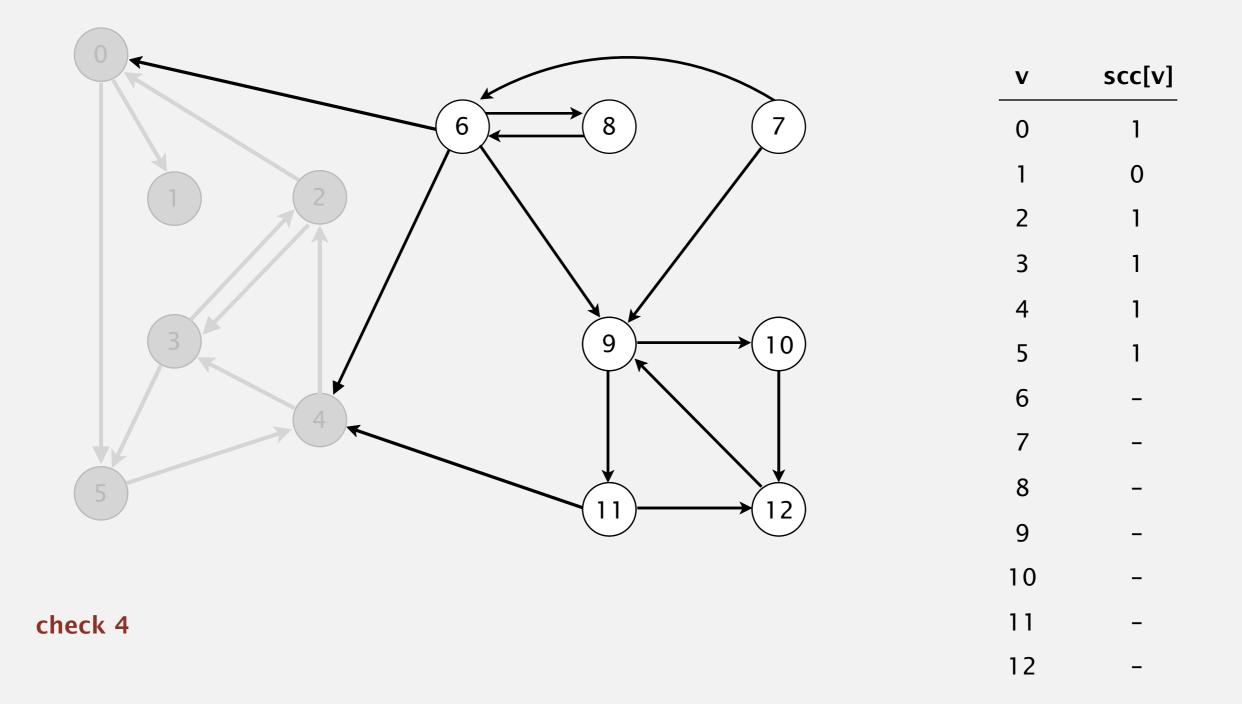
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8



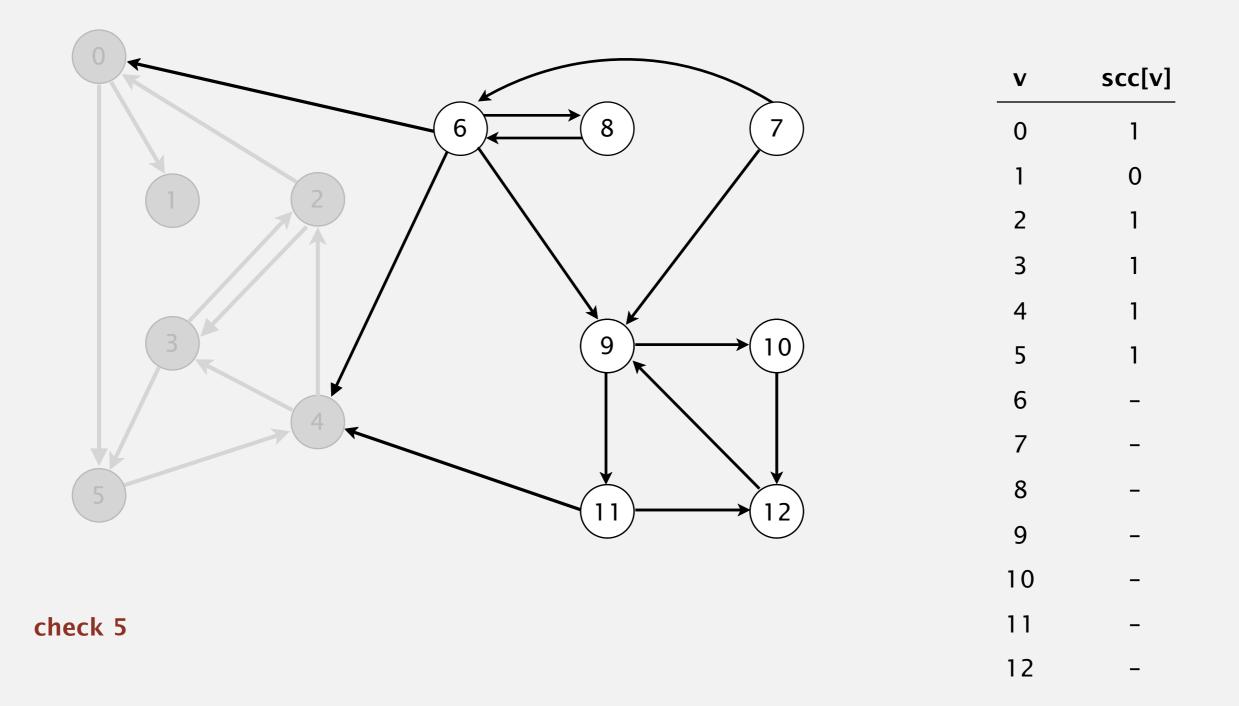
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8



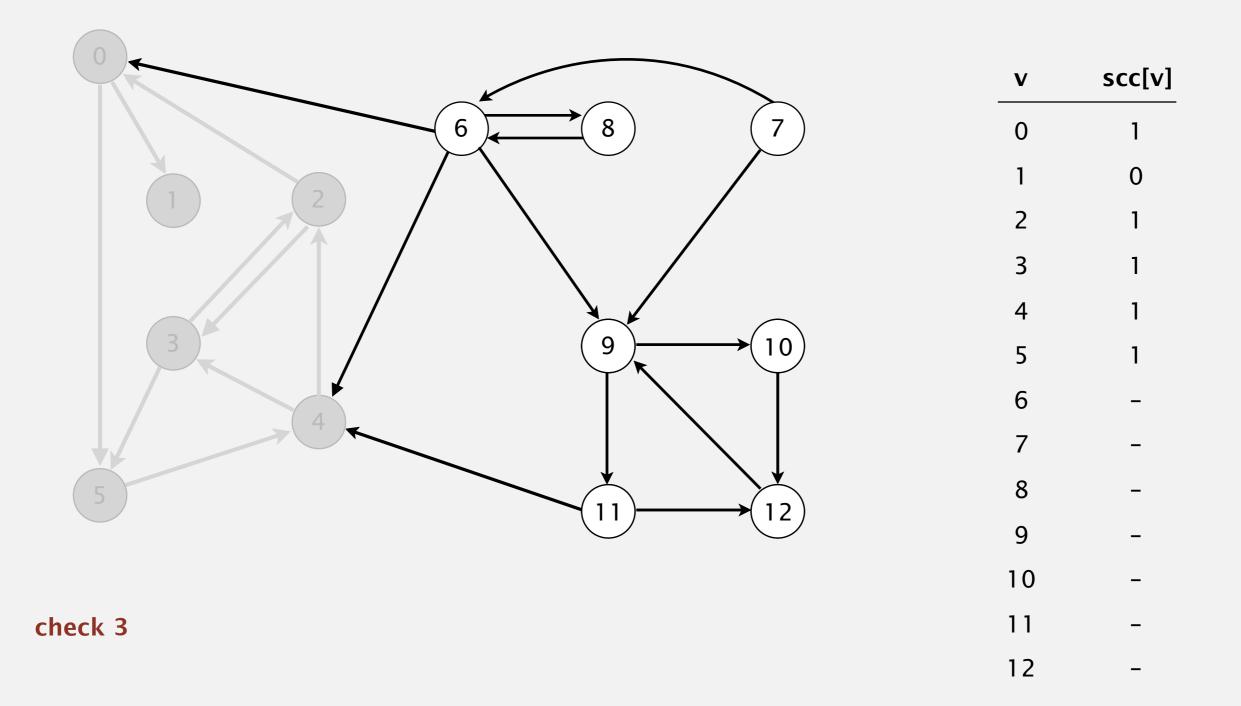
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8



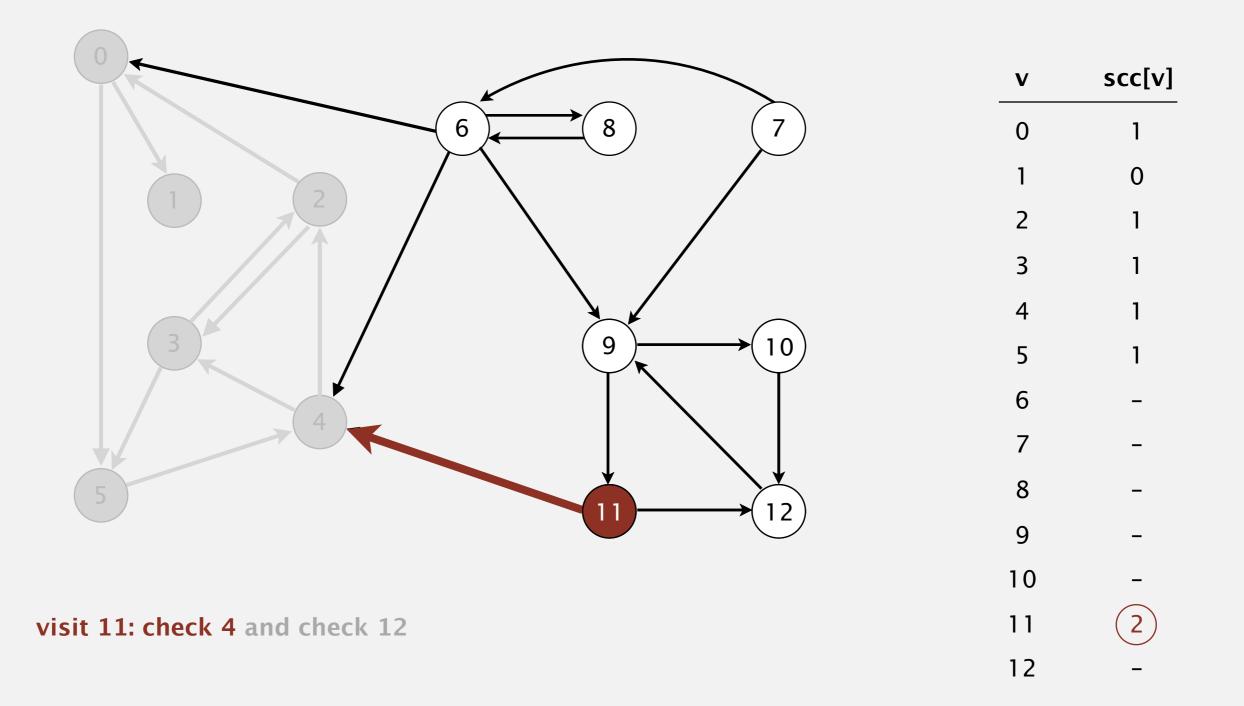
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8

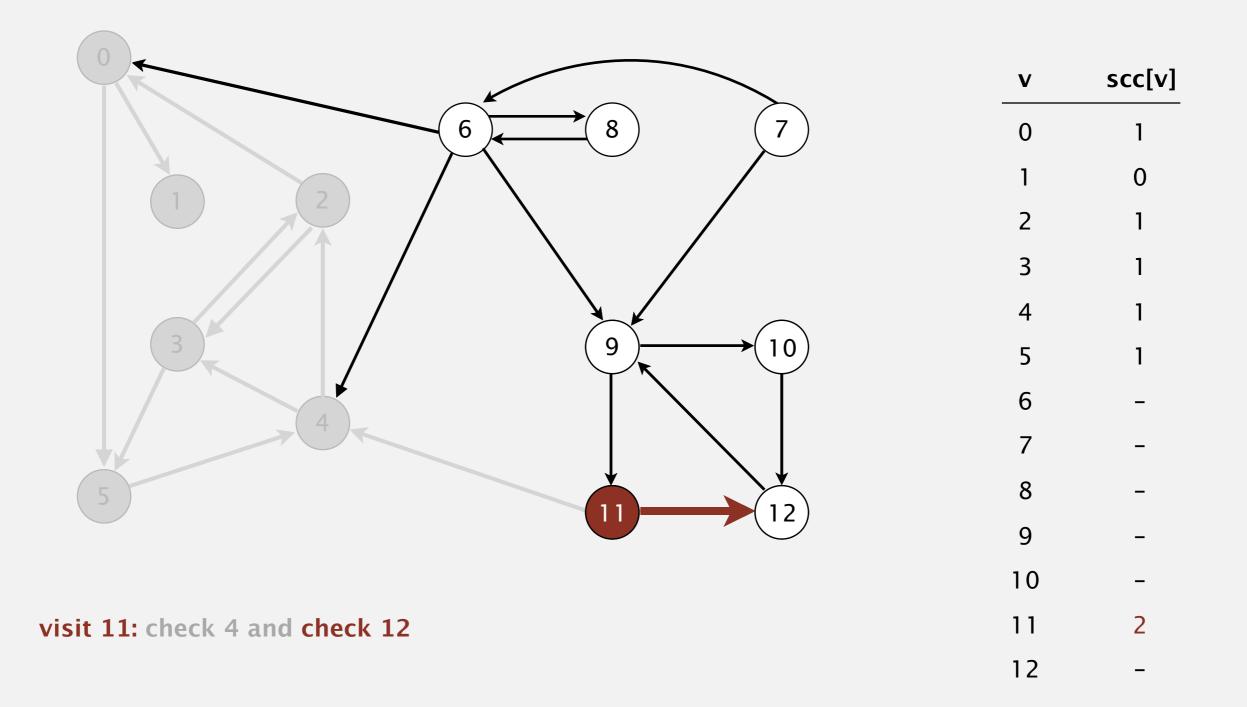


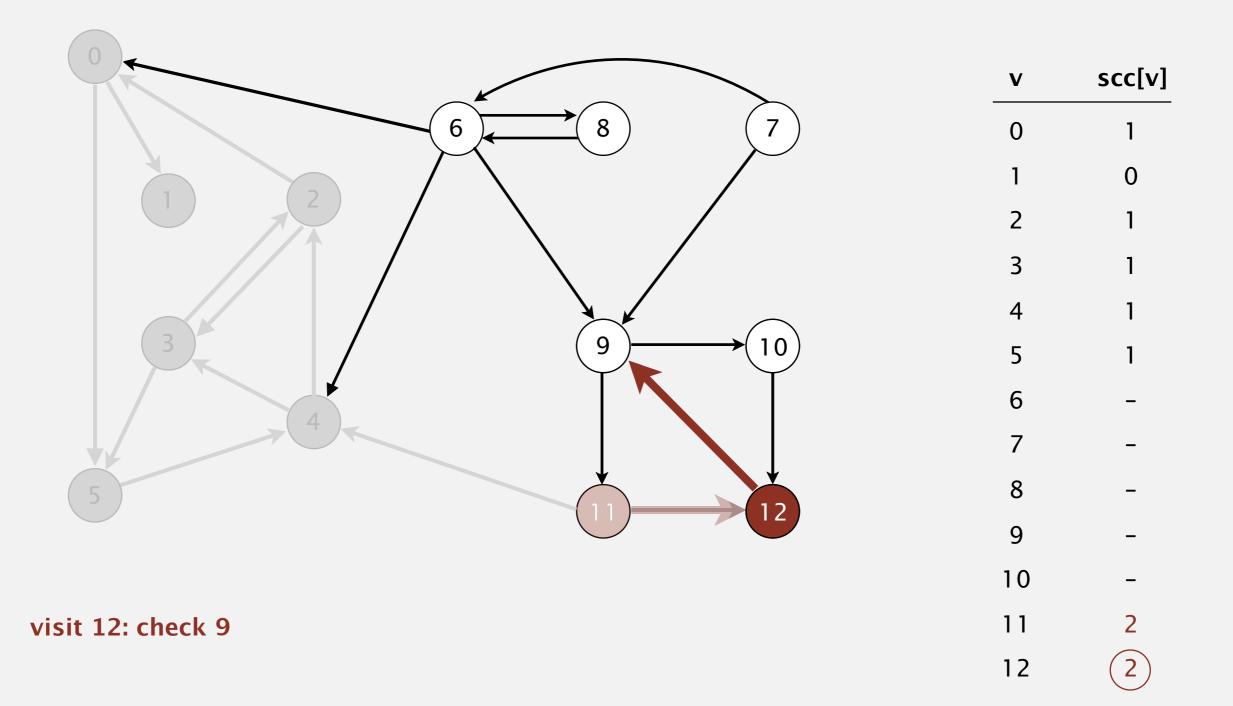
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8

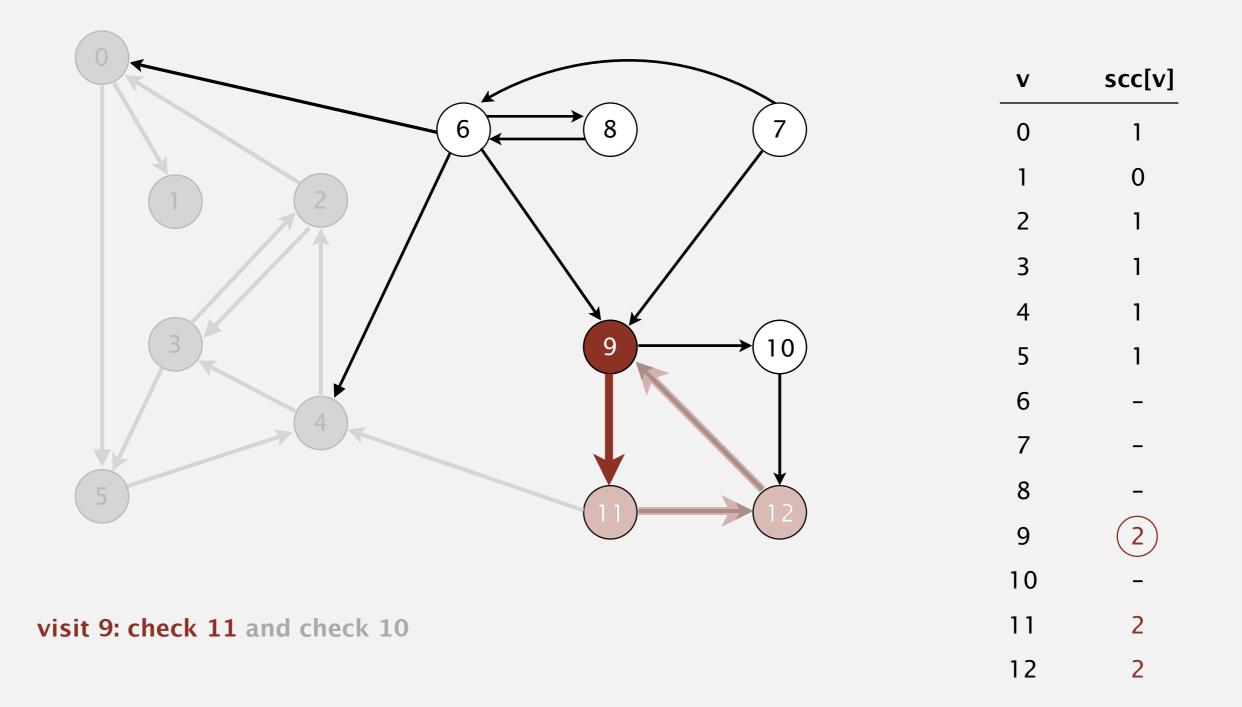


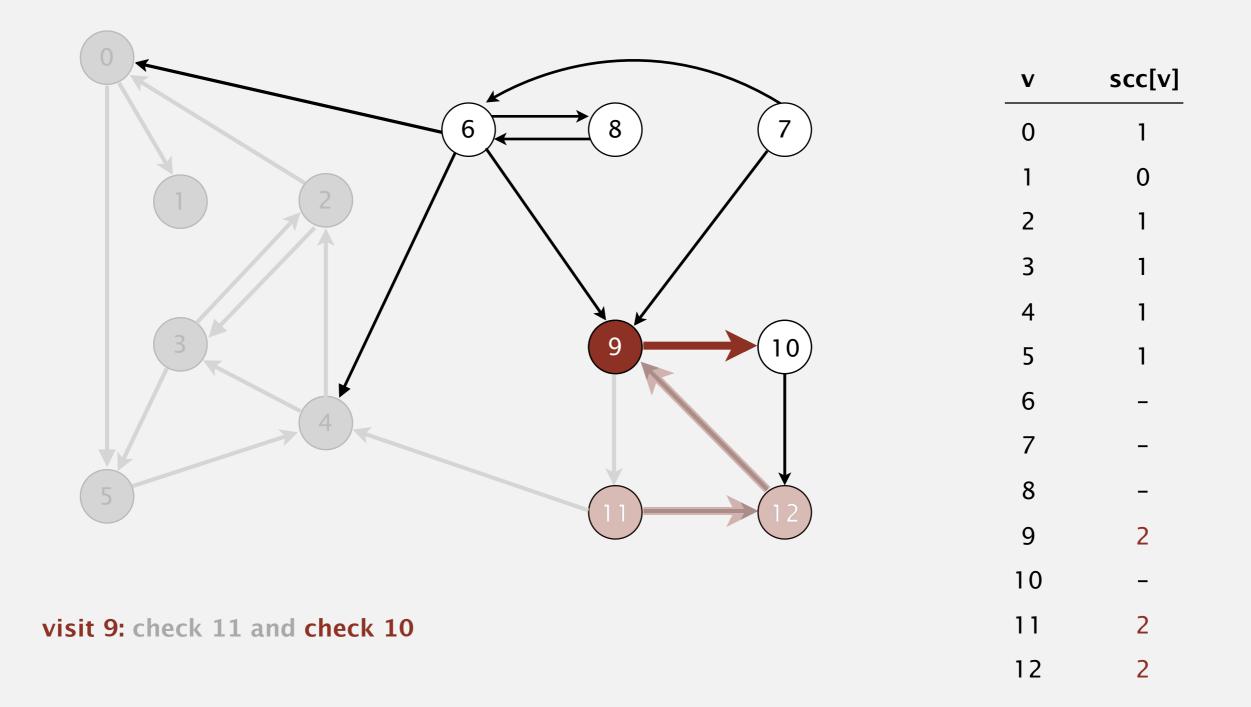
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8

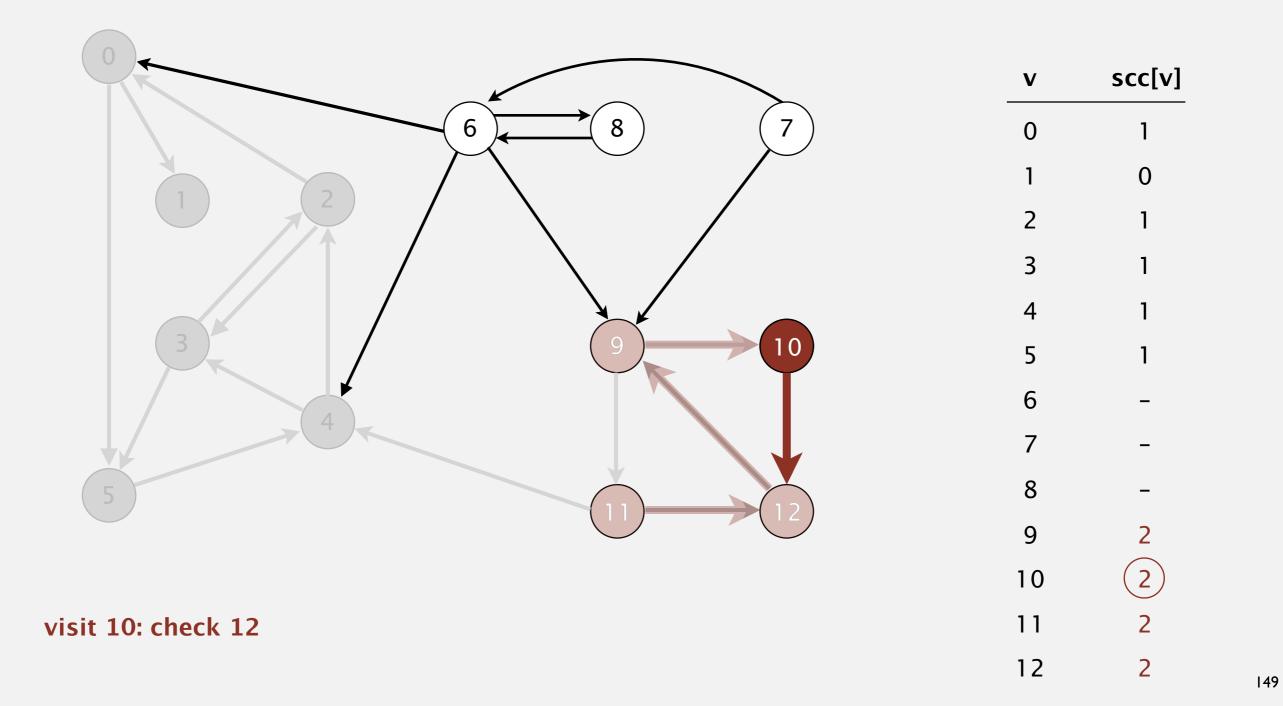




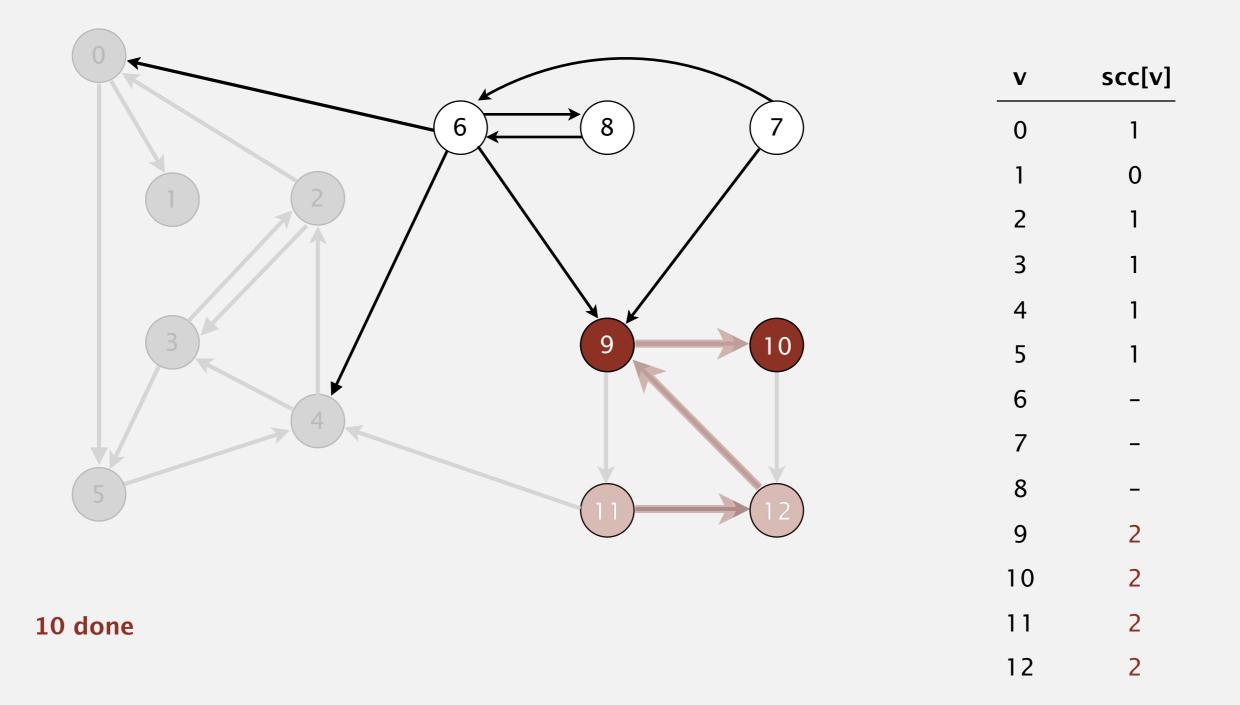




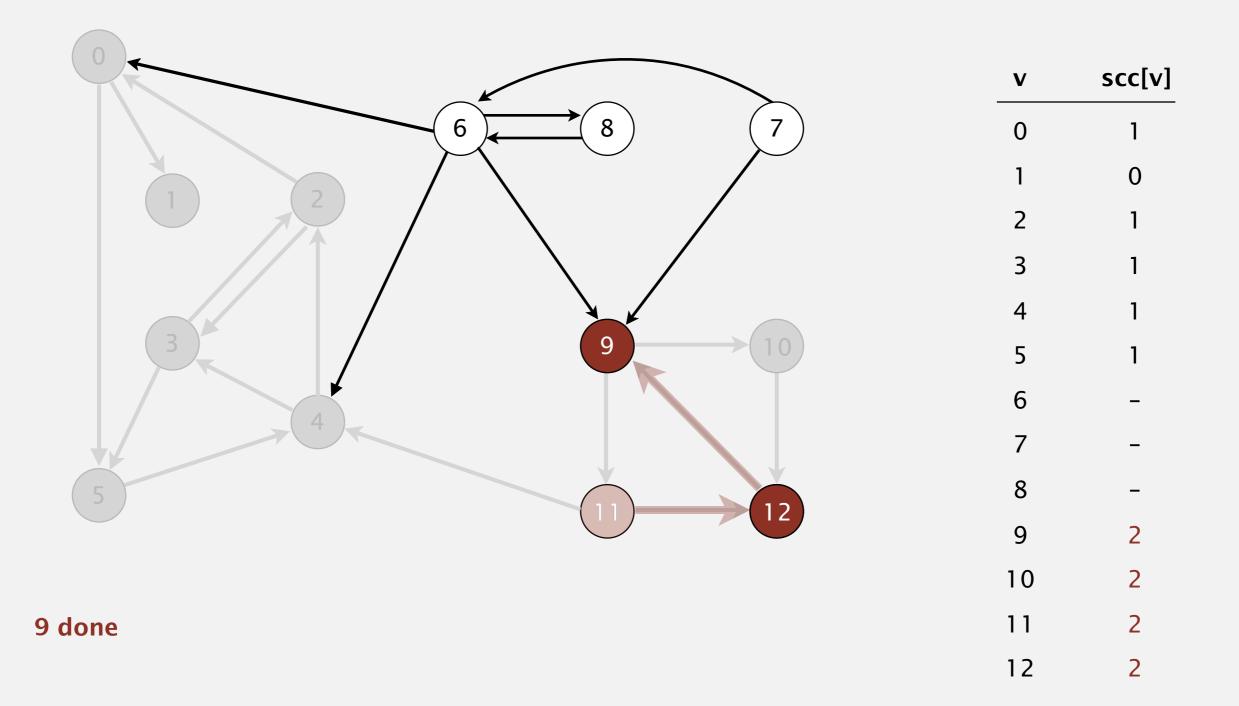


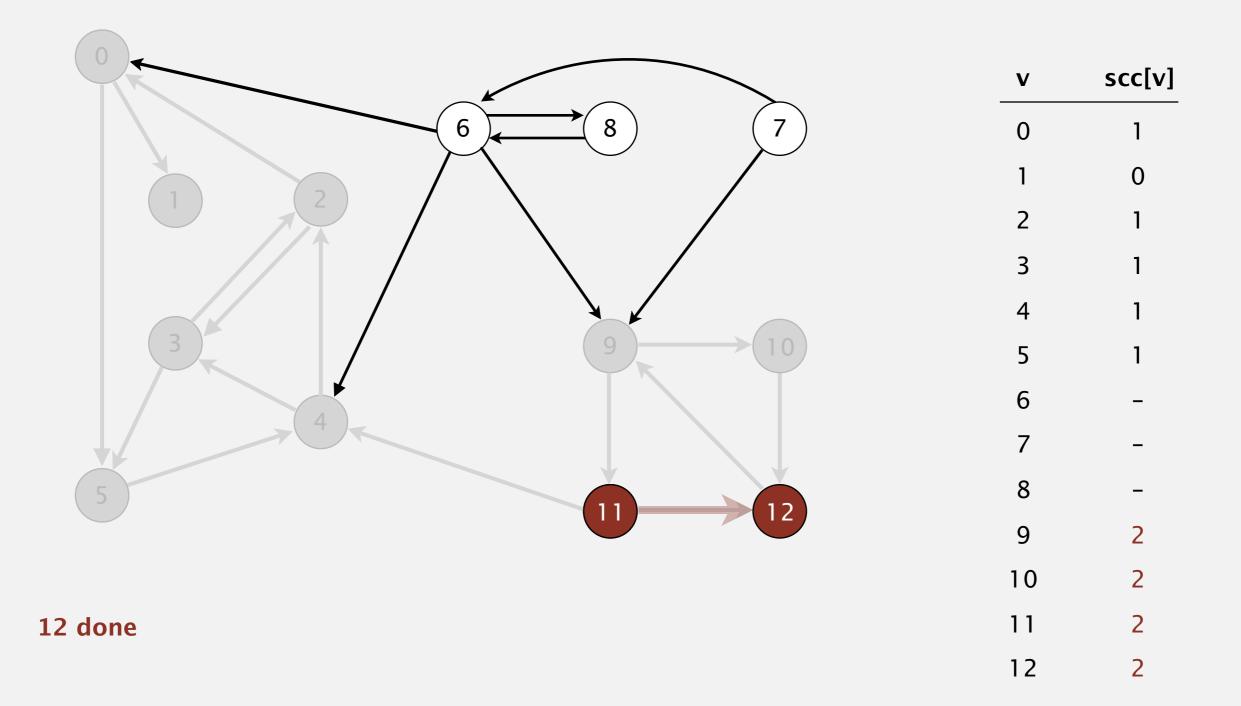


Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8

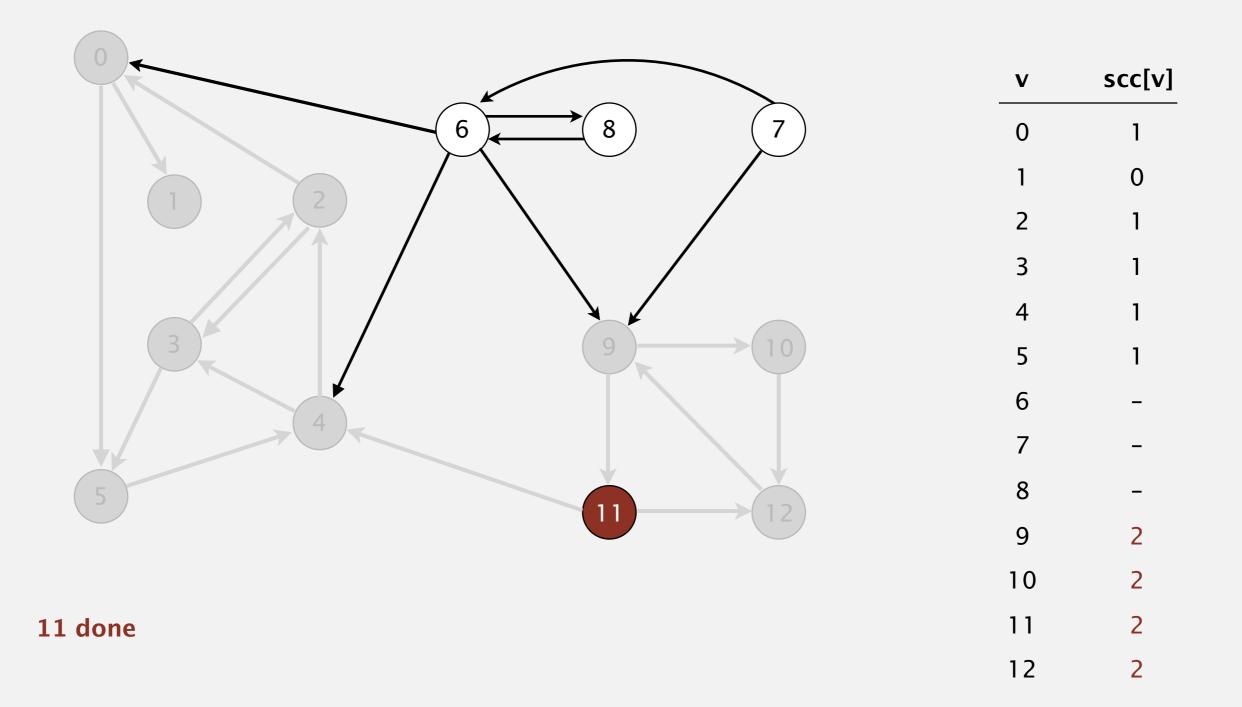


Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8

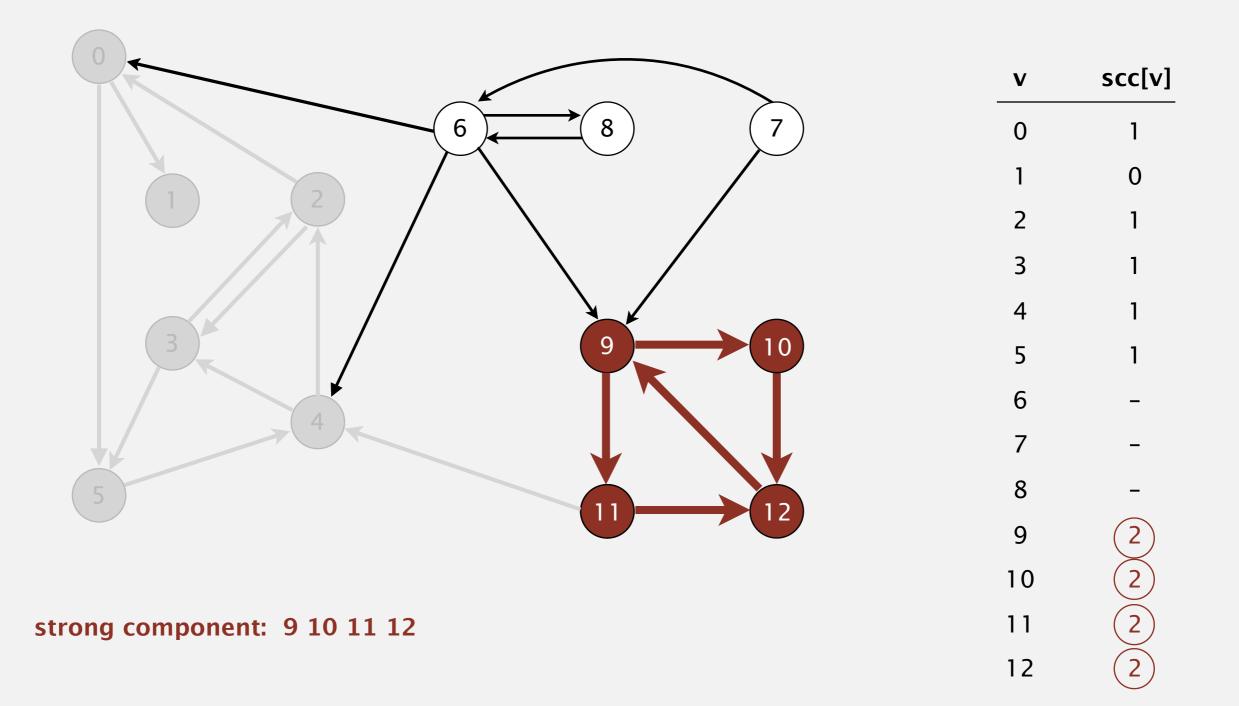




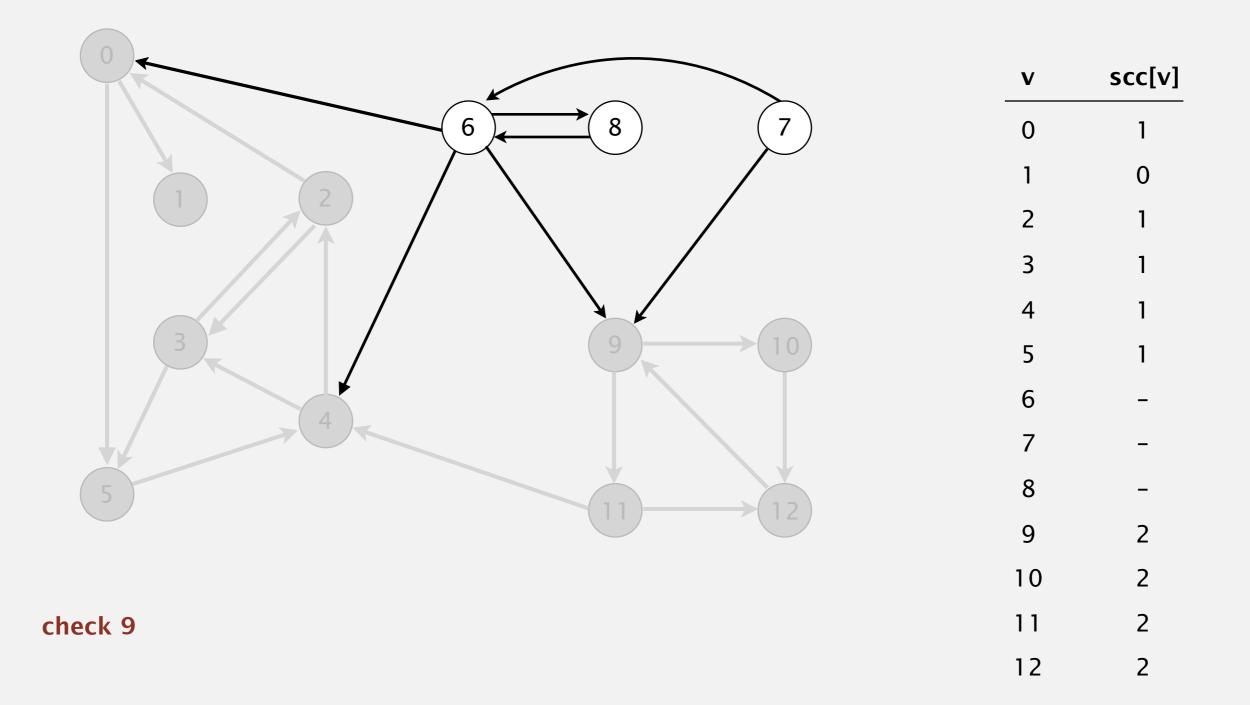
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8



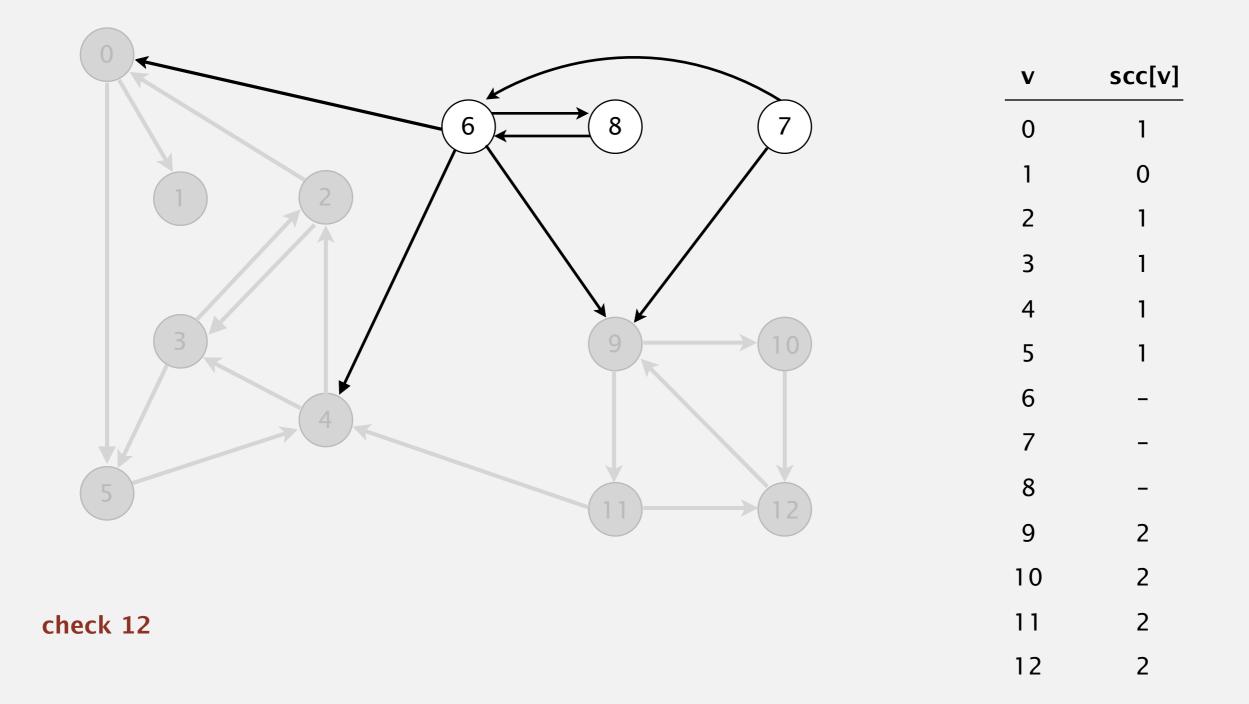
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8

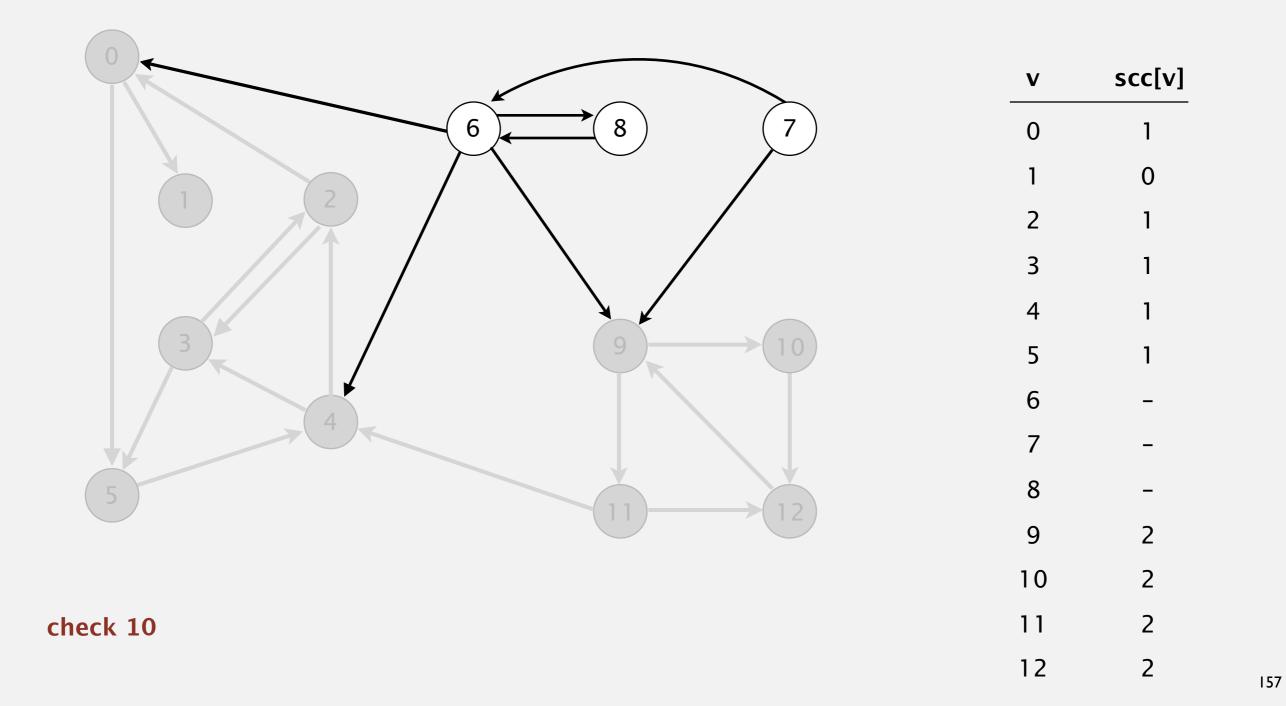


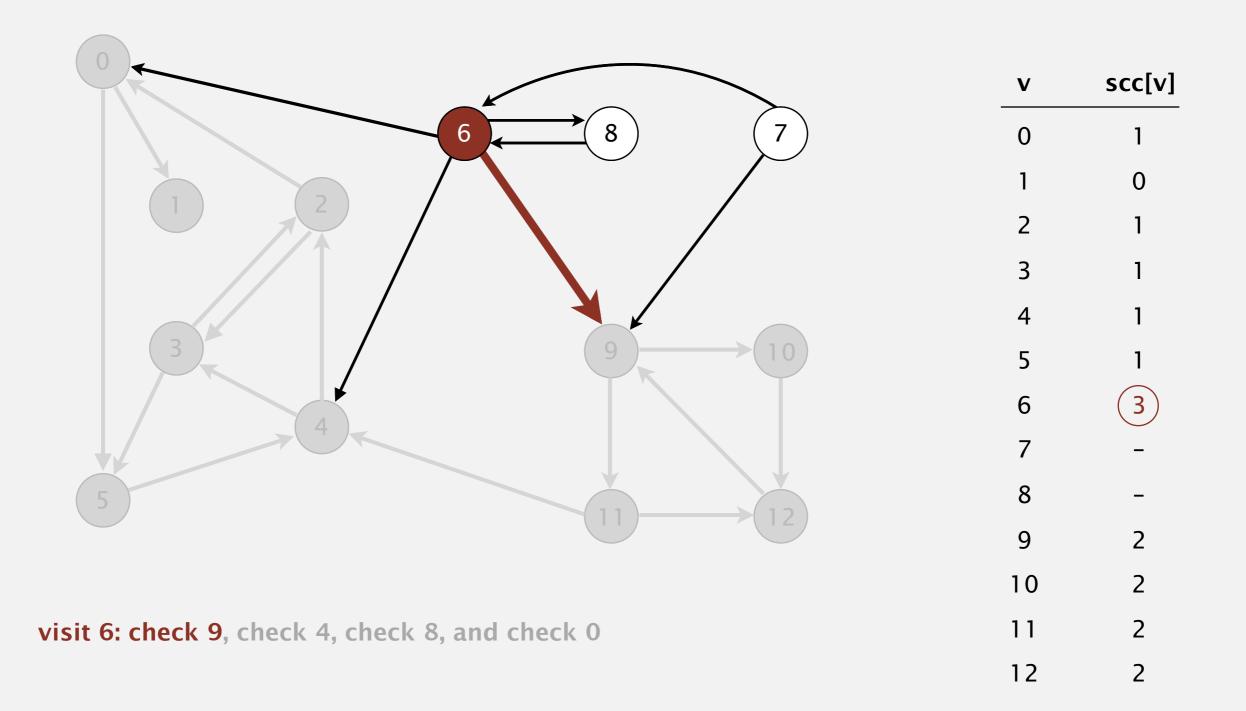
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8

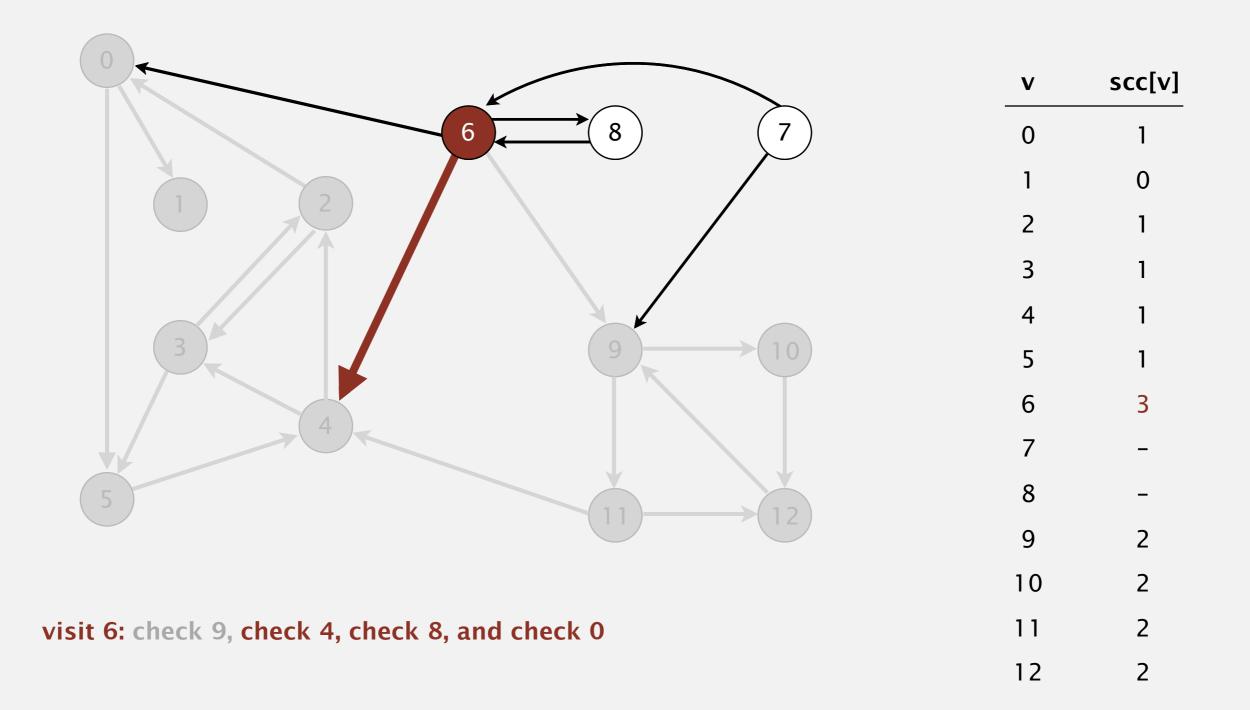


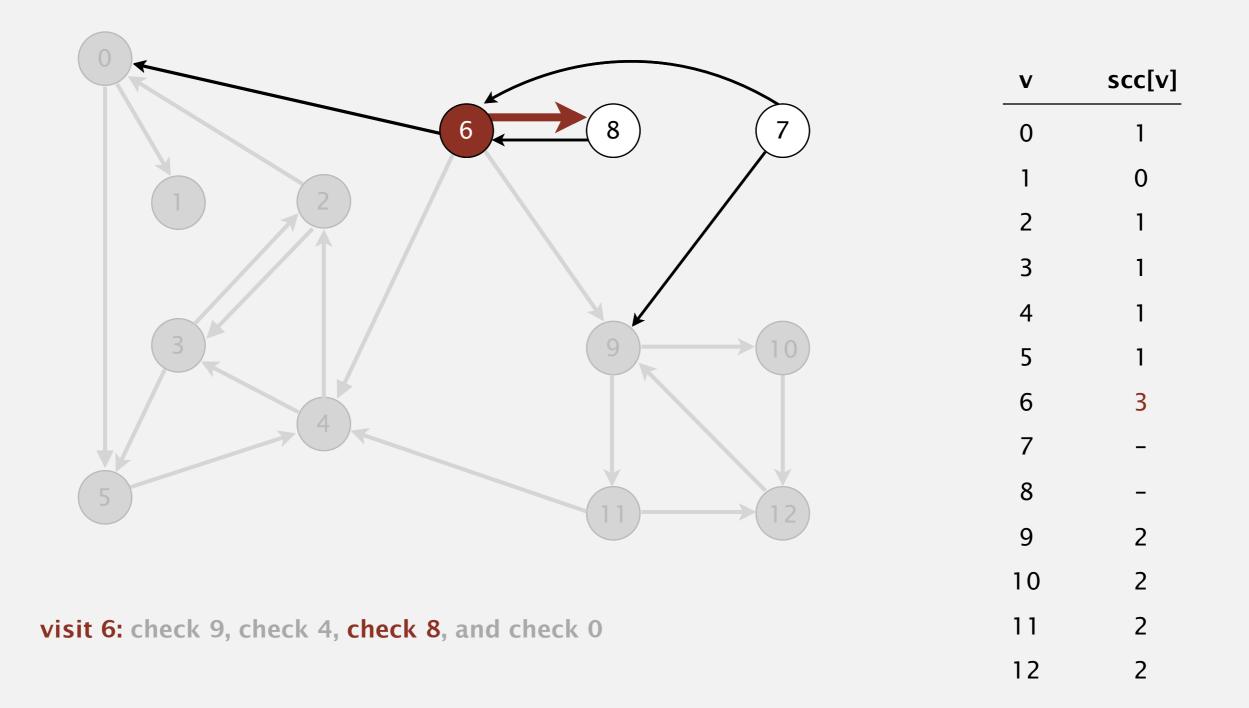
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8

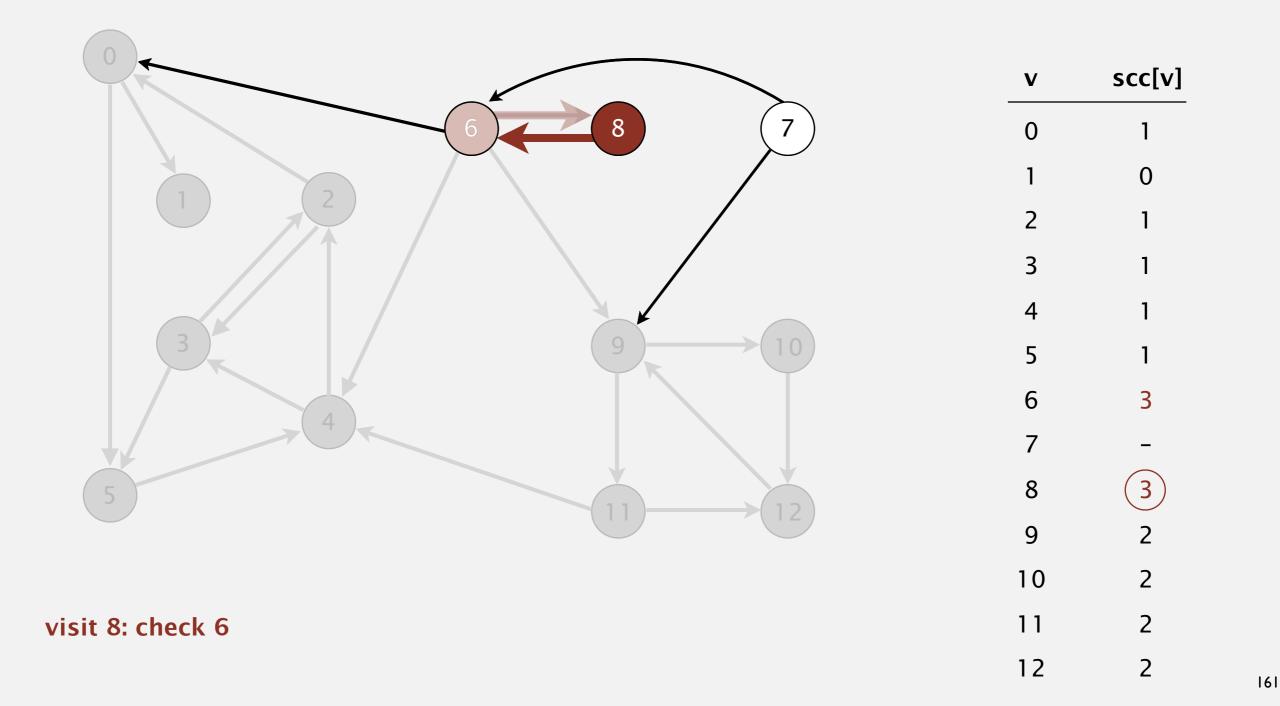


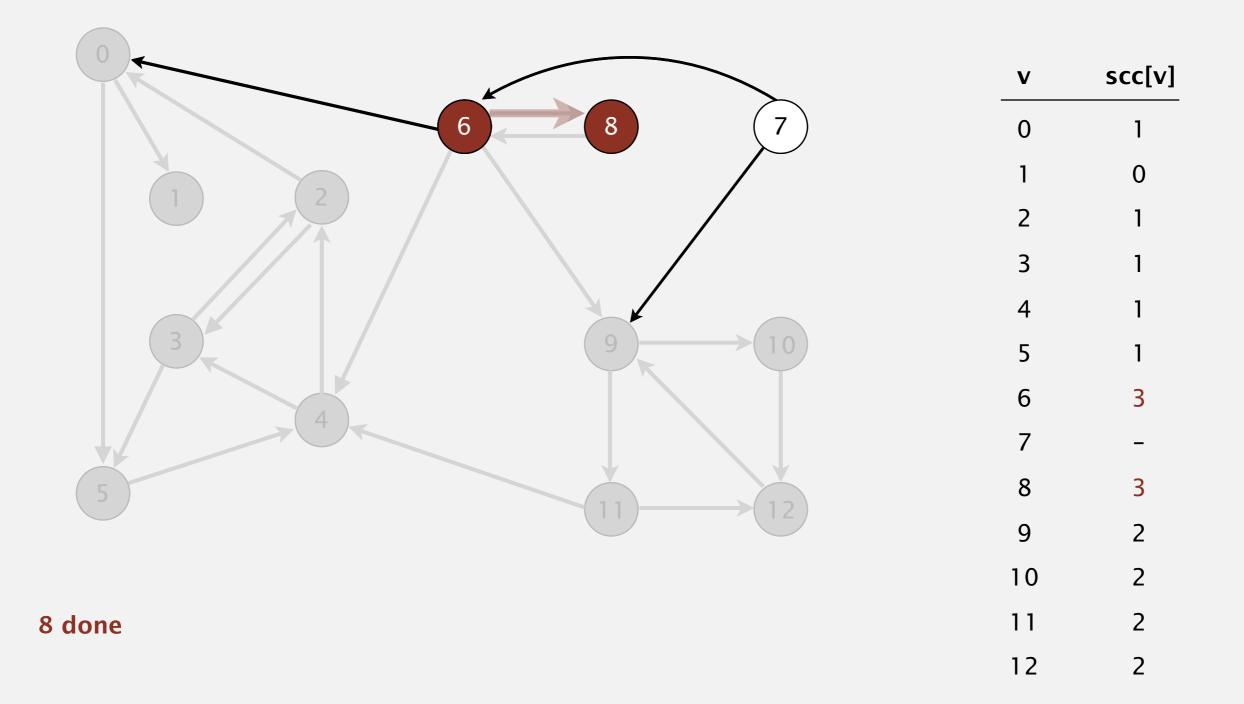


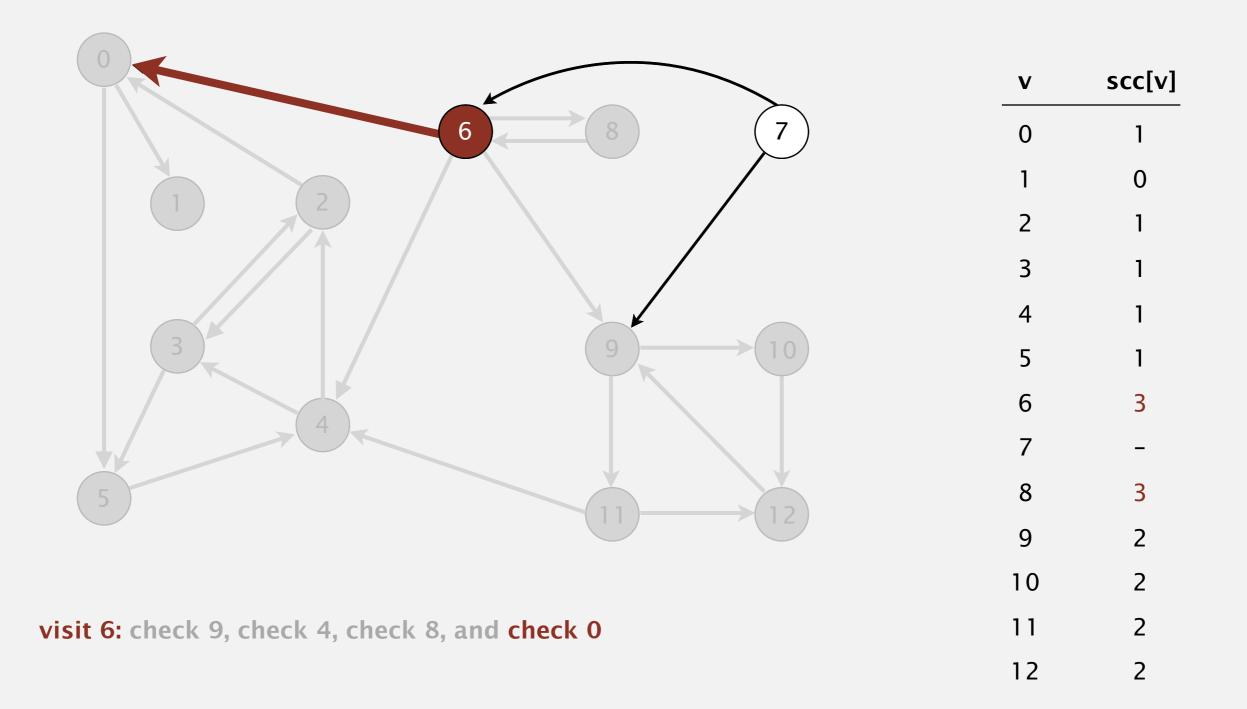


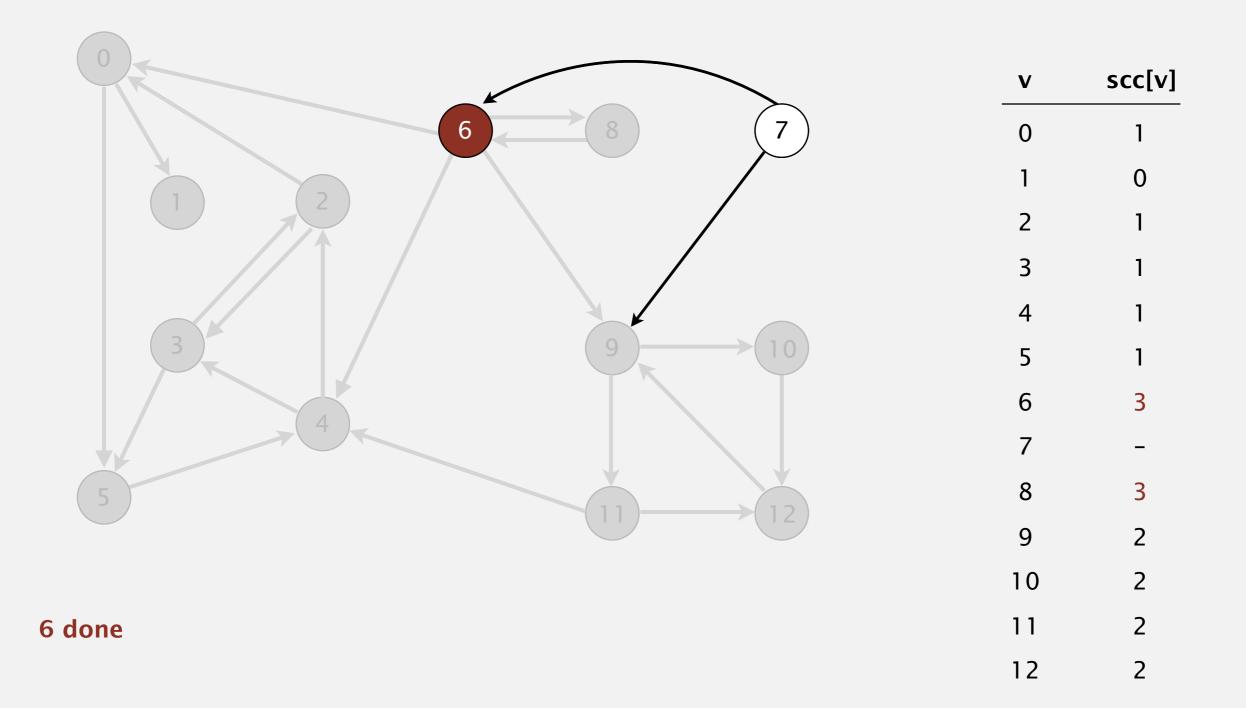




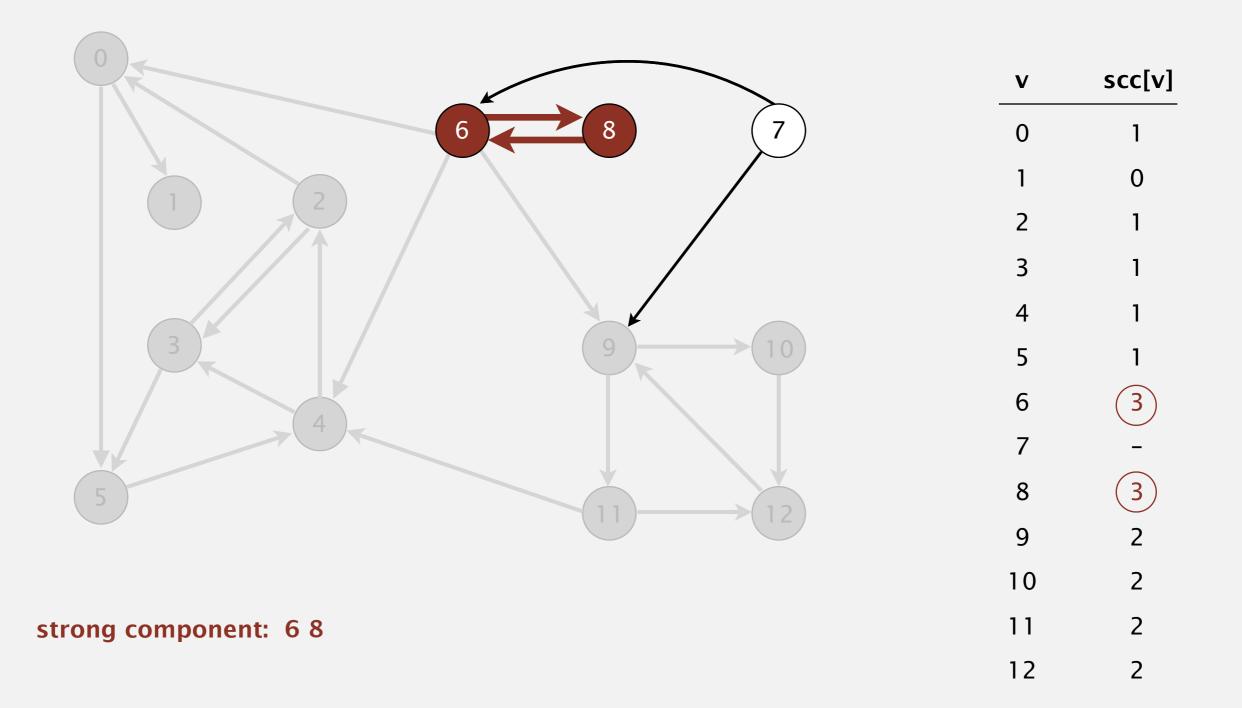




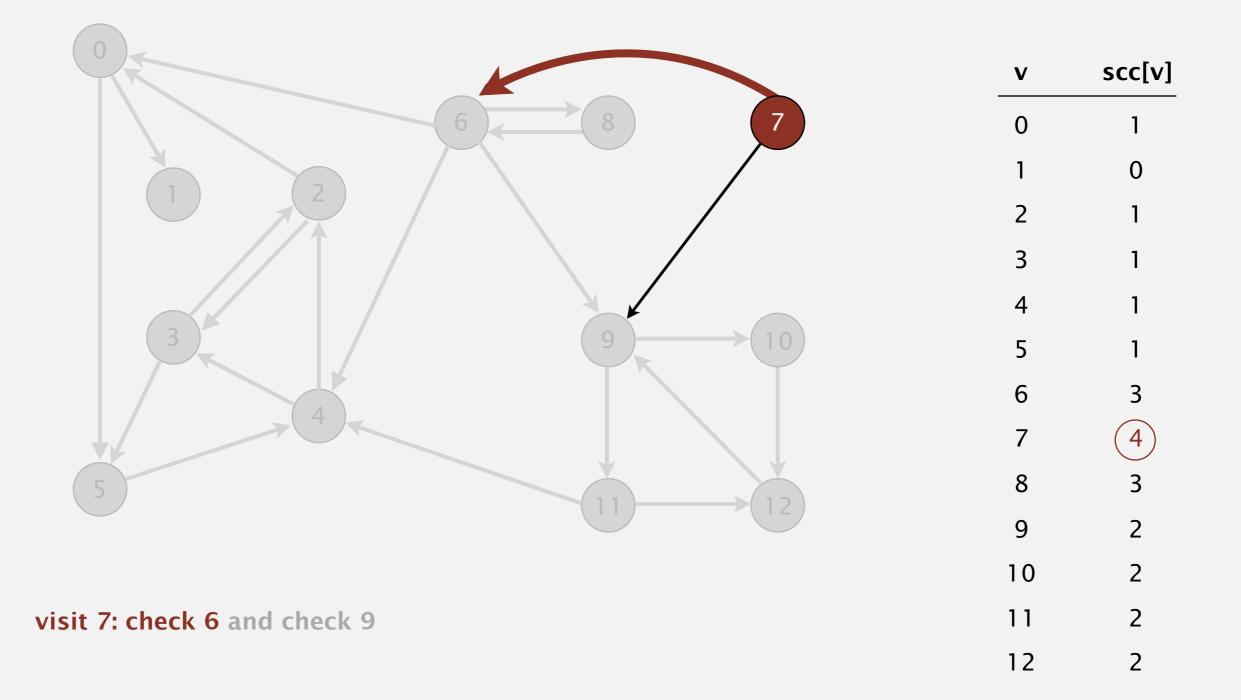




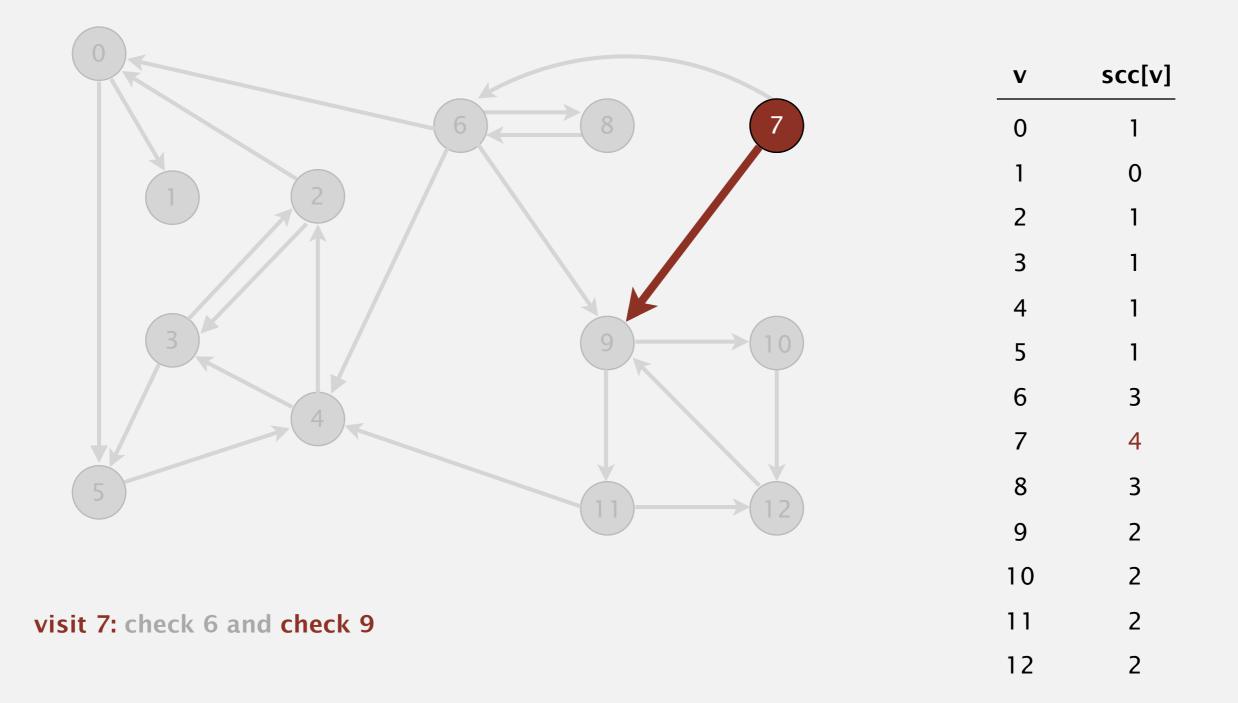
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8

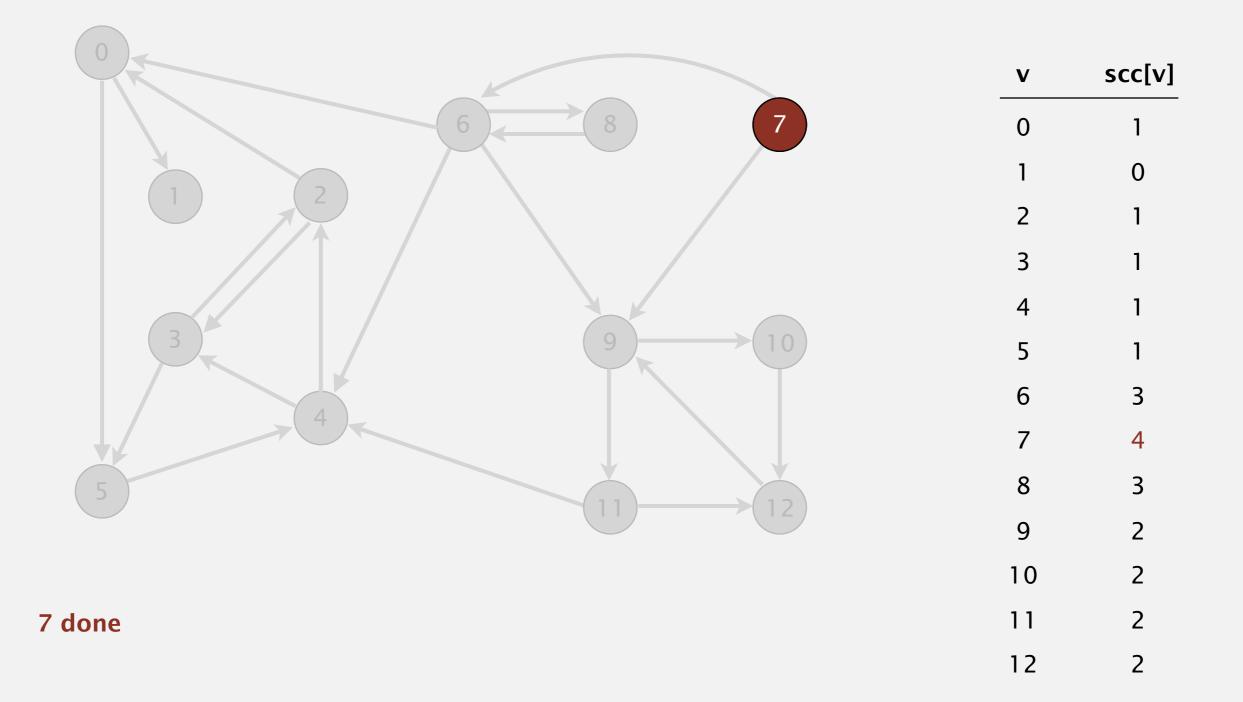


Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8

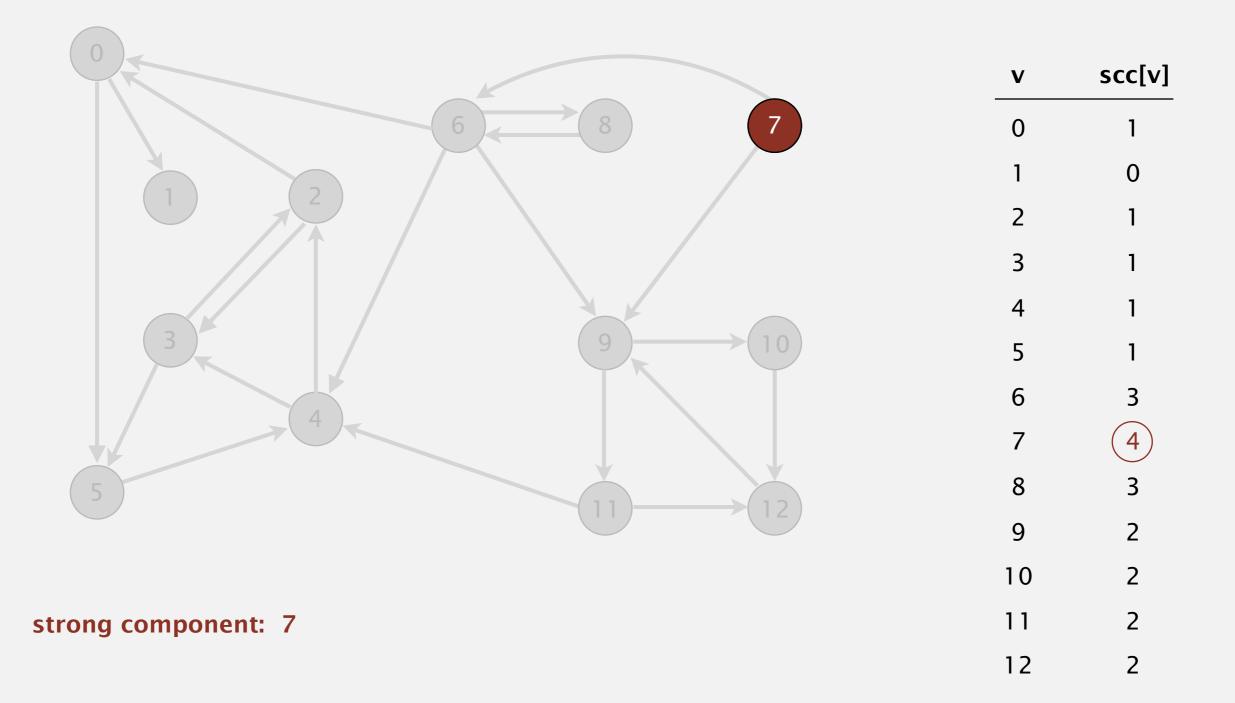


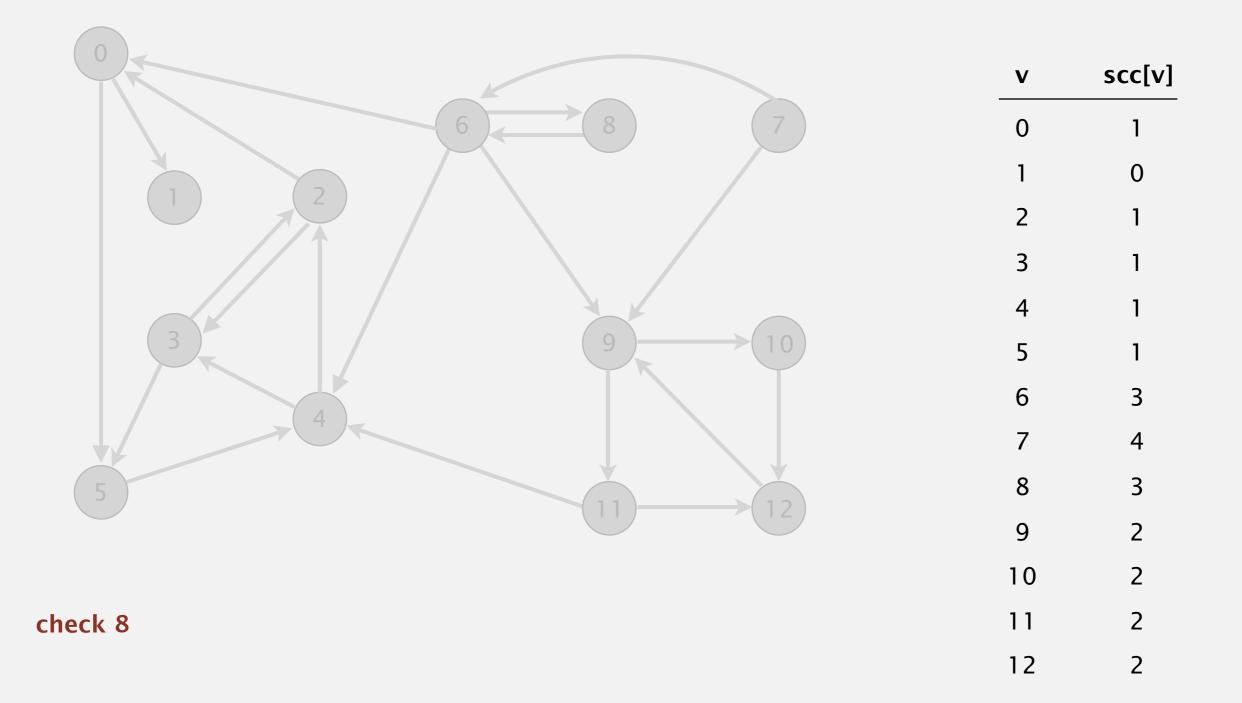
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8



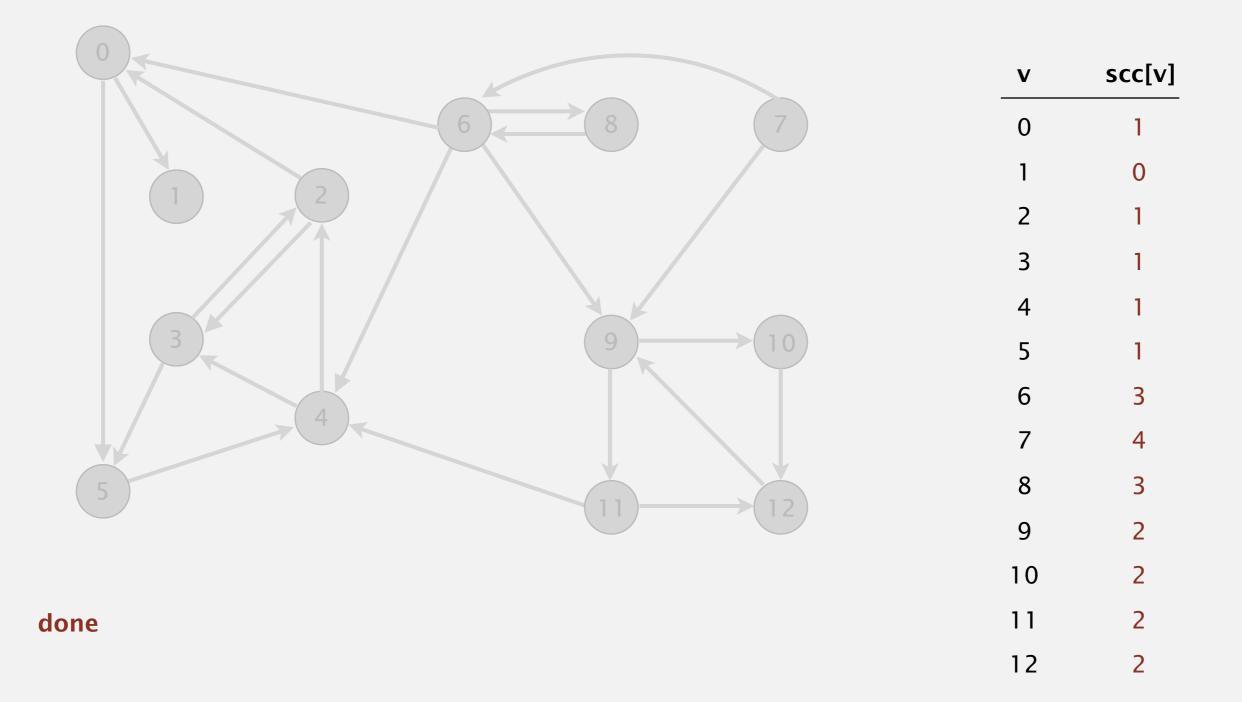


Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8





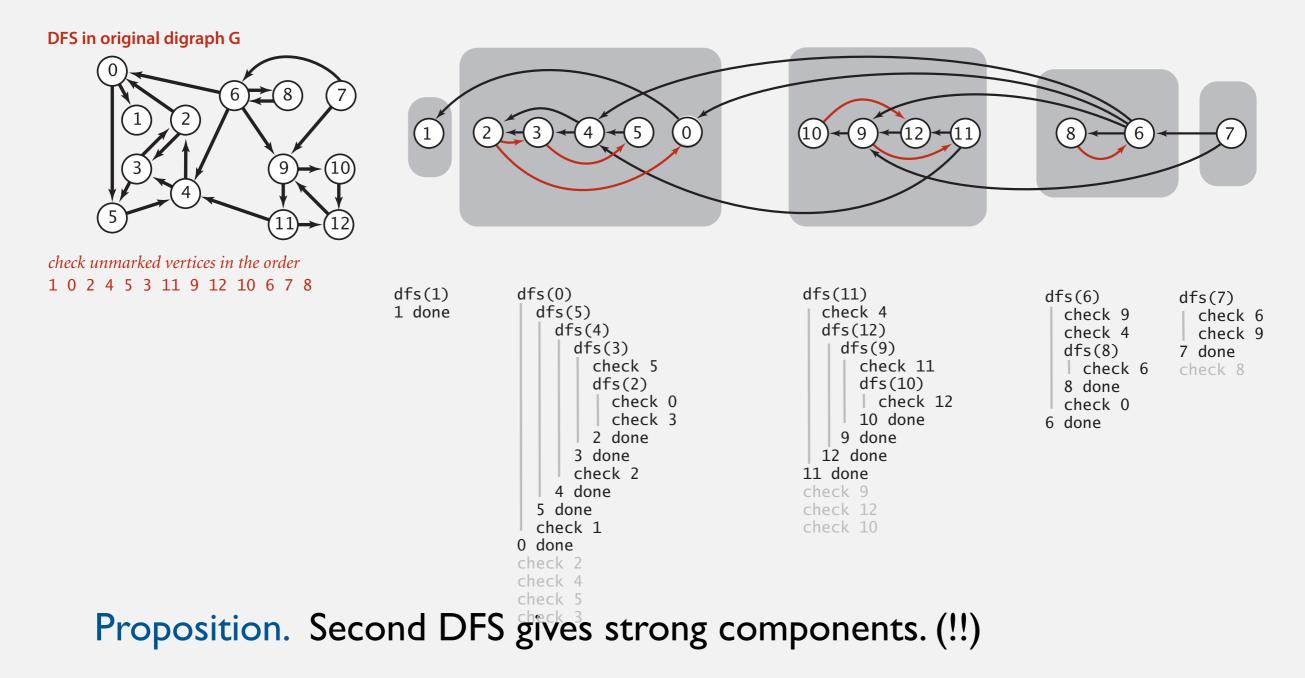
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R . 1 0 2 4 5 3 11 9 12 10 6 7 8



Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components.

- Run DFS on *G*^{*R*} to compute reverse postorder.
- Run DFS on G, considering vertices in order given by first DFS.



Connected components in an undirected graph (with DFS)

```
public class CC
ł
   private boolean marked[];
   private int[] id;
   private int count;
   public CC(Graph G)
   ł
      marked = new boolean[G.V()];
      id = new int[G.V()];
      for (int v = 0; v < G.V(); v++)
      {
         if (!marked[v])
          {
            dfs(G, v);
            count++;
         }
      }
   }
   private void dfs(Graph G, int v)
   ł
      marked[v] = true;
      id[v] = count;
      for (int w : G.adj(v))
         if (!marked[w])
            dfs(G, w);
   }
   public boolean connected(int v, int w)
   { return id[v] == id[w]; }
}
```

Strong components in a digraph (with two DFSs)

```
public class KosarajuSCC
   private boolean marked[];
   private int[] id;
   private int count;
   public KosarajuSCC(Digraph G)
   ł
      marked = new boolean[G.V()];
      id = new int[G.V()];
      DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
      for (int v : dfs.reversePost())
      {
         if (!marked[v])
         {
            dfs(G, v);
            count++;
         }
   }
   private void dfs (Digraph G, int v)
   {
      marked[v] = true;
      id[v] = count;
      for (int w : G.adj(v))
         if (!marked[w])
            dfs(G, w);
   }
   public boolean stronglyConnected(int v, int w)
   { return id[v] == id[w]; }
}
```

Digraph-processing summary: algorithms of the day

