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Overview

Main topics.

• Reduction: design algorithms, establish lower bounds, classify problems.

• Intractability: problems beyond our reach. 


Shifting gears. 

• From individual problems to problem-solving models.

• From linear/quadratic to polynomial/exponential scale.

• From details of implementation to conceptual framework. 


Goals. 

• Place algorithms we've studied in a larger context.

• Introduce you to important and essential ideas.

• Inspire you to learn more about algorithms! 



ADVANCED TOPICS 

‣ Reductions

‣ Designing algorithms

‣ Establishing lower bounds

‣ Classifying problems 

‣ Intractability
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Bird’s-eye view

Desiderata.  Classify problems according to computational requirements.


Frustrating news.  Huge number of problems have defied classification.

complexity order of growth examples

linear N
min, max, median, 

Burrows-Wheeler transform, ...

linearithmic N log N
sorting, convex hull, 

closest pair, farthest pair, ...

quadratic N2 ?

⋮ ⋮ ⋮

exponential cN ?
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Bird’s-eye view

Desiderata.  Classify problems according to computational requirements.


Desiderata'.

Suppose we could (could not) solve problem X efficiently. 
What else could (could not) we solve efficiently?

“ Give me a lever long enough and a fulcrum on which to 

    place it, and I shall move the world.  ”    — Archimedes
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Reduction

Def.  Problem X reduces to problem Y if you can use an algorithm that 
solves Y to help solve X.


Cost of solving X  =  total cost of solving Y  +  cost of reduction.

perhaps many calls to Y 
on problems of different sizes

preprocessing and postprocessing

 
instance I  

(of X)
solution to I

Algorithm 
for Y

Algorithm for X
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Reduction

Def.  Problem X reduces to problem Y if you can use an algorithm that 
solves Y to help solve X.


Ex 1.  [finding the median reduces to sorting]
To find the median of N items:


• Sort N items.


• Return item in the middle.

Cost of solving element distinctness.  N  log N  +  1 .

cost of sorting
cost of reduction

 
instance I  

(of X)
solution to I

Algorithm 
for Y

Algorithm for X
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Reduction

Def.  Problem X reduces to problem Y if you can use an algorithm that 
solves Y to help solve X.


Ex 2.  [element distinctness reduces to sorting]
To solve element distinctness on N items:


• Sort N items.


• Check adjacent pairs for equality.

Cost of solving element distinctness.  N  log N  +  N .

cost of sorting
cost of reduction

 
instance I  

(of X)
solution to I

Algorithm 
for Y

Algorithm for X
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Reduction

Def.  Problem X reduces to problem Y if you can use an algorithm that 
solves Y to help solve X.


Ex 3.  [3-collinear reduces to sorting]
To solve 3-collinear instance on N points in the plane:


• For each point, sort other points by polar angle or slope.

- check adjacent triples for collinearity


Cost of solving 3-collinear.  N 2 log N  +  N 2.

cost of sorting cost of reduction

 
instance I  

(of X)
solution to I

Algorithm 
for Y

Algorithm for X



REDUCTIONS

‣ Designing algorithms

‣ Establishing lower bounds

‣ Classifying problems
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Reduction:  design algorithms

Def.  Problem X reduces to problem Y if you can use an algorithm that 
solves Y to help solve X.


Design algorithm.  Given algorithm for Y, can also solve X.

 
Ex.

• Element distinctness reduces to sorting.


• 3-collinear reduces to sorting.


• CPM reduces to topological sort.  [shortest paths lecture]


• h-v line intersection reduces to 1d range searching.  [geometric BST lecture]


• Baseball elimination reduces to maxflow.  


• Burrows-Wheeler transform reduces to suffix sort.  


• …

 
Mentality.  Since I know how to solve Y, can I use that algorithm to solve X ?

programmer’s version:  I have code for Y. Can I use it for X?



Sorting.  Given N distinct integers, rearrange them in ascending order.


Convex hull.  Given N points in the plane, identify the extreme points 
of the convex hull (in counterclockwise order).


Proposition.  Convex hull reduces to sorting.
Pf.  Graham scan algorithm.


Cost of convex hull.  N log N  +  N.

12

Convex hull reduces to sorting

convex hull sorting

1251432

2861534

3988818

4190745

13546464

89885444

43434213

34435312

cost of reductioncost of sorting



Graham scan algorithm

Graham scan.


• Choose point p with smallest (or largest) y-coordinate.


• Sort points by polar angle with p to get simple polygon.


• Consider points in order, and discard those that would  
create a clockwise turn.
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Graham scan.  

・Choose point p with smallest (or largest) y-coordinate.

・Sort points by polar angle with p to get simple polygon.

・Consider points in order, and discard those that

would create a clockwise turn. 
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Graham scan algorithm

p

Graham scan.  

・Choose point p with smallest (or largest) y-coordinate.

・Sort points by polar angle with p to get simple polygon.

・Consider points in order, and discard those that

would create a clockwise turn. 
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Graham scan algorithm

p



Shortest paths on edge-weighted graphs and digraphs

Proposition. Undirected shortest paths (with nonnegative weights) 
reduces to directed shortest path.
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Shortest paths on edge-weighted graphs and digraphs

Proposition. Undirected shortest paths (with nonnegative weights) 
reduces to directed shortest path.


Pf.  Replace each undirected edge by two directed edges.
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Shortest paths on edge-weighted graphs and digraphs

Proposition. Undirected shortest paths (with nonnegative weights) 
reduces to directed shortest path.


Cost of undirected shortest paths.  E log V  +  E.
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Caveat.  Reduction is invalid for edge-weighted graphs with negative weights 
(even if no negative cycles).


Remark.  Can still solve shortest-paths problem in undirected graphs 
(if no negative cycles), but need more sophisticated techniques.

17

Shortest paths with negative weights

ts 7  –4

ts 7  –4

reduction creates

negative cycles

reduces to weighted  
non-bipartite matching (!)

7  –4



Some reductions involving familiar problems
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element

distinctness sorting

convex hull
Finding the median

Delaunay

triangulation

2d closest

pair

2d Euclidean

MST

2d farthest

pair

computational geometry

linear 
programming

directed shortest paths 
(nonnegative)

bipartite

matching

 maximum flow 

arbitrage

shortest paths

(no neg cycles)

undirected shortest paths 
(nonnegative)

baseball

elimination

combinatorial optimization



REDUCTIONS

‣ Designing algorithms

‣ Establishing lower bounds

‣ Classifying problems



20

Bird's-eye view

Goal.  Prove that a problem requires a certain number of steps.

Ex.  In decision tree model, any compare-based sorting algorithm requires 
Ω(N log N) compares in the worst case.

 
 
 
 
 
 
 
 
 
Bad news.  Very difficult to establish lower bounds from scratch.
Good news.  Spread Ω(N log N) lower bound to Y by reducing sorting to Y.

assuming cost of reduction is not too high

argument must apply to all 
conceivable algorithms

b < c

yes no

a < c

yes

a < c

yes no

a c b c a b

b a ca b c b < c

yes no

b c a c b a

a < b

yes no

no
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Linear-time reductions

Def.  Problem X linear-time reduces to problem Y if X can be solved with:


• Linear number of standard computational steps.


• Constant number of calls to Y.

 
Ex.  Almost all of the reductions we've seen so far.
 
 
Establish lower bound:

• If X takes Ω(N log N) steps, then so does Y.


• If X takes Ω(N 2) steps, then so does Y.


 
Mentality.

• If I could easily solve Y, then I could easily solve X.


• I can’t easily solve X.


• Therefore, I can’t easily solve Y.
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Element distinctness linear-time reduces to closest pair

Closest pair.  Given N points in the plane, find the closest pair.

Element distinctness.  Given N elements, are any two equal?

 
Proposition.  Element distinctness linear-time reduces to closest pair. 
Pf.  
• Element distinctness instance:  x1, x2, ... , xN .


• Closest pair instance:  (x1 , x1), (x2, x2), ... , (xN , xN).

• Two elements are distinct if and only if closest pair = 0.


 
 
Element distinctness lower bound.  In quadratic decision tree model, 
any algorithm that solves element distinctness takes Ω(N log N) steps.

 
Implication.  In quadratic decision tree model, any algorithm for closest 
pair takes Ω(N log N) steps. 

allows quadratic tests of the form:

 xi < xj or (xi – xk)2 – (xj – xk)2  < 0
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Sorting linear-time reduces to convex hull

Proposition.  Sorting linear-time reduces to convex hull. 
• Sorting instance:  x1, x2, ... , xN .

• Convex hull instance:  (x1 , x12), (x2, x22), ... , (xN , xN2).


 

 
Pf. 

• Region { x : x2 ≥ x } is convex ⇒ all points are on hull.


• Starting at point with most negative x, counterclockwise order of hull 
points yields integers in ascending order.

lower-bound mentality:  
if I can solve convex hull  
efficiently, I can sort efficiently

Proposition.  Sorting linear-time reduces to convex hull.

・Sorting instance:  x1, x2, ... , xN.

・Convex hull instance:  (x1 , x12 ), (x2, x22 ), ... , (xN , xN2 ).

Pf.

・Region { x :  x2  ≥  x } is convex  ⇒  all points are on hull.

・Starting at point with most negative x, counterclockwise order of hull 

points yields integers in ascending order.
23

Sorting linear-time reduces to convex hull

f (x) = x2

(xi , xi2 )

x

y

lower-bound mentality:
if I can solve convex hull

efficiently, I can sort efficiently



More linear-time reductions and lower bounds
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Delaunay

triangulation

2d convex hull

sorting

element distinctness 
(N log N lower bound)

2d Euclidean MST

2d closest pair

sorting

 3-sum 
(conjectured N 2 lower bound) 

3-collinear

3-concurrent

dihedral 
rotation

min area triangle

3-sum



Establishing lower bounds through reduction is an important tool 
in guiding algorithm design efforts.


Q.  How to convince yourself no linear-time convex hull algorithm exists?

A1.  [hard way]  Long futile search for a linear-time algorithm.

A2.  [easy way]  Linear-time reduction from sorting.

Establishing lower bounds:  summary

25



REDUCTIONS

‣ Designing algorithms

‣ Establishing lower bounds

‣ Classifying problems



Desiderata.  Problem with algorithm that matches lower bound.

Ex.  Sorting, convex hull, and closest pair have complexity N log N.

 
 
Desiderata'.  Prove that two problems X and Y have the same complexity.


• First, show that problem X linear-time reduces to Y.


• Second, show that Y linear-time reduces to X.


• Conclude that X and Y have the same complexity. 

Classifying problems:  summary

27

even if we don't know what it is!

Desiderata.  Problem with algorithm that matches lower bound.

Ex.  Sorting and convex hull have complexity N log N.

Desiderata'.  Prove that two problems X and Y have the same complexity.

・First, show that problem X linear-time reduces to Y.

・Second, show that Y linear-time reduces to X.

・Conclude that X and Y have the same complexity.

Classifying problems:  summary

27

even if we don't know what it is!

sorting

convex hull



Caveat

SORT.  Given N distinct integers, rearrange them in ascending order. 
 
CONVEX HULL.  Given N points in the plane, identify the extreme points of 
the convex hull (in counterclockwise order).

 
Proposition.  SORT linear-time reduces to CONVEX HULL. 
Proposition.  CONVEX HULL linear-time reduces to SORT. 
Conclusion.  SORT and CONVEX HULL have the same complexity.

 
A possible real-world scenario.

• System designer specs the APIs for project.


• Alice implements sort() using convexHull().


• Bob implements convexHull() using sort().


• Infinite reduction loop!


• Who's fault?

28

well, maybe not so realistic
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Integer arithmetic reductions

Integer multiplication.  Given two N-bit integers, compute their product.

Brute force.  N 2 bit operations.


1 1 0 1 0 1 0 1

× 0 1 1 1 1 1 0 1

1 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0

1 1 0 1 0 1 0 1

1 1 0 1 0 1 0 1

1 1 0 1 0 1 0 1

1 1 0 1 0 1 0 1

1 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1
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Integer arithmetic reductions

Integer multiplication.  Given two N-bit integers, compute their product.

Brute force.  N 2 bit operations.


Q.  Is brute-force algorithm optimal? 

problem arithmetic order of growth

integer multiplication a × b M(N)

integer division a / b,  a mod b M(N)

integer square a 2 M(N)

integer square root ⎣√a ⎦ M(N)

integer arithmetic problems with the same complexity as integer multiplication
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History of complexity of integer multiplication

Remark.  GNU Multiple Precision Library uses one of five

different algorithm depending on size of operands.

year algorithm order of growth

? brute force N 2

1962 Karatsuba-Ofman N 1.585

1963 Toom-3, Toom-4 N 1.465 , N 1.404

1966 Toom-Cook N 1 + ε

1971 Schönhage–Strassen N log N log log N

2007 Fürer N log N 2 log*N

? ? N

number of bit operations to multiply two N-bit integers

used in Maple, Mathematica, gcc, cryptography, ...
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Linear algebra reductions

Matrix multiplication.  Given two N-by-N matrices, compute their product.

Brute force.  N 3 flops.


0,1 0,2 0,8 0,1

0,5 0,3 0,9 0,6

0,1 0 0,7 0,4

0 0,3 0,3 0,1

×

0,4 0,3 0,1 0,1

0,2 0,2 0 0,6

0 0 0,4 0,5

0,8 0,4 0,1 0,9

=

0,16 0,11 0,34 0,62

0,74 0,45 0,47 1,22

0,36 0,19 0,33 0,72

0,14 0,1 0,13 0,42

row i

column j j

i

0.5 · 0.1 +  0.3 · 0.0  +  0.9 · 0.4  +  0.6 · 0.1 = 0.47
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Linear algebra reductions

Matrix multiplication.  Given two N-by-N matrices, compute their product.

Brute force.  N 3 flops.


Q.  Is brute-force algorithm optimal?

problem linear algebra order of growth

matrix multiplication A × B MM(N)

matrix inversion A–1 MM(N)

determinant | A | MM(N)

system of linear equations Ax = b MM(N)

LU decomposition A = L U MM(N)

least squares min ||Ax – b||2 MM(N)

numerical linear algebra problems with the same complexity as matrix multiplication
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History of complexity of matrix multiplication

year algorithm order of growth

? brute force N 3

1969 Strassen N 2.808

1978 Pan N 2.796

1979 Bini N 2.780

1981 Schönhage N 2.522

1982 Romani N 2.517

1982 Coppersmith-Winograd N 2.496

1986 Strassen N 2.479

1989 Coppersmith-Winograd N 2.376

2010 Strother N 2.3737

2011 Williams N 2.3727

? ? N 2 + ε

number of floating-point operations to multiply two N-by-N matrices
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Birds-eye view:  review

Desiderata.  Classify problems according to computational requirements.


Frustrating news.  Huge number of problems have defied classification. 35

Birds-eye view:  review

Desiderata.  Classify problems according to computational requirements.

Frustrating news.  Huge number of problems have defied classification.

complexity order of growth examples

linear N
min, max, median,

Burrows-Wheeler transform, ...

linearithmic N log N
sorting, convex hull,

closest pair, farthest pair, ...

quadratic N2 ?

⋮ ⋮ ⋮

exponential cN ?
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Birds-eye view:  revised

Desiderata.  Classify problems according to computational requirements.


Good news.  Can put many problems into equivalence classes.

complexity order of growth examples

linear N min, max, median, ...

linearithmic N log N
sorting, convex hull, 

closest pair, farthest pair, ...

M(N) ?
integer multiplication, 

division, square root, ...

MM(N) ?
matrix multiplication, Ax = b, 

least square, determinant, ...

⋮ ⋮ ⋮

NP-complete probably not Nb 3-SAT, IND-SET, ILP, ...
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Complexity zoo

Complexity class. Set of problems sharing some computational property. 


Bad news.  Lots of complexity classes.

https://complexityzoo.net/Complexity_Zoo

37

Complexity zoo

Complexity class.  Set of problems sharing some computational property.

Bad news.  Lots of complexity classes.

Text

http://qwiki.stanford.edu/index.php/Complexity_Zoo
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Summary

Reductions are important in theory to:

• Design algorithms.


• Establish lower bounds.


• Classify problems according to their computational requirements.


Reductions are important in practice to:

• Design algorithms.


• Design reusable software modules.

- stacks, queues, priority queues, symbol tables, sets, graphs

- sorting, regular expressions, Delaunay triangulation

- MST, shortest path, maxflow, linear programming


• Determine difficulty of your problem and choose the right tool.

- use exact algorithm for tractable problems

- use heuristics for intractable problems



ADVANCED TOPICS 

‣ Reductions 

‣ Intractability 

‣ Search problems

‣ P vs. NP

‣ Classifying problems

‣ NP-completeness
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Q.  What is a general-purpose computer?
Q.  Are there limits on the power of digital computers?
Q.  Are there limits on the power of machines we can build?

Questions about computation

David Hilbert Kurt Gödel Alan Turing Alonzo Church John von Neumann



Tape.

• Stores input.


• One arbitrarily long strip, divided into cells.


• Finite alphabet of symbols.


Tape head.

• Points to one cell of tape.


• Reads a symbol from active cell.


• Moves one cell at a time. 
 
 
 
 

Q. Is there a more powerful model of computation?
A. Yes.

41

A simple model of computation:  DFAs

1 1 1 1 0 1 1 1 0 0 1… 0tape

tape head

tape

tape

head

…
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A universal model of computation:  Turing machines

Tape.

• Stores input, output, and intermediate results.


• One arbitrarily long strip, divided into cells.


• Finite alphabet of symbols.


 
Tape head.

• Points to one cell of tape.


• Reads a symbol from active cell.


• Writes a symbol to active cell.


• Moves one cell at a time.


 
 
 
 
Q. Is there a more powerful model of computation?

A. No!

tape # 1 1 0 0 + 1 0 1 1 # ……

most important scientific result of 20th century?

tape head

tape

head

tape
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Church-Turing thesis (1936)

 
 
 
 

Remark.  "Thesis" and not a mathematical theorem because it's a statement 
about the physical world and not subject to proof. 

 

Use simulation to prove models equivalent.

• Android simulator on iPhone.


• iPhone simulator on Android.

 

Implications.

• No need to seek more powerful machines or languages.


• Enables rigorous study of computation (in this universe).

 

Bottom line.  Turing machine is a simple and universal model of computation.

but can be falsified

Turing machines can compute any function that can be computed by a 
physically harnessable process of the natural world.
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Church-Turing thesis:  evidence

• 8 decades without a counterexample.


• Many, many models of computation that turned out to be equivalent.
"universal"

model of computation description

enhanced Turing machines multiple heads, multiple tapes, 2D tape, nondeterminism

untyped lambda calculus method to define and manipulate functions

recursive functions functions dealing with computation on integers

unrestricted grammars iterative string replacement rules used by linguists

extended L-systems parallel string replacement rules that model plant growth

programming languages Java, C, C++, Perl, Python, PHP, Lisp, PostScript, Excel

random access machines registers plus main memory, e.g., TOY, Pentium

cellular automata cells which change state based on local interactions

quantum computer compute using superposition of quantum states

DNA computer compute using biological operations on DNA
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Q.  Which algorithms are useful in practice?

• Measure running time as a function of input size N.


• Useful in practice ("efficient") = polynomial time for all inputs. 
 
 
 
 
 
 

 
Ex 1. Sorting N items takes N log N compares using mergesort.

Ex 2. Finding best TSP tour on N points takes N ! steps using brute search.
 
Theory.  Definition is broad and robust.
Practice.  Poly-time algorithms scale to huge problems.

A question about algorithms

a N b

constants a and b tend to be small, e.g., 3 N 2

von Neumann

(1953)

Gödel

(1956)

Edmonds

(1965)

Rabin

(1966)

Cobham

(1964)

Nash

(1955)
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Exponential growth

Exponential growth dwarfs technological change.

• Suppose you have a giant parallel computing device…


• With as many processors as electrons in the universe…


• And each processor has power of today's supercomputers…


• And each processor works for the life of the universe… 
 
 
 
 
 
 
 
 
 

• Will not help solve 1,000 city TSP problem via brute force. 

1000!  >>  101000  >>  1079 × 1013 × 1017

†  estimated

quantity value

electrons in universe † 1079

supercomputer instructions per second † 1013

age of universe in seconds † 1017
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Q.  Which problems can we solve in practice?
A.  Those with poly-time algorithms.
 
Q.  Which problems have poly-time algorithms?
A.  Not so easy to know.  Focus of today's lecture.

Questions about problems

no known poly-time algorithm for TSPmany known poly-time algorithms for sorting
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Bird's-eye view

Def.  A problem is intractable if it can't be solved in polynomial time.
Desiderata.  Prove that a problem is intractable.

 
 
Two problems that provably require exponential time.

• Given a constant-size program, does it halt in at most K steps?


• Given N-by-N checkers board position, can the first player force a win? 


 
 
 
 
 
 
 
Frustrating news.  Very few successes.

input size = c + lg K

using forced capture rule



INTRACTABILITY

‣ Search problems

‣ P vs. NP

‣ Classifying problems

‣ NP-completeness
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Four fundamental problems

variables are

real numbers

LSOLVE.  Given a system of linear equations, find a solution.


17

Search problems

Search problem.  Given an instance I of a problem, find a solution S. 
Requirement.  Must be able to efficiently check that S is a solution.

LSOLVE.  Given a system of linear equations, find a solution.

To check solution S, plug in values and verify each equation. 

€ 

0x0 +  1x1 +  1x2 =   4
2x0 +  4x1 −  2x2 =   2
0x0 +  3x1 + 15x2 = 36

€ 

x0 = −1
x1 = 2
x2 = 2

instance I solution S
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Search problems

Search problem.  Given an instance I of a problem, find a solution S. 
Requirement.  Must be able to efficiently check that S is a solution.

LSOLVE.  Given a system of linear equations, find a solution.

To check solution S, plug in values and verify each equation. 

€ 

0x0 +  1x1 +  1x2 =   4
2x0 +  4x1 −  2x2 =   2
0x0 +  3x1 + 15x2 = 36

€ 

x0 = −1
x1 = 2
x2 = 2

instance I solution S

variables are

real numbers

LP.   Given a system of linear inequalities, find a solution.

variables are

0 or 1

ILP.  Given a system of linear inequalities, find a 0-1 solution.

variables are

true or false

SAT.  Given a system of boolean equations, find a binary solution.
(x'1 or x'2)  and  (x0  or x2)   = true


(x0  or x1)   and  (x1  or x'2)   = false


  (x0 or x2)   and      (x'0)        = true

x0   = false

x1   = false

x2  = true

18

€ 

48x0 + 16x1 + 119x2 ≤ 88
5x0 +  4x1 +  35x2 ≥ 13

15x0 +  4x1 +  20x2 ≥ 23
x0 ,     x1 ,     x2 ≥  0

€ 

x0 = 1
x1 = 1
x2 = 1
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instance I solution S
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Search problems
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Requirement.  Must be able to efficiently check that S is a solution.
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To check solution S, plug in values and verify each inequality. 
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Search problems

Search problem.  Given an instance I of a problem, find a solution S. 
Requirement.  Must be able to efficiently check that S is a solution.

ILP.  Given a system of linear inequalities, find a binary solution.

To check solution S, plug in values and verify each inequality.

€ 

 x1 +  x2 ≥  1
x0 +  x2 ≥  1
x0 +  x1 + x2 ≤ 2

€ 

x0 = 0
x1 = 1
x2 = 1

instance I solution S
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Search problems

Search problem.  Given an instance I of a problem, find a solution S. 
Requirement.  Must be able to efficiently check that S is a solution.

ILP.  Given a system of linear inequalities, find a binary solution.

To check solution S, plug in values and verify each inequality.

€ 

 x1 +  x2 ≥  1
x0 +  x2 ≥  1
x0 +  x1 + x2 ≤ 2

€ 

x0 = 0
x1 = 1
x2 = 1

instance I solution S
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LSOLVE.  Given a system of linear equations, find a solution. 
LP.   Given a system of linear inequalities, find a solution. 
ILP.  Given a system of linear inequalities, find a 0-1 solution. 
SAT.  Given a system of boolean equations, find a binary solution.

 
 
 
Q.  Which of these problems have poly-time algorithms?
• LSOLVE.  Yes. Gaussian elimination solves N-by-N system in N 3 time.


• LP.  Yes. Ellipsoid algorithm is poly-time.


• ILP, SAT.  No poly-time algorithm known or believed to exist!

Four fundamental problems

but was open problem for decades

but we still don't know for sure
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Search problems

Search problem.  Given an instance I of a problem, find a solution S. 

Requirement.  Must be able to efficiently check that S is a solution.

or report

none exists

poly-time in size of instance I
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Search problems

Search problem.  Given an instance I of a problem, find a solution S. 

Requirement.  Must be able to efficiently check that S is a solution.
 
 
 
 
LSOLVE.  Given a system of linear equations, find a solution. 
 
 
 
 
 
 
 
To check solution S, plug in values and verify each equation. 

instance I solution S
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Search problems

Search problem.  Given an instance I of a problem, find a solution S. 

Requirement.  Must be able to efficiently check that S is a solution.
 
 
 
 
LP.  Given a system of linear inequalities, find a solution. 
 
 
 
 
 
 
 
To check solution S, plug in values and verify each inequality. 

instance I solution S
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€ 

48x0 + 16x1 + 119x2 ≤ 88
5x0 +  4x1 +  35x2 ≥ 13

15x0 +  4x1 +  20x2 ≥ 23
x0 ,     x1 ,     x2 ≥  0

€ 

x0 = 1
x1 = 1
x2 = 1

5

Search problems

Search problem.  Given an instance I of a problem, find a solution S. 
Requirement.  Must be able to efficiently check that S is a solution.

LP.  Given a system of linear inequalities, find a solution.

To check solution S, plug in values and verify each inequality. 

instance I solution S
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Search problems

Search problem.  Given an instance I of a problem, find a solution S. 
Requirement.  Must be able to efficiently check that S is a solution.

LP.  Given a system of linear inequalities, find a solution.

To check solution S, plug in values and verify each inequality. 

instance I solution S
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Search problems

Search problem.  Given an instance I of a problem, find a solution S. 

Requirement.  Must be able to efficiently check that S is a solution.

ILP.  Given a system of linear inequalities, find a binary solution. 
 
 
 
 
 
 
 
To check solution S, plug in values and verify each inequality.

instance I solution S
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Search problems

Search problem.  Given an instance I of a problem, find a solution S. 
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Search problems

Search problem.  Given an instance I of a problem, find a solution S. 

Requirement.  Must be able to efficiently check that S is a solution.

SAT.  Given a system of boolean equations, find a boolean solution. 
 
 
 
 
 
 
 
To check solution S, plug in values and verify each equation.

instance I solution S

(x'1 or x'2)  and  (x0  or x2)      = true


(x0  or x1)   and  (x1  or x'2)     = false


  (x0 or x2)   and      (x'0)           = true

x0   = false

x1   = false

x2  = true
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Search problems

Search problem.  Given an instance I of a problem, find a solution S. 

Requirement.  Must be able to efficiently check that S is a solution.

FACTOR.  Given an n-bit integer x, find a nontrivial factor. 
 
 
 
 
 
 
 
To check solution S, long divide 193707721 into 147573952589676412927. 

147573952589676412927 193707721

input size = number of bits

instance I solution S



INTRACTABILITY

‣ Search problems

‣ P vs. NP

‣ Classifying problems

‣ NP-completeness



Def.  NP is the class of all search problems.

 
 
 
 
 
 
 
 
 
 
 
 
 
Significance.  What scientists and engineers aspire to compute feasibly.
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NP
Note: classic definition limits 

NP to yes-no problems

problem description
poly-time

algorithm

instance I solution S

LSOLVE 
( A, b )

Find a vector x that 
satisfies Ax = b

Gaussian elimination

LP

( A, b )

Find a vector x that 
satisfies Ax ≤ b

ellipsoid

ILP  
( A, b )

Find a binary vector x 
that satisfies Ax ≤ b

???

SAT  
( Φ, b )

Find a boolean vector x 
that satisfies Φ(x) = b

???

FACTOR

( x )

Find a nontrivial factor 
of the integer x

??? 147573952589676412927 193707721

(x'1 or x'2)  and  (x0  or x2)     =  true


(x0  or x1)   and  (x1  or x'2)   = false


  (x0 or x2)   and      (x'0)           =  true

x0   = false

x1   = false

x2  = true

Def.  NP is the class of all search problems.

Significance.  What scientists and engineers aspire to compute feasibly.
24

NP

Note: classic definition limits

NP to yes-no problems

problem description

poly-time

algorithm

instance I solution S

LSOLVE

( A, b )
Find a vector x that 

satisfies Ax = b
Gaussian elimination

LP

( A, b )
Find a vector x that 

satisfies Ax ≤ b
ellipsoid

ILP

( A, b )
Find a binary vector x 

that satisfies Ax ≤ b
???

SAT

( Φ, b )
Find a boolean vector x 
that satisfies Φ(x) = b

???

FACTOR

( x )
Find a nontrivial factor 

of the integer x
??? 147573952589676412927 193707721

€ 

x0 = 0
x1 = 1
x2 = 1

€ 

0x0 +  1x1 +  1x2 =   4
2x0 +  4x1 −  2x2 =   2
0x0 +  3x1 + 15x2 = 36

€ 

x0 = −1
x1 = 2
x2 = 2

€ 

48x0 + 16x1 + 119x2 ≤ 88
5x0 +  4x1 +  35x2 ≥ 13

15x0 +  4x1 +  20x2 ≥ 23
x0 ,     x1 ,     x2 ≥  0

€ 

x0 = 1
x1 = 1
x2 = 1

5

€ 

 x1 +  x2 ≥  1
x0 +  x2 ≥  1
x0 +  x1 + x2 ≤ 2

(x'1 or x'2)  and  (x0  or x2)     =  true

(x0  or x1)   and  (x1  or x'2)   = false

  (x0 or x2)   and      (x'0)           =  true

x0   = false
x1   = false
x2  = true

Def.  NP is the class of all search problems.

Significance.  What scientists and engineers aspire to compute feasibly.
24

NP

Note: classic definition limits

NP to yes-no problems

problem description

poly-time

algorithm

instance I solution S

LSOLVE

( A, b )
Find a vector x that 

satisfies Ax = b
Gaussian elimination

LP

( A, b )
Find a vector x that 

satisfies Ax ≤ b
ellipsoid

ILP

( A, b )
Find a binary vector x 

that satisfies Ax ≤ b
???

SAT

( Φ, b )
Find a boolean vector x 
that satisfies Φ(x) = b

???

FACTOR

( x )
Find a nontrivial factor 

of the integer x
??? 147573952589676412927 193707721

€ 

x0 = 0
x1 = 1
x2 = 1

€ 

0x0 +  1x1 +  1x2 =   4
2x0 +  4x1 −  2x2 =   2
0x0 +  3x1 + 15x2 = 36

€ 

x0 = −1
x1 = 2
x2 = 2

€ 

48x0 + 16x1 + 119x2 ≤ 88
5x0 +  4x1 +  35x2 ≥ 13

15x0 +  4x1 +  20x2 ≥ 23
x0 ,     x1 ,     x2 ≥  0

€ 

x0 = 1
x1 = 1
x2 = 1

5

€ 

 x1 +  x2 ≥  1
x0 +  x2 ≥  1
x0 +  x1 + x2 ≤ 2

(x'1 or x'2)  and  (x0  or x2)     =  true

(x0  or x1)   and  (x1  or x'2)   = false

  (x0 or x2)   and      (x'0)           =  true

x0   = false
x1   = false
x2  = true

Def.  NP is the class of all search problems.

Significance.  What scientists and engineers aspire to compute feasibly.
24

NP

Note: classic definition limits

NP to yes-no problems

problem description

poly-time

algorithm

instance I solution S

LSOLVE

( A, b )
Find a vector x that 

satisfies Ax = b
Gaussian elimination

LP

( A, b )
Find a vector x that 

satisfies Ax ≤ b
ellipsoid

ILP

( A, b )
Find a binary vector x 

that satisfies Ax ≤ b
???

SAT

( Φ, b )
Find a boolean vector x 
that satisfies Φ(x) = b

???

FACTOR

( x )
Find a nontrivial factor 

of the integer x
??? 147573952589676412927 193707721

€ 

x0 = 0
x1 = 1
x2 = 1

€ 

0x0 +  1x1 +  1x2 =   4
2x0 +  4x1 −  2x2 =   2
0x0 +  3x1 + 15x2 = 36

€ 

x0 = −1
x1 = 2
x2 = 2

€ 

48x0 + 16x1 + 119x2 ≤ 88
5x0 +  4x1 +  35x2 ≥ 13

15x0 +  4x1 +  20x2 ≥ 23
x0 ,     x1 ,     x2 ≥  0

€ 

x0 = 1
x1 = 1
x2 = 1

5

€ 

 x1 +  x2 ≥  1
x0 +  x2 ≥  1
x0 +  x1 + x2 ≤ 2

(x'1 or x'2)  and  (x0  or x2)     =  true

(x0  or x1)   and  (x1  or x'2)   = false

  (x0 or x2)   and      (x'0)           =  true

x0   = false
x1   = false
x2  = true

Def.  NP is the class of all search problems.

Significance.  What scientists and engineers aspire to compute feasibly.
24

NP

Note: classic definition limits

NP to yes-no problems

problem description

poly-time

algorithm

instance I solution S

LSOLVE

( A, b )
Find a vector x that 

satisfies Ax = b
Gaussian elimination

LP

( A, b )
Find a vector x that 

satisfies Ax ≤ b
ellipsoid

ILP

( A, b )
Find a binary vector x 

that satisfies Ax ≤ b
???

SAT

( Φ, b )
Find a boolean vector x 
that satisfies Φ(x) = b

???

FACTOR

( x )
Find a nontrivial factor 

of the integer x
??? 147573952589676412927 193707721

€ 

x0 = 0
x1 = 1
x2 = 1

€ 

0x0 +  1x1 +  1x2 =   4
2x0 +  4x1 −  2x2 =   2
0x0 +  3x1 + 15x2 = 36

€ 

x0 = −1
x1 = 2
x2 = 2

€ 

48x0 + 16x1 + 119x2 ≤ 88
5x0 +  4x1 +  35x2 ≥ 13

15x0 +  4x1 +  20x2 ≥ 23
x0 ,     x1 ,     x2 ≥  0

€ 

x0 = 1
x1 = 1
x2 = 1

5

€ 

 x1 +  x2 ≥  1
x0 +  x2 ≥  1
x0 +  x1 + x2 ≤ 2

(x'1 or x'2)  and  (x0  or x2)     =  true

(x0  or x1)   and  (x1  or x'2)   = false

  (x0 or x2)   and      (x'0)           =  true

x0   = false
x1   = false
x2  = true

Def.  NP is the class of all search problems.

Significance.  What scientists and engineers aspire to compute feasibly.
24

NP

Note: classic definition limits

NP to yes-no problems

problem description

poly-time

algorithm

instance I solution S

LSOLVE

( A, b )
Find a vector x that 

satisfies Ax = b
Gaussian elimination

LP

( A, b )
Find a vector x that 

satisfies Ax ≤ b
ellipsoid

ILP

( A, b )
Find a binary vector x 

that satisfies Ax ≤ b
???

SAT

( Φ, b )
Find a boolean vector x 
that satisfies Φ(x) = b

???

FACTOR

( x )
Find a nontrivial factor 

of the integer x
??? 147573952589676412927 193707721

€ 

x0 = 0
x1 = 1
x2 = 1

€ 

0x0 +  1x1 +  1x2 =   4
2x0 +  4x1 −  2x2 =   2
0x0 +  3x1 + 15x2 = 36

€ 

x0 = −1
x1 = 2
x2 = 2

€ 

48x0 + 16x1 + 119x2 ≤ 88
5x0 +  4x1 +  35x2 ≥ 13

15x0 +  4x1 +  20x2 ≥ 23
x0 ,     x1 ,     x2 ≥  0

€ 

x0 = 1
x1 = 1
x2 = 1

5

€ 

 x1 +  x2 ≥  1
x0 +  x2 ≥  1
x0 +  x1 + x2 ≤ 2

(x'1 or x'2)  and  (x0  or x2)     =  true

(x0  or x1)   and  (x1  or x'2)   = false

  (x0 or x2)   and      (x'0)           =  true

x0   = false
x1   = false
x2  = true

Def.  NP is the class of all search problems.

Significance.  What scientists and engineers aspire to compute feasibly.
24

NP

Note: classic definition limits

NP to yes-no problems

problem description

poly-time

algorithm

instance I solution S

LSOLVE

( A, b )
Find a vector x that 

satisfies Ax = b
Gaussian elimination

LP

( A, b )
Find a vector x that 

satisfies Ax ≤ b
ellipsoid

ILP

( A, b )
Find a binary vector x 

that satisfies Ax ≤ b
???

SAT

( Φ, b )
Find a boolean vector x 
that satisfies Φ(x) = b

???

FACTOR

( x )
Find a nontrivial factor 

of the integer x
??? 147573952589676412927 193707721

€ 

x0 = 0
x1 = 1
x2 = 1

€ 

0x0 +  1x1 +  1x2 =   4
2x0 +  4x1 −  2x2 =   2
0x0 +  3x1 + 15x2 = 36

€ 

x0 = −1
x1 = 2
x2 = 2

€ 

48x0 + 16x1 + 119x2 ≤ 88
5x0 +  4x1 +  35x2 ≥ 13

15x0 +  4x1 +  20x2 ≥ 23
x0 ,     x1 ,     x2 ≥  0

€ 

x0 = 1
x1 = 1
x2 = 1

5

€ 

 x1 +  x2 ≥  1
x0 +  x2 ≥  1
x0 +  x1 + x2 ≤ 2

(x'1 or x'2)  and  (x0  or x2)     =  true

(x0  or x1)   and  (x1  or x'2)   = false

  (x0 or x2)   and      (x'0)           =  true

x0   = false
x1   = false
x2  = true



Def.  P is the class of search problems solvable in poly-time. 
 
 
 
 
 
 
 
 
 
 
 
 

Significance.  What scientists and engineers do compute feasibly.

60

P

problem description
poly-time

algorithm

instance I solution S

LSOLVE 
( A, b )

Find a vector x that 
satisfies Ax = b

Gaussian elimination 
(Edmonds 1967)

LP

( A, b )

Find a vector x that 
satisfies Ax ≤ b

ellipsoid  
(Khachiyan 1979)

SORT  
( a )

Find a permutation that 
puts array a in order

mergesort 
(von Neumann 1945)

2.3 8.5 1.2  
9.1 2.2 0.3

5 2 4 0 1 3

STCONN

( G, s, t )

Find a path in a  
graph G from s to t

depth-first search 
(Theseus) 

Note: classic definition limits 
P to yes-no problems

Def.  NP is the class of all search problems.

Significance.  What scientists and engineers aspire to compute feasibly.
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Nondeterminism

Nondeterministic machine can guess the desired solution.

Ex. int[] a = new int[N];

• Java: initializes entries to 0.


• Nondeterministic machine: initializes entries to the solution!


 
ILP.  Given a system of linear inequalities, guess a 0-1 solution.
 
 
 
 
Ex. Turing machine.

• Deterministic:  state, input determines next state.


• Nondeterministic:  more than one possible next state.


 
NP.  Search problems solvable in poly time on a nondeterministic TM.
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B

C

A

0:x

0:y

recall NFA implementation

19

Search problems

Search problem.  Given an instance I of a problem, find a solution S. 
Requirement.  Must be able to efficiently check that S is a solution.

ILP.  Given a system of linear inequalities, find a binary solution.

To check solution S, plug in values and verify each inequality.

€ 

 x1 +  x2 ≥  1
x0 +  x2 ≥  1
x0 +  x1 + x2 ≤ 2

€ 

x0 = 0
x1 = 1
x2 = 1

instance I solution S
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Extended Church-Turing thesis

 
 
 
Evidence supporting thesis.  True for all physical computers.

 
Natural computers? No successful attempts (yet).

 
 
 
 
 
 
 
Implication.  To make future computers more efficient, 
suffices to focus on improving implementation of existing designs.

P = search problems solvable in poly-time in the natural world.

•Ex. Computing Steiner trees with soap bubbles

•STEINER: Find set of lines of minimal length

•              connecting N given points

doesn't work

for large N
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Copyright © 2000, Twentieth Century FoxCopyright © 1990, Matt Groening

P vs. NP

Does P = NP ?
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Automating creativity

Q.  Being creative vs. appreciating creativity?


Ex.  Mozart composes a piece of music; our neurons appreciate it.
Ex.  Wiles proves a deep theorem; a colleague referees it.
Ex.  Boeing designs an efficient airfoil; a simulator verifies it.
Ex.  Einstein proposes a theory; an experimentalist validates it.

 
 
 
 
 
 
 
 
Computational analog.  Does P = NP?

creative ordinary
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P.  Class of search problems solvable in poly-time.
NP.  Class of all search problems.
 
 
 
 
Two worlds.

 
 
 
 
If P = NP…  Poly-time algorithms for SAT, ILP, TSP, FACTOR, …
If P ≠ NP…  Would learn something fundamental about our universe.

 
Overwhelming consensus.  P ≠ NP.

The central question

Does P = NP ?   [Can you always avoid brute-force searching and do better]

NP

P

P ≠ NP

P = NP

P = NP
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P.  Class of search problems solvable in poly-time.
NP.  Class of all search problems.

 
 
 
 
Millennium prize.  $1 million for resolution of P = NP problem.

The central question

Does P = NP ?   [Can you always avoid brute-force searching and do better]



INTRACTABILITY

‣ Search problems

‣ P vs. NP

‣ Classifying problems

‣ NP-completeness
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A key problem: satisfiability

SAT.  Given a system of boolean equations, find a solution. 
 
 
 
 
 
 
 
 
Key applications.  

• Automatic verification systems for software.


• Electronic design automation (EDA) for hardware.


• Mean field diluted spin glass model in physics.


• ... 

x'1  or x2  or x3   = true

x1 or x'2  or x3    = true

x'1 or x'2  or x'3  = true 

x'1 or x'2  or x4   = true
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Q.  How to solve an instance of SAT with n variables?
A.  Exhaustive search:  try all 2n truth assignments.

 
Q.  Can we do anything substantially more clever?
Conjecture.  No poly-time algorithm for SAT. 

Exhaustive search

"intractable"
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Classifying problems

Q.  Which search problems are in P?
A.  No easy answers (we don't even know whether P = NP).

 
 
Problem X poly-time reduces to problem Y if X can be solved with:


• Polynomial number of standard computational steps.


• Polynomial number of calls to Y. 
 
 
 
 
 
 

Consequence.  If SAT poly-time reduces to Y, then we conclude that Y 
is (probably) intractable.

 
instance I  

(of X)
solution S to I

Algorithm 
for Y

Algorithm for X

Cook reduction



SAT.  Given a system of boolean equations, find a solution.

 
 
 
 
 
 
ILP.  Given a system of linear inequalities, find a 0-1 solution.

  1   ≤   (1 − x1 )  +  x2  +  x3


   1   ≤   x1  +  (1 − x2 )  +  x3


   1   ≤   (1 − x1 )  +  (1 − x2 )  +  (1 − x3 )

   1   ≤   (1 − x1 )  +  (1 − x2 )  +  x4
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SAT poly-time reduces to ILP

solution to this ILP instance gives solution to original SAT instance

can to reduce any SAT problem to this form

x'1  or x2  or x3   = true


x1 or x'2  or x3    = true


x'1 or x'2  or x'3  = true 


x'1 or x'2  or x4   = true
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More poly-time reductions from boolean satisfiability

SAT

VERTEX COVER

HAM-CYCLECLIQUE

IND-SET3-COLOR

EXACT COVER

SUBSET-SUM

PARTITION

ILP

KNAPSACK

Dick Karp 
'85 Turing award

SAT reduces to ILP

TSP

BIN-PACKING

Conjecture.  SAT is intractable.

Implication.  All of these problems are intractable.

HAM-PATH
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Still more reductions from SAT

Aerospace engineering.  Optimal mesh partitioning for finite elements.

Biology.  Phylogeny reconstruction.

Chemical engineering.  Heat exchanger network synthesis.

Chemistry.  Protein folding.

Civil engineering.  Equilibrium of urban traffic flow.

Economics.  Computation of arbitrage in financial markets with friction.

Electrical engineering.  VLSI layout. 


Environmental engineering.  Optimal placement of contaminant sensors.

Financial engineering.  Minimum risk portfolio of given return.

Game theory.  Nash equilibrium that maximizes social welfare.

Mathematics.  Given integer a1, …, an, compute

Mechanical engineering.  Structure of turbulence in sheared flows.

Medicine.  Reconstructing 3d shape from biplane angiocardiogram.

Operations research.  Traveling salesperson problem.

Physics.  Partition function of 3d Ising model.

Politics.  Shapley-Shubik voting power.

Recreation.  Versions of Sudoko, Checkers, Minesweeper, Tetris.

Statistics.  Optimal experimental design.

plus over 6,000 scientific papers per year



INTRACTABILITY

‣ Search problems

‣ P vs. NP

‣ Classifying problems

‣ NP-completeness
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NP-completeness

Def. An NP problem is NP-complete if every problem in NP poly-time 
reduce to it.

 
Proposition.  [Cook 1971, Levin 1973]  SAT is NP-complete.
 
Extremely brief proof sketch: 

• Convert non-deterministic TM notation to SAT notation.


• If you can solve SAT, you can solve any problem in NP.


 
 
 
 
 
 
Corollary.   Poly-time algorithm for SAT  iff  P = NP.

every NP problem is a

SAT problem in disguise

SAT instancenondeterministic TM
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You NP-complete me
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Implications of Cook-Levin theorem

SAT

IND-SET VERTEX COVER

HAM-CYCLECLIQUE

3-COLOR

EXACT COVER

SUBSET-SUM

PARTITION

ILP

KNAPSACK

TSP

BIN-PACKING

3-COLOR  

reduces to SAT

Stephen Cook 
'82 Turing award

All of these problems (and many, many more)

poly-time reduce to SAT.

Leonid Levin

HAM-PATH
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Implications of Karp + Cook-Levin

SAT

VERTEX COVER

CLIQUE

3-COLOR

EXACT COVER

SUBSET-SUM

PARTITION

KNAPSACK

SAT  

reduces to 3-COLOR

TSP

BIN-PACKING

3-COLOR  

reduces to SAT

All of these problems are NP-complete; they 
are manifestations of the same really hard 

problem.

IND-SET

ILP

+

HAM-CYCLE

HAM-PATH
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Implications of NP-Completeness

Implication.  [SAT captures difficulty of whole class NP]
• Poly-time algorithm for SAT iff  P = NP.


• No poly-time algorithm for some NP problem  ⇒  none for SAT.


 
Remark.  Can replace SAT with any of Karp's problems.

 
 
Proving a problem NP-complete guides scientific inquiry.

• 1926:  Ising introduces simple model for phase transitions.


• 1944:  Onsager finds closed form solution to 2D version in tour de force.


• 19xx:  Feynman and other top minds seek 3D solution.


• 2000:  3D-ISING proved NP-complete. a holy grail of statistical mechanics

search for closed formula appears doomed
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Two worlds (more detail)

Overwhelming consensus (still).  P ≠ NP.

 
 
 
 
 
 
 
 
Why we believe P ≠ NP.

NP

P NPC

P ≠ NP

P = NP

P = NP

“ We admire Wiles' proof of Fermat's last theorem, the scientific theories of Newton, 

Einstein, Darwin, Watson and Crick, the design of the Golden Gate bridge and the 

Pyramids, precisely because they seem to require a leap which cannot be made by 

everyone, let alone a by simple mechanical device. ”        —   Avi Wigderson
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Summary

P.  Class of search problems solvable in poly-time.

NP.  Class of all search problems, some of which seem wickedly hard.
NP-complete.  Hardest problems in NP.

Intractable.  Problem with no poly-time algorithm.
 
Many fundamental problems are NP-complete.

• SAT, ILP, HAMILTON-PATH, …


• 3D-ISING, …


 
Use theory a guide:

• A poly-time algorithm for an NP-complete problem would be a stunning 

breakthrough (a proof that P = NP).


• You will confront NP-complete problems in your career.


• Safe to assume that P ≠ NP and that such problems are intractable.


• Identify these situations and proceed accordingly.
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Exploiting intractability

Modern cryptography.

• Ex.  Send your credit card to Amazon.


• Ex.  Digitally sign an e-document.


• Enables freedom of privacy, speech, press, political association. 


 
RSA cryptosystem.

• To use:  multiply two n-bit integers.  [poly-time]

• To break:  factor a 2 n-bit integer.    [unlikely poly-time]

23 × 67 1,541

Multiply = EASY

Factor = HARD
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Challenge.  Factor this number.

 
 
 
 
 
 
 
Can't do it?  Create a company based on the difficulty of factoring.

Exploiting intractability

74037563479561712828046796097429573142593188889231289084936232638

97276503402826627689199641962511784399589433050212758537011896809

82867331732731089309005525051168770632990723963807867100860969625

37934650563796359
RSA-704 
($30,000 prize if you can factor)

RSA algorithm
RSA sold 
for $2.1 billion or design a t-shirt
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Exploiting intractability

FACTOR.  Given an n-bit integer x, find a nontrivial factor.

 
Q.  What is complexity of FACTOR?
A.  In NP, but not known (or believed) to be in P or NP-complete.

 
Q.  What if P = NP?
A.  Poly-time algorithm for factoring; modern e-conomy collapses.

 
 
 
Proposition.  [Shor 1994]  Can factor an n-bit integer in n3 steps 
on a "quantum computer.”

 
Q.  Do we still believe the extended Church-Turing thesis???
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Coping with intractability

Relax one of desired features.

• Solve arbitrary instances of the problem.


• Solve the problem to optimality.


• Solve the problem in poly-time.


 
Special cases may be tractable.

• Ex:  Linear time algorithm for 2-SAT.


• Ex:  Linear time algorithm for Horn-SAT.

at most two variables per equation

at most one un-negated variable per equation
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Coping with intractability

Relax one of desired features.

• Solve arbitrary instances of the problem.


• Solve the problem to optimality.


• Solve the problem in poly-time.


 
Develop a heuristic, and hope it produces a good solution.

• No guarantees on quality of solution.


• Ex. TSP assignment heuristics.


• Ex.  Metropolis algorithm, simulating annealing, genetic algorithms.


 
Approximation algorithm.  Find solution of provably good quality.

• Ex.  MAX-3SAT:  provably satisfy 87.5% as many clauses as possible.

but if you can guarantee to satisfy 87.51% as many clauses 
as possible in poly-time, then P = NP !



Relax one of desired features.

• Solve arbitrary instances of the problem.


• Solve the problem to optimality.


• Solve the problem in poly-time.


 
Complexity theory deals with worst case behavior.

• Instance(s) you want to solve may be "easy."


• Chaff solves real-world SAT instances with ~ 10K variable. 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Coping with intractability
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ABSTRACT 

Boolean Satisfiability is probably the most studied of 
combinatorial optimization/search problems. Significant effort 
has been devoted to trying to provide practical solutions to this 
problem for problem instances encountered in a range of 
applications in Electronic Design Automation (EDA), as well as 
in Artificial Intelligence (AI). This study has culminated in the 
development of several SAT packages, both proprietary and in 
the public domain (e.g. GRASP, SATO) which find significant 
use in both research and industry. Most existing complete solvers 
are variants of the Davis-Putnam (DP) search algorithm. In this 
paper we describe the development of a new complete solver, 
Chaff, which achieves significant performance gains through 
careful engineering of all aspects of the search – especially a 
particularly efficient implementation of Boolean constraint 
propagation (BCP) and a novel low overhead decision strategy. 
Chaff has been able to obtain one to two orders of magnitude 
performance improvement on difficult SAT benchmarks in 
comparison with other solvers (DP or otherwise), including 
GRASP and SATO.  
Categories and Subject Descriptors 
J6 [Computer-Aided Engineering]: Computer-Aided Design. 

General Terms 
Algorithms, Verification. 

Keywords 
Boolean satisfiability, design verification. 

1. Introduction 
The Boolean Satisfiability (SAT) problem consists of 

determining a satisfying variable assignment, V, for a Boolean 
function, f, or determining that no such V exists.  SAT is one of 
the central NP-complete problems. In addition, SAT lies at the 
core of many practical application domains including EDA (e.g. 
automatic test generation [10] and logic synthesis [6]) and AI 
(e.g. automatic theorem proving).  As a result, the subject of 
practical SAT solvers has received considerable research 
attention, and numerous solver algorithms have been proposed 
and implemented. 

 
 
 
 
 
 
 
 
 
 

 Many publicly available SAT solvers (e.g. GRASP [8], 
POSIT [5], SATO [13], rel_sat [2], WalkSAT [9]) have been 
developed, most employing some combination of two main 
strategies: the Davis-Putnam (DP) backtrack search and heuristic 
local search.  Heuristic local search techniques are not 
guaranteed to be complete (i.e. they are not guaranteed to find a 
satisfying assignment if one exists or prove unsatisfiability); as a 
result, complete SAT solvers (including ours) are based almost 
exclusively on the DP search algorithm. 

1.1 Problem Specification 
Most solvers operate on problems for which f is specified in 

conjunctive normal form (CNF).  This form consists of the 
logical AND of one or more clauses, which consist of the logical 
OR of one or more literals.  The literal comprises the 
fundamental logical unit in the problem, being merely an 
instance of a variable or its complement.  (In this paper, 
complement is represented by ¬.)  All Boolean functions can be 
described in the CNF format.  The advantage of CNF is that in 
this form, for f to be satisfied (sat), each individual clause must 
be sat. 

1.2 Basic Davis-Putnam Backtrack Search 
We start with a quick review of the basic Davis-Putnam 

backtrack search. This is described in the following pseudo-code 
fragment: 
 
while (true) { 
  if (!decide()) // if no unassigned vars 
    return(satisifiable); 
  while (!bcp()) {  
    if (!resolveConflict()) 

return(not satisfiable); 
  } 
} 
 
bool resolveConflict() { 
  d = most recent decision not ‘tried both 
ways’; 
 
  if (d == NULL) // no such d was found 
    return false; 
       
  flip the value of d; 
  mark d as tried both ways; 
  undo any invalidated implications; 
  return true; 
} 
 

The operation of decide() is to select a variable that is 
not currently assigned, and give it a value.  This variable 
assignment is referred to as a decision.  As each new decision is 
made, a record of that decision is pushed onto the decision stack. 



Goal.  Find a simple path that visits every vertex exactly once.


Remark.  Euler path easy, but Hamilton path is NP-complete.

88

Hamilton path

visit every edge exactly once
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Hamilton path:  Java implementation

public class HamiltonPath

{

   private boolean[] marked;    // vertices on current path

   private int count = 0;       // number of Hamiltonian paths


   public HamiltonPath(Graph G)

   {

      marked = new boolean[G.V()];

      for (int v = 0; v < G.V(); v++)

         dfs(G, v, 1);

   }


   private void dfs(Graph G, int v, int depth)

   {

      marked[v] = true;

      if (depth == G.V()) count++;

      


      for (int w : G.adj(v))

         if (!marked[w]) dfs(G, w, depth+1);


      marked[v] = false;

  }

}

clean up

length of current path 
(depth of recursion)found one

backtrack if w is 
already part of path



That’s all, folks:  keep searching!
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The world’s longest path (Sendero de Chile):  9,700 km.
(originally scheduled for completion in 2010; now delayed until 2038)


