BBM 202 - ALGORITHMS

HACETTEPE UNIVERSITY

DEPT. OF COMPUTER ENGINEERING

INTRODUCTION TO UNDECIDABILITY

Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick
and K. Wayne of Princeton University.

Universality and computability

Fundamental questions

« What is a general-purpose computer?

* Are there limits on the power of digital computers?

* Are there limits on the power of machines we can build?

Pioneering work at Princeton in the 1930s.

David Hilbert
1862—1943

Asked the questions

4o /
Kurt Godel
1906-1978

Solved the math
problem

o

Alonzo Church
1903-1995

Solved the decision
problem

Alan Turing
1912-1954

Provided THE answers

Context: Mathematics and logic

: i . Principia Mathematics
Mathematics. Any formal system powerful enough to express arithmetic. DR

Zermelo-Fraenkel set theory

Complete. Can prove truth or falsity of any arithmetic statement.
Consistent. Cannot prove contradictions like 2 + 2 = 5.
Decidable. An algorithm exists to determine truth of every statement.

Q. (Hilbert, 1900) |Is mathematics complete and consistent?
A. (Godel's Incompleteness Theorem, 1931) NO (!ll)

Q. (Hilbert's Entscheidungsproblem) |s mathematics decidable?
A. (Church 1936, Turing 1936) NO ()

Universality

UTM: A simple and universal model of computation.

Definition. A task is computable if a Turing machine exists that computes it.

Theorem (Turing, 1936). It is possible to invent a single
machine which can be used to do any computable task.

LT TP T TRy TPty

Profound implications

o Any machine that can simulate a TM can simulate a universal Turing machine (UTM).
o Any machine that can simulate a TM can do any computable task.

 Don't need separate devices for solving scientific problems, playing music, email, . ..

A profound connection to the real worid

Church-Turing thesis. Turing machines can do anything that can be described by any
physically harnessable process of this universe: All computational devices are equivalent.

Remarks New model of computation or new physical process?
* A thesis, not a theorem. » Use simulation to prove equivalence.

* Not subject to proof. Example: TOY simulator in Java.

* /s subject to falsification. Example: Java compiler in TOY.

((

= Java

Implications
* No need to seek more powerful machines or languages.
* Enables rigorous study of computation (in this universe).

NO®

HALT®

e
;-—’/
— ---IIIIIIIEIIIIIIII---

Evidence in favor of the Church-Turing thesis

Evidence. Many, many models of computation have turned out to be equivalent (universal).

model of computation
enhanced Turing machines

untyped lambda calculus

recursive functions

unrestricted grammars
extended Lindenmayer systems
programming languages
random access machines
cellular automata
quantum computer
DNA computer
PCP systems

description
multiple heads, multiple tapes, 2D tape, nondeterminism
method to define and manipulate functions
functions dealing with computation on integers
iterative string replacement rules used by linguists
parallel string replacement rules that model plant growth
Java, C, C++, Perl, Python, PHP, Lisp, PostScript, Excel
registers plus main memory, e.qg., TOY, Pentium
cells which change state based on local interactions
compute using superposition of quantum states
compute using biological operations on DNA

string matching puzzles (stay tuned)

8 decades without a counterexample, and counting.

Post’s correspondence problem (PCP)

PCP. A family of puzzles, each based on a set of cards.
» N types of cards.

* No limit on the number of cards of each type.
e Each card has a top string and bottom string.

Does there exist an arrangement of cards with matching top and bottom strings?

(N ((N
BAB A AB BA
Example 1 (N = 4).
A ABA B B
\ 4\ \ 4\
0 1 2 3
~ N N N N)
A BA BAB AB A
Solution 1 (easy): YES.
ABA B A B ABA
N? e St w—r s—

Post’s correspondence problem (PCP)

PCP. A family of puzzles, each based on a set of cards.
* N types of cards.
* No limit on the number of cards of each type.
e Each card has a top string and bottom string.
Does there exist an arrangement of cards with matching top and bottom strings?

4 N [4 4
BAB A AB BA
Example 2 (N = 4).
A BAB B A
\ g\ \ \
0 1 2 3

Solution 2 (easy): NO. No way to match even the first character!

Post’s correspondence problem (PCP)

PCP. A family of puzzles, each based on a set of cards.
* N types of cards.
* No limit on the number of cards of each type.
» Each card has a top string and bottom string.
Does there exist an arrangement of cards with matching top and bottom strings?

Example 3 (created by Andrew Appel).

. N N N [4 N [e N N [N N
S| X BAB| [11A 1 [A] [Bl B] [1A]E
S[11111X][1X A Al 1 [B] [1B Al E
\. 4\ \, 4\ \ \ \ 4\ \, 4\ \,
0 1 2 3 4 5 6 7/ 8 9 10

Challenge for the bored: Find a solution that starts with a card of type 0.

Post’s correspondence problem (PCP)

PCP. A family of puzzles, each based on a set of cards.
» N types of cards.
* No limit on the number of cards of each type.
* Each card has a top string and bottom string.
Does there exist an arrangement of cards with matching top and bottom strings?

~ N N N N R C)
S Sem—t Sem— Se— S— N
0 1 2 3 4 N

A reasonable idea. Write a program to take N card types as input and solve PCP.

A surprising fact. It is not possible to write such a program.

Another impossible problem

Halting problem. Write a Java program that reads in code for a Java static method ()
and an input x, and decides whether or not ¥(x) results in an infinite loop.

Example 1 (easy). Example 2 (difficulty unknown).
public void f(int x) public void f(int x)
{ {
while (x !'= 1) while (x !'= 1) ,
{ { Involvelg Collqtz clonjecture
1f (X % 2 — 0) X = X / 2; 1f (X % 2 _ 0) X = X / 2; “«<—— (see Recursion lecture)
else X = 2% + 1; else X = 3*x + 1;
} }
} }
T f(7): 7221134175226134020105168421
Halts only if x is a positive power of 2 f(-17): -17 -50 -25 -74 -37 -110 -55 -164 -82 -41 -122 ... -17 ...

Next. A proof that it is not possible to write such a program.

Undecidability of the halting problem

Definition. A yes-no problem is undecidable if no Turing machine exists to solve it.
(A problem is computable if a Turing machine does exist that solves it.)

Theorem (Turing, 1936). The halting problem is undecidable.

Profound implications

* There exists a problem that no Turing machine can solve.

e There exists a problem that no computer can solve.

* There exist many problems that no computer can solve (stay tuned).

Warmup: self-referential statements

Liar paradox (dates back to ancient Greek philosophers).
 Divide all statements into two categories: true and false.
* Consider the statement "This statement is false.”

* |s it true? If so, then it is false, a contradiction.
e Is it false? If so, then it is true, a contradiction.

true false
2+2=4 2+2=99
The earth is round. The earth is flat.
Source of the difficulty: Self-reference. Starfish have no brains. Earthworms have 3 hearts.
Venus rotates clockwise. Saturn rotates clockwise.

This statement is false X This statement is false. X

Logical conclusion. Cannot label all statements as true or false.

Proof of the undecidability of the halting problem

Theorem (Turing, 1936). The halting problem is undecidable.

Proof outline.
* Assume the existence of a function halt(f, x) that solves the problem.

public boolean halt(String f, String x)
{ . .

if (/* something terribly clever */) return true; By ur?lverjc,ahty, may as w.eII use J'ava.

else return false: (If this exists, we could simulate it on a TM.)
}

* Arguments: A function f and input x, encoded as strings.
e Return value: true if f(x) halts and false if f(x) does not halt.
 halt(f, x) always halts.

* Proof idea: Reductio ad absurdum: if any logical argument based on an
assumption leads to an absurd statement, then the assumption is false.

Proof of the undecidability of the halting problem

Theorem (Turing, 1936). The halting problem is undecidable.

Proof. Solution to the problem
* Assume the existence of a function halt(f, x) ;{wbh’c boolean halt(String f, String x)
that solves the problem. if ¢ /* £0x) halts */) return true:
i i else return false;
* Create a function strange(f) that goes into an }
infinite loop if ¥(f) halts and halts otherwise.
e Call strange() with itself as argument. A client
o If strange(strange) halts, then F{’“b”C void strange(String T)
strange(strange) goes into an infinite loop. if (halt(f,))
while (true) { } // infinite loop
 If strange(strange) does not halt, then }

strange(strange) halts.

e Reductio ad absurdum. A contradiction

halts?

strange(strange) does not halt?

e halt(f, x) cannot exist.

Implications of undecidability

Primary implication. If you know that a problem is undecidable...

...don't try to solve it!

/Hey, Alice. We came up with a\
I great idea at our hackathon.

We're going for startup funding

~/(wnats the ideas)
' What's the idea?
/ ! t's t

/" An app that you can use to \
1 make sure that any app you
ownload won't hang your phone

(Umm | think thats
_ undecidable.

| ?j
L l/'Will your app

work on itself?
???\ N

Implications for programming systems

Q. Why is debugging difficult?
A. All of the following are undecidable.

Halting problem. Give a function f, does it halt on a given input x?
Totality problem. Give a function f, does it halt on every input x?

No-input halting problem. Give a function f with no input, does it halt?
Program equivalence. Do two functions f and g always return same value?

Uninitialized variables. Is the variable x initialized before it's used?
Dead-code elimination. Does this statement ever get executed?

T

Prove each by reduction from the halting problem: A solution would solve the halting problem.

Q. Why are program development environments complicated?
A. They are programs that manipulate programs.

Another undecidable problem

The Entscheidungsproblem (Hilbert, 1928) <«—— "Decision problem”

* Given a first-order logic with a finite number of additional axioms.

* |s the statement provable from the axioms using the rules of Iogic?__,,,...-----"""""' I |
.-"'--‘-— .-".--— I.’;

David Hilbert
1862-1943

)

Alonso Church
1903-1995

Lambda calculus
e Formulated by Church in the 1930s to address the Entscheidungsproblem.

. | f r f . : '{-
Also the basis of modern functional languages ;\' bg
HASKELL JAVA

Theorem (Church and Turing, 1936). The Entscheidungsproblem is undecidable.

Another undecidable problem

Post's correspondence problem (PCP)

PCP. A family of puzzles, each based on a set of cards.
» N types of cards.
* No limit on the number of cards of each type.
* Each card has a top string and bottom string.
Does there exist an arrangement of cards with matching top and bottom strings?

Jo3d3-C

A reasonable idea. Write a program to take N card types as input and solve PCP.

Theorem (Post, 1946). Post's correspondence problem is undecidable.

Examples of undecidability from computational mathematics

Hilbert's 10th problem Ex. 1 f(x,y.z) = 6x°yz> +3xy°> —x° — 10
 Given a multivariate polynomial f(x, y, z, ...). YES £(5.3.0) =0

* Does f have integral roots ? (Do there exist _
integers x, y, z, such that f(x, y, 2, ..) =02)_~¢

Ex. 2 flx,y)=x4+y*—3 NO

Definite integration

00
' . . cos(x) cos(x)) dx = T
 Given a rational function f(x) composed of Ex. 1~ 2 YES 1T e
polynomial and trigonometric functions.

COS
%) NO
1 —x-

o0
-Does/ H(x)dx exist?

— 0

Ex. 2

Examples of undecidability from computer science

Optimal data compression

e Find the shortest program to produce a given string.

e Find the shortest program to produce a given picture.

Virus identification

* |s this code equivalent to this known virus?

e Does this code contain a virus?

produced by a 34-line Java program

Private Sub AutoOpen()
On Error Resume Next
If System.PrivateProfileString("", CURRENT_USER\Software
\Microsoft\0ffice\9.0\Word\Security”,

"Level™) < "" Then
CommandBars("Macro™) .Controls("Security...") .Enabled = False

ﬁo} 50 = 1 To AddyBook.AddressEntries.Count
Peep = AddyBook.AddressEntries(x)
BreakUmOffASTice.Recipients.Add Peep
x =x + 1
If x > 50 Then oo = AddyBook.AddressEntries.Count
Next oo

BreakUmOffASTlice.Subject = "Important Message From " &
Application.UserName]
BreakUmOffASlice.Body = "Here is that document you asked for

... don't show anyone else ;-)"

Melissa virus (1999)

Turing’s key ideas

Turing's paper in the Proceedings of the London Mathematical Society
"On Computable Numbers, With an Application to the Entscheidungsproblem”
was one of the most impactful scientific papers of the 20th century.

P

: . . A‘Ian Turin
The Turing machine. A formal model of computation. 1912-195

Equivalence of programs and data. Encode both as strings and compute with both.

Universality. Concept of general-purpose programmable computers.
Church-Turing thesis. If it is computable at all, it is computable with a Turing machine.

Computability. There exist inherent limits to computation.

Turing's paper was published in 1936, ten years before Eckert and Mauchly worked on ENIAC (!)

Alan Turing: the father of computer science

It was not only a matter of abstract mathematics, not only a play of
symbols, for it involved thinking about what people did in the physical
world.... It was a play of imagination like that of Einstein or von
Neumann, doubting the axioms rather than measuring effects.... What
he had done was to combine such a naive mechanistic picture of the
mind with the precise logic of pure mathematics. His machines — soon

— John Hodges, in Alan Turing, the Enigma

NO®

UTM wre

A EEEE HEREEEE
A Universal Turing Machine

A Google data center

The ul : chind e J:e-igon us
wed the l 23 o

AI.AN TURING
XX
00600

ANDREW HODGES

Fow hoed

LT WONG RREATEN

b

