
BBM 202 - ALGORITHMS

ELEMENTARY 
SORTING ALGORITHMS

 
DEPT. OF COMPUTER ENGINEERING

Acknowledgement: The course slides are adapted from the slides prepared by  
R. Sedgewick and K. Wayne of Princeton University.

ELEMENTARY SORTING ALGORITHMS

‣ Sorting review

‣ Rules of the game

‣ Selection sort

‣ Insertion sort

‣ Shellsort

ELEMENTARY SORTING ALGORITHMS

‣ Sorting review

‣ Rules of the game

‣ Selection sort

‣ Insertion sort

‣ Shellsort

Ex. Student records in a university.

Sort. Rearrange array of N items into ascending order.

4

Sorting problem

item

key

Chen 3 A 991-878-4944 308 Blair

Rohde 2 A 232-343-5555 343 Forbes

Gazsi 4 B 766-093-9873 101 Brown

Furia 1 A 766-093-9873 101 Brown

Kanaga 3 B 898-122-9643 22 Brown

Andrews 3 A 664-480-0023 097 Little

Battle 4 C 874-088-1212 121 Whitman

Andrews 3 A 664-480-0023 097 Little

Battle 4 C 874-088-1212 121 Whitman

Chen 3 A 991-878-4944 308 Blair

Furia 1 A 766-093-9873 101 Brown

Gazsi 4 B 766-093-9873 101 Brown

Kanaga 3 B 898-122-9643 22 Brown

Rohde 2 A 232-343-5555 343 Forbes

Goal. Sort any type of data.

Ex 1. Sort random real numbers in ascending order.

5

Sample sort client

% java Experiment 10

0.08614716385210452

0.09054270895414829

0.10708746304898642

0.21166190071646818

0.363292849257276

0.460954145685913

0.5340026311350087

0.7216129793703496

0.9003500354411443

0.9293994908845686

public class Experiment

{

 public static void main(String[] args)

 {

 int N = Integer.parseInt(args[0]);

 Double[] a = new Double[N];

 for (int i = 0; i < N; i++)

 a[i] = StdRandom.uniform();

 Insertion.sort(a);

 for (int i = 0; i < N; i++)

 StdOut.println(a[i]);

 }

}

seems artificial, but stay tuned for an application

Goal. Sort any type of data.

Ex 2. Sort strings from file in alphabetical order.

6

Sample sort client

% more words3.txt

bed bug dad yet zoo ... all bad yes

% java StringSorter words3.txt

all bad bed bug dad ... yes yet zoo

public class StringSorter

{

 public static void main(String[] args)

 {

 String[] a = In.readStrings(args[0]);

 Insertion.sort(a);

 for (int i = 0; i < a.length; i++)

 StdOut.println(a[i]);

 }

}

Goal. Sort any type of data.

Ex 3. Sort the files in a given directory by filename.

7

% java FileSorter .

Insertion.class

Insertion.java

InsertionX.class

InsertionX.java

Selection.class

Selection.java

Shell.class

Shell.java

ShellX.class

ShellX.java

Sample sort client

import java.io.File;

public class FileSorter

{

 public static void main(String[] args)

 {

 File directory = new File(args[0]);

 File[] files = directory.listFiles();

 Insertion.sort(files);

 for (int i = 0; i < files.length; i++)

 StdOut.println(files[i].getName());

 }

}

8

Callbacks

Goal. Sort any type of data.

Q. How can sort() know how to compare data of type Double, String, and
java.io.File without any information about the type of an item's key?

Callback = reference to executable code.

• Client passes array of objects to sort() function.

• The sort() function calls back object's compareTo() method as needed.

Implementing callbacks.

• Java: interfaces.

• C: function pointers.

• C++: class-type functors.

• C#: delegates.

• Python, Perl, ML, Javascript: first-class functions.

Callbacks: roadmap

9

sort implementation

client object implementation

import java.io.File;

public class FileSorter

{

 public static void main(String[] args)

 {

 File directory = new File(args[0]);

 File[] files = directory.listFiles();

 Insertion.sort(files);

 for (int i = 0; i < files.length; i++)

 StdOut.println(files[i].getName());

 }

}

key point: no dependence  
on File data type

public static void sort(Comparable[] a)

{

 int N = a.length;

 for (int i = 0; i < N; i++)

 for (int j = i; j > 0; j--)

 if (a[j].compareTo(a[j-1]) < 0)

 exch(a, j, j-1);

 else break;

}

public class File

implements Comparable<File>

{

 ...

 public int compareTo(File b)

 {

 ...

 return -1;

 ...

 return +1;

 ...

 return 0;

 }

}

Comparable interface (built in to Java)

public interface Comparable<Item>

{

 public int compareTo(Item that);

}

A total order is a binary relation ≤ that satisfies

• Antisymmetry: if v ≤ w and w ≤ v, then v = w.

• Transitivity: if v ≤ w and w ≤ x, then v ≤ x.

• Totality: either v ≤ w or w ≤ v or both.

Ex.

• Standard order for natural and real numbers.

• Alphabetical order for strings.

• Chronological order for dates.

• ...

10

Total order

an intransitive relation

Implement compareTo() so that v.compareTo(w)
• Is a total order.

• Returns a negative integer, zero, or positive integer 
if v is less than, equal to, or greater than w, respectively.

• Throws an exception if incompatible types (or either is null).

Built-in comparable types. Integer, Double, String, Date, File, ...

User-defined comparable types. Implement the Comparable interface.

11

Comparable API

less than (return -1) equal to (return 0) greater than (return +1)

v

w v
w

v w

Date data type. Simplified version of java.util.Date.

public class Date implements Comparable<Date> 
{

 private final int month, day, year;

 public Date(int m, int d, int y) 
 {

 month = m;

 day = d;

 year = y;

 }

 public int compareTo(Date that) 
 {

 if (this.year < that.year) return -1;

 if (this.year > that.year) return +1;

 if (this.month < that.month) return -1;

 if (this.month > that.month) return +1;

 if (this.day < that.day) return -1;

 if (this.day > that.day) return +1;

 return 0;

 }

}

12

Implementing the Comparable interface

only compare dates 
to other dates

Helper functions. Refer to data through compares and exchanges.

Less. Is item v less than w ?

Exchange. Swap item in array a[] at index i with the one at index j.

13

Two useful sorting abstractions

private static boolean less(Comparable v, Comparable w)

{ return v.compareTo(w) < 0; }

private static void exch(Comparable[] a, int i, int j)

{

 Comparable swap = a[i];

 a[i] = a[j];

 a[j] = swap;

}

ELEMENTARY SORTING ALGORITHMS

‣ Sorting review

‣ Rules of the game

‣ Selection sort

‣ Insertion sort

‣ Shellsort

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

15

remaining entries

i

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

16

i min

remaining entries

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

17

i min

remaining entries

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

18

remaining entriesin final order

i

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

19

remaining entries

i min

in final order

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

20

in final order remaining entries

i min

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

21

remaining entriesin final order

i

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

22

remaining entries

i min

in final order

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

23

in final order remaining entries

i min

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

24

remaining entriesin final order

i

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

25

remaining entries

i min

in final order

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

26

in final order remaining entries

i min

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

27

in final order remaining entries

i

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

28

in final order remaining entries

i min

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

29

in final order remaining entries

i min

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

30

in final order remaining entries

i

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

31

in final order remaining entries

i min

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

32

in final order remaining entries

i min

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

33

in final order remaining entries

i

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

34

in final order remaining entries

i min

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

35

in final order remaining entries

i min

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

36

in final order remaining entries

i

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

37

in final order remaining entries

i min

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

38

in final order remaining entries

i min

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

39

in final order remaining entries

i

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

40

in final order remaining entries

i min

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

41

in final order remaining entries

i min

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

42

in final order

• In iteration i, find index min of smallest remaining entry.

• Swap a[i] and a[min].

Selection sort

43

sorted

44

Selection sort

Algorithm. ↑ scans from left to right.

Invariants.

• Entries the left of ↑ (including ↑) fixed and in ascending order.

• No entry to right of ↑ is smaller than any entry to the left of ↑.

in final order
•↑

45

Selection sort inner loop

To maintain algorithm invariants:

• Move the pointer to the right.

• Identify index of minimum entry on right.

• Exchange into position.

i++;

•↑

int min = i;

for (int j = i+1; j < N; j++)

 if (less(a[j], a[min]))

 min = j;

•↑•↑

exch(a, i, min);
•↑•↑

in final order

in final order

in final order

46

Selection sort: Java implementation

public class Selection

{

 public static void sort(Comparable[] a)

 {

 int N = a.length;

 for (int i = 0; i < N; i++)

 {

 int min = i; 
 for (int j = i+1; j < N; j++)

 if (less(a[j], a[min]))

 min = j;

 exch(a, i, min);

 }

 }

 private static boolean less(Comparable v, Comparable w)

 { /* as before */ }

 private static void exch(Comparable[] a, int i, int j)

 { /* as before */ }

}

Poll time!

47

What is the best case complexity of Selection Sort in terms of number
of comparisons?

a. ~N

b. ~N logN

c. ~N^2/2

d. ~N^2

Visit the following link to submit your answers:

https://forms.gle/oEj7U1dtuVXPFzvd6

https://forms.gle/oEj7U1dtuVXPFzvd6

Selection sort: mathematical analysis

Proposition. Selection sort uses (N – 1) + (N – 2) + ... + 1 + 0 ~ N 2 / 2

compares and N exchanges.

Running time insensitive to input. Quadratic time, even if input array is sorted.
Data movement is minimal. Linear number of exchanges.

48

Trace of selection sort (array contents just after each exchange)

 a[]
 i min 0 1 2 3 4 5 6 7 8 9 10

 S O R T E X A M P L E

 0 6 S O R T E X A M P L E
 1 4 A O R T E X S M P L E
 2 10 A E R T O X S M P L E
 3 9 A E E T O X S M P L R
 4 7 A E E L O X S M P T R
 5 7 A E E L M X S O P T R
 6 8 A E E L M O S X P T R
 7 10 A E E L M O P X S T R
 8 8 A E E L M O P R S T X
 9 9 A E E L M O P R S T X
10 10 A E E L M O P R S T X

 A E E L M O P R S T X

entries in gray are
in final position

entries in black
are examined to find

the minimum

entries in red
are a[min]

Selection sort: animations

49

http://www.sorting-algorithms.com/selection-sort

20 random items

in final order
not in final order

algorithm position

Selection sort: animations

50

in final order
not in final order

algorithm position

http://www.sorting-algorithms.com/selection-sort

20 partially-sorted items

ELEMENTARY SORTING ALGORITHMS

‣ Sorting review

‣ Rules of the game

‣ Selection sort

‣ Insertion sort

‣ Shellsort

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

52

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

53

i

not yet seen

• In iteration i, swap a[i] with each larger entry to its left.

Selection sort

54

in ascending order not yet seen

ij

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

55

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

56

not yet seenin ascending order

ij

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

57

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

58

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

59

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

60

i

not yet seenin ascending order

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

61

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

62

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

63

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

64

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

65

i

not yet seenin ascending order

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

66

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

67

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

68

i

not yet seenin ascending order

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

69

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

70

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

71

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

72

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

73

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

74

i

not yet seenin ascending order

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

75

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

76

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

77

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

78

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

79

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

80

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

81

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

82

i

not yet seenin ascending order

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

83

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

84

i

not yet seen

j

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

85

i

not yet seenin ascending order

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

86

ij

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

87

ij

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

88

ij

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

89

ij

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

90

ij

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

91

sorted

92

Insertion sort

Algorithm. ↑ scans from left to right.

Invariants.

• Entries to the left of ↑ (including ↑) are in ascending order.

• Entries to the right of ↑ have not yet been seen.

in order •↑ not yet seen

93

Insertion sort inner loop

To maintain algorithm invariants:

• Move the pointer to the right.

• Moving from right to left, exchange 
a[i] with each larger entry to its left.

for (int j = i; j > 0; j--)

 if (less(a[j], a[j-1]))

 exch(a, j, j-1);

 else break;

i++;

in order not yet seen

↑

in order not yet seen

↑↑↑↑

Insertion sort: Java implementation

94

public class Insertion

{

 public static void sort(Comparable[] a)

 {

 int N = a.length;

 for (int i = 0; i < N; i++)

 for (int j = i; j > 0; j--)

 if (less(a[j], a[j-1]))

 exch(a, j, j-1);

 else break;

 }

 private static boolean less(Comparable v, Comparable w)

 { /* as before */ }

 private static void exch(Comparable[] a, int i, int j)

 { /* as before */ }

}

Proposition. To sort a randomly-ordered array with distinct keys, 
insertion sort uses ~ ¼ N 2 compares and ~ ¼ N 2 exchanges on average.

Pf. Expect each entry to move halfway back.

Insertion sort: mathematical analysis

95

Trace of insertion sort (array contents just after each insertion)

 a[]
 i j 0 1 2 3 4 5 6 7 8 9 10

 S O R T E X A M P L E

 1 0 O S R T E X A M P L E
 2 1 O R S T E X A M P L E
 3 3 O R S T E X A M P L E
 4 0 E O R S T X A M P L E
 5 5 E O R S T X A M P L E
 6 0 A E O R S T X M P L E
 7 2 A E M O R S T X P L E
 8 4 A E M O P R S T X L E
 9 2 A E L M O P R S T X E
10 2 A E E L M O P R S T X

 A E E L M O P R S T X

entries in black
moved one position
right for insertion

entries in gray
do not move

entry in red
is a[j]

Insertion sort: animation

96

in order
not yet seen

algorithm position

http://www.sorting-algorithms.com/insertion-sort

40 random items

Poll time!

What is the worst case of Insertion Sort?

a. A randomly-ordered array with distinct elements

b. An array in ascending order with distinct elements

c. An array in descending order with distinct elements

Visit the following link to submit your answers:

https://forms.gle/f4CgsSrmj8gwT6sJA

97

https://forms.gle/f4CgsSrmj8gwT6sJA

Best case. If the array is in ascending order, insertion sort makes 
N - 1 compares and 0 exchanges.

Worst case. If the array is in descending order (and no duplicates), 
insertion sort makes ~ ½ N 2 compares and ~ ½ N 2 exchanges.

Insertion sort: best and worst case

98

 X T S R P O M L E E A

 A E E L M O P R S T X

Insertion sort: animation

99

http://www.sorting-algorithms.com/insertion-sort

40 reverse-sorted items

in order
not yet seen

algorithm position

Def. An inversion is a pair of keys that are out of order.

Def. An array is partially sorted if the number of inversions is ≤ c N.

• Ex 1. A subarray of size 10 appended to a sorted subarray of size N.

• Ex 2. An array of size N with only 10 entries out of place.

Proposition. For partially-sorted arrays, insertion sort runs in linear time.

Pf. Number of exchanges equals the number of inversions.

Insertion sort: partially-sorted arrays

100

 A E E L M O T R X P S

•T-R T-P T-S R-P X-P X-S

(6 inversions)

number of compares = exchanges + (N – 1)

Insertion sort: animation

101

http://www.sorting-algorithms.com/insertion-sort

40 partially-sorted items

in order
not yet seen

algorithm position

ELEMENTARY SORTING ALGORITHMS

‣ Sorting review

‣ Rules of the game

‣ Selection sort

‣ Insertion sort

‣ Shellsort

Idea. Move entries more than one position at a time by h-sorting the array.

Shellsort. [Shell 1959] h-sort the array for decreasing seq. of values of h.

Shellsort overview

an h-sorted array is h interleaved sorted subsequences

103

L E E A M H L E P S O L T S X R
L M P T
 E H S S
 E L O X
 A E L R

P H E L L S O R T E X A M S L E
P S
 H L
 E E
 L
 L

h = 4

h = 13

An h-sorted !le is h interleaved sorted !les

(8 additional files of size 1)

Shellsort trace (array contents after each pass)

P H E L L S O R T E X A M S L E

A E E E H L L L M O P R S S T X

L E E A M H L E P S O L T S X R

S H E L L S O R T E X A M P L Einput

13-sort

4-sort

1-sort

How to h-sort an array? Insertion sort, with stride length h.

Why insertion sort?
• Big increments ⇒ small subarray.

• Small increments ⇒ nearly in order. [stay tuned]

h-sorting

M O L E E X A S P R T

E O L M E X A S P R T

E E L M O X A S P R T

E E L M O X A S P R T

A E L E O X M S P R T

A E L E O X M S P R T

A E L E O P M S X R T

A E L E O P M S X R T

A E L E O P M S X R T

A E L E O P M S X R T

3-sorting an array

104

Shellsort example: increments 7, 3, 1

S O R T E X A M P L E

input

S O R T E X A M P L E

M O R T E X A S P L E

M O R T E X A S P L E

M O L T E X A S P R E

M O L E E X A S P R T

7-sort

M O L E E X A S P R T

E O L M E X A S P R T

E E L M O X A S P R T

E E L M O X A S P R T

A E L E O X M S P R T

A E L E O X M S P R T

A E L E O P M S X R T

A E L E O P M S X R T

A E L E O P M S X R T

3-sort

A E L E O P M S X R T

A E L E O P M S X R T

A E L E O P M S X R T

A E E L O P M S X R T

A E E L O P M S X R T

A E E L O P M S X R T

A E E L M O P S X R T

A E E L M O P S X R T

A E E L M O P S X R T

A E E L M O P R S X T

A E E L M O P R S T X

1-sort

A E E L M O P R S T X

result

105

106

Shellsort: intuition

Proposition. A g-sorted array remains g-sorted after h-sorting it.

Challenge. Prove this fact—it's more subtle than you'd think!

M O R T E X A S P L E

M O R T E X A S P L E

M O L T E X A S P R E

M O L E E X A S P R T

M O L E E X A S P R T

7-sort

M O L E E X A S P R T

E O L M E X A S P R T

E E L M O X A S P R T

E E L M O X A S P R T

A E L E O X M S P R T

A E L E O X M S P R T

A E L E O P M S X R T

A E L E O P M S X R T

A E L E O P M S X R T

A E L E O P M S X R T

3-sort

still 7-sorted

Shellsort: which increment sequence to use?

Powers of two. 1, 2, 4, 8, 16, 32, ...

No.

Powers of two minus one. 1, 3, 7, 15, 31, 63, ...

Maybe.

3x + 1. 1, 4, 13, 40, 121, 364, ...
OK. Easy to compute.

Sedgewick. 1, 5, 19, 41, 109, 209, 505, 929, 2161, 3905, ...

Good. Tough to beat in empirical studies.

=

Interested in learning more?

• See Section 6.8 of Algs, 3rd edition or Volume 3 of Knuth for details.

• Do a JP on the topic.

107

merging of (9 ⨉ 4i) – (9 ⨉ 2i) + 1 and 4i – (3 ⨉ 2i) + 1

public class Shell 
{ 
 public static void sort(Comparable[] a) 
 { 
 int N = a.length;

 int h = 1;

 while (h < N/3) h = 3*h + 1; // 1, 4, 13, 40, 121, 364, 1093, ...

 while (h >= 1) 
 { // h-sort the array.

 for (int i = h; i < N; i++) 
 { 
 for (int j = i; j >= h && less(a[j], a[j-h]); j -= h) 
 exch(a, j, j-h); 
 }

 h = h/3;

 } 
 } 

 private static boolean less(Comparable v, Comparable w) 
 { /* as before */ }

 private static boolean void(Comparable[] a, int i, int j)

 { /* as before */ }

}

Shellsort: Java implementation

108

insertion sort

3x+1 increment
sequence

move to next

increment

Shellsort: visual trace

109
Visual trace of shellsort

input

40-sorted

13-sorted

4-sorted

result

Shellsort: animation

110

h-sorted
current subsequence

algorithm position

50 random items

other elementshttp://www.sorting-algorithms.com/shell-sort

Shellsort: animation

111

http://www.sorting-algorithms.com/shell-sort

50 partially-sorted items

h-sorted
current subsequence

algorithm position

other elements

Proposition. The worst-case number of compares used by shellsort with
the 3x+1 increments is O(N 3/2).

Property. The number of compares used by shellsort with the 3x+1
increments is at most by a small multiple of N times the # of increments
used.

Remark. Accurate model has not yet been discovered (!)
112

Shellsort: analysis

measured in thousands

N compares N1.289 2.5 N lg N

5.000 93 58 106

10.000 209 143 230

20.000 467 349 495

40.000 1022 855 1059

80.000 2266 2089 2257

Why are we interested in shellsort?

Example of simple idea leading to substantial performance gains.

Useful in practice.

• Fast unless array size is huge.

• Tiny, fixed footprint for code (used in embedded systems).

• Hardware sort prototype.

Simple algorithm, nontrivial performance, interesting questions.

• Asymptotic growth rate?

• Best sequence of increments?

• Average-case performance?

Lesson. Some good algorithms are still waiting discovery.

113

open problem: find a better increment sequence

