BBM 202-ALGORITHMS

Dept. of Computer Engineering

Priority Queues and Heapsort

Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton University.

TODAY

- Heapsort
- API
- Elementary implementations
- Binary heaps
- Heapsort

Priority queue

Collections. Insert and delete items.Which item to delete?

Stack. Remove the item most recently added.
Queue. Remove the item least recently added.
Randomized queue. Remove a random item.
Priority queue. Remove the largest (or smallest) item.

operation argument	return value	
insert insert insert remove max insert insert insert	P	
remove max	Q	
insert insert insert	X	Q
remove max	P	X
	P	

Priority queue API

Requirement. Generic items are comparable.

Priority queue applications

- Event-driven simulation.
- Numerical computation.
- Data compression.
- Graph searching.
- Computational number theory.
- Artificial intelligence.
- Statistics.
- Operating systems.
- Discrete optimization.
- Spam filtering.
[customers in a line, colliding particles]
[reducing roundoff error]
[Huffman codes]
[Dijkstra's algorithm, Prim's algorithm]
[sum of powers]
[A* search]
[maintain largest M values in a sequence]
[load balancing, interrupt handling]
[bin packing, scheduling]
[Bayesian spam filter]

Generalizes: stack, queue, randomized queue.

Priority queue client example

Challenge. Find the largest M items in a stream of N items (N huge, M large).

- Fraud detection: isolate $\$ \$$ transactions.
- File maintenance: find biggest files or directories.

Constraint. Not enough memory to store N items.

```
% more tinyBatch.txt
Turing 6/17/1990 644.08
vonNeumann 3/26/2002 4121.85
Dijkstra 8/22/2007 2678.40
vonNeumann 1/11/1999 4409.74
Dijkstra 11/18/1995 837.42
Hoare 5/10/1993 3229.27
vonNeumann 2/12/1994 4732.35
Hoare 8/18/1992 4381.21
Turing 1/11/2002 66.10
Thompson 2/27/2000 4747.08
Turing 2/11/1991 2156.86
Hoare 8/12/2003 1025.70
vonNeumann 10/13/1993 2520.97
Dijkstra 9/10/2000 708.95
Turing 10/12/1993 3532.36
Hoare 2/10/2005 4050.20
```


Priority queue client example

Challenge. Find the largest M items in a stream of N items (N huge, M large).

Transaction data type is Comparable (ordered by \$\$)
order of growth of finding the largest M in a stream of N items

implementation	time	space
sort	$\mathrm{N} \log \mathrm{N}$	N
elementary PQ	M N	M
binary heap	$\mathrm{N} \log \mathrm{M}$	M
best in theory	N	M

Priority Queues and Heapsort

- Heapsort
- API
- Elementary implementations
- Binary heaps
- Heapsort

Priority queue: unordered and ordered array implementation

Priority queue: unordered array implementation

```
public class UnorderedMaxPQ<Key extends Comparable<Key>>
{
    private Key[] pq; // pq[i] = ith element on pq
    private int N; // number of elements on pq
    public UnorderedMaxPQ(int capacity)
    { pq = (Key[]) new Comparable[capacity]; }
    public boolean isEmpty()
    { return N == 0; }
    public void insert(Key x)
    { pq[N++] = x; }
    public Key delMax()
    {
        int max = 0;
        for (int i = 1; i < N; i++)
            if (less(max, i)) max = i;
        exch (max, N-1);
        return pq[--N];
    }
}
null out entry

\section*{Priority queue elementary implementations}

Challenge. Implement all operations efficiently.
order-of-growth of running time for priority queue with \(\mathbf{N}\) items
\begin{tabular}{|c|c|c|c|}
\hline implementation & insert & del max & \(\max\) \\
\hline unordered array & 1 & N & N \\
\hline ordered array & N & 1 & 1 \\
\hline goal & \(\log \mathrm{N}\) & \(\log \mathrm{N}\) & \(\log \mathrm{N}\) \\
\hline
\end{tabular}

\section*{Priority Queues and Heapsort}
- Heapsort
- API
- Elementary implementations
- Binary heaps
- Heapsort

\section*{Binary tree}

Binary tree. Empty or node with links to left and right binary trees.

Complete tree. Perfectly balanced, except for bottom level.


Property. Height of complete tree with \(N\) nodes is \(\lfloor\lg N\rfloor\).
Pf. Height only increases when \(N\) is a power of 2 .

\section*{A complete binary tree in nature}


\section*{Binary heap representations}

Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered binary tree.
- Keys in nodes.
- Parent's key no smaller than children's keys.

Array representation.
- Indices start at I.
- Take nodes in level order.
- No explicit links needed!


Heap representations

\section*{Binary heap properties}

Proposition. Largest key is a [1], which is root of binary tree.

Proposition. Can use array indices to move through tree.
- Parent of node at \(k\) is at \(k / 2\).
- Children of node at \(k\) are at \(2 k\) and \(2 k+1\).


\section*{Promotion in a heap}

Scenario. Child's key becomes larger key than its parent's key.

To eliminate the violation:
- Exchange key in child with key in parent.
- Repeat until heap order restored.
```

private void swim(int k)
{
while (k > 1 \&\& less(k/2, k))
{ exch (k,k/2);
k = k/2
parent of node at k is at k/2

```


Peter principle. Node promoted to level of incompetence.

\section*{Insertion in a heap}

Insert. Add node at end, then swim it up.
Cost. At most \(1+\lg N\) compares.
```

public void insert(Key x)
{
pq[++N] = x;
swim(N);
}

```


\section*{Demotion in a heap}

Scenario. Parent's key becomes smaller than one (or both) of its children's keys.
To eliminate the violation:
why not smaller child?
- Exchange key in parent with key in larger child.
- Repeat until heap order restored.
```

private void sink(int k)
{
while (2*k <= N)
{
int j = 2*k;
if (j < N \&\& less(j, j+1)) j++;
if (!less(k, j)) break;
exch(k, j);
k = j;
}
}

```


Top-down reheapify (sink)

Power struggle. Better subordinate promoted.

\section*{Delete the maximum in a heap}

Delete max. Exchange root with node at end, then sink it down. Cost. At most \(2 \lg N\) compares.
```

```
public Key delMax()
```

```
public Key delMax()
{
{
    Key max = pq[1];
    Key max = pq[1];
    exch(1, N--);
    exch(1, N--);
    sink(1);
    sink(1);
    pq[N+1]= null;\longleftarrow
    pq[N+1]= null;\longleftarrow
    pq[N+1] = null;\longleftarrow
    pq[N+1] = null;\longleftarrow
}
```

```
}
```

```
```

prevent loitering

```


\section*{Binary heap operations}

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
heap ordered

\[
\begin{array}{llllllllll}
\text { T } & P & R & N & H & O & A & E & I & G
\end{array}
\]

\section*{Binary heap operations}

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
insert S

\[
\begin{array}{llllllllll}
\mathrm{T} & \mathrm{P} & \mathrm{R} & \mathrm{~N} & \mathrm{H} & \mathrm{O} & \mathrm{~A} & \mathrm{E} & \mathrm{I} & \mathrm{G}
\end{array}
\]

\section*{Binary heap operations}

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
insert S

\[
\begin{array}{lllllllllll}
T & P & R & N & H & O & A & E & I & G & S
\end{array}
\]

\section*{Binary heap operations}

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
insert S

\begin{tabular}{lllllllllll}
T & P & R & N & S & O & A & E & I & G & H \\
& & & & 5 & & & & & & 11
\end{tabular}

\section*{Binary heap operations}

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
insert S

\begin{tabular}{cccccccccc|c|c}
\hline T & S & R & N & P & O & A & E & I & G & H \\
\hline & 2 & & & 5 & & & & & & 11
\end{tabular}

\section*{Binary heap operations}

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
heap ordered

\[
\begin{array}{llllllllllll}
\text { T } & \mathrm{S} & \mathrm{R} & \mathrm{~N} & \mathrm{P} & \mathrm{O} & A & E & \mathrm{I} & \mathrm{G} & \mathrm{H}
\end{array}
\]

\section*{Binary heap operations}

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
remove the maximum

\[
\begin{array}{lllllllllll}
\hline T & S & R & N & P & O & A & E & I & G & H \\
\hline 1 & & & & & & & & & &
\end{array}
\]

\section*{Binary heap operations}

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
remove the maximum


\section*{Binary heap operations}

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
remove the maximum

\begin{tabular}{l|l|l|l|l|l|l|l|l|l|}
\hline\(H\) & \(S\) & \(R\) & \(N\) & \(P\) & \(O\) & \(A\) & \(E\) & \(I\) & \(G\) \\
\hline 1 & & & \\
\hline
\end{tabular}

\section*{Binary heap operations}

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
remove the maximum

\begin{tabular}{l|l|l|l|l|l|l|l|l}
\(H\) & \(S\) & \(R\) & \(N\) & \(P\) & \(O\) & \(A\) & \(E\) & \(I\) \\
\(G\) & \(T\)
\end{tabular}

\section*{Binary heap operations}

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
remove the maximum

\begin{tabular}{lllllllllll} 
S & \(H\) & \(R\) & \(N\) & \(P\) & \(O\) & \(A\) & \(E\) & \(I\) & \(G\) & \(T\) \\
1 & 2 & & & & & & & & &
\end{tabular}

\section*{Binary heap operations}

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
remove the maximum

\begin{tabular}{llll|l|l|l|l|l|l|}
\hline S & P & R & N & H & O & A & E & I & G \\
\hline 1 & 2 & & & 5 & & T
\end{tabular}

\section*{Binary heap operations}

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
heap ordered

\[
\begin{array}{llllllllll}
\text { S } & P & R & N & H & O & A & E & I & G
\end{array}
\]

\section*{Binary heap operations}

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
remove the maximum

\begin{tabular}{l|l|l|l|l|l|l|l|l|l} 
S & \(P\) & \(R\) & \(N\) & \(H\) & \(O\) & \(A\) & \(E\) & \(I\) & \(G\) \\
\hline
\end{tabular}

\section*{Binary heap operations}

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
remove the maximum

\begin{tabular}{l|l|l|l|l|l|l|l} 
S & P & R & N & H & O & A & E \\
\hline
\end{tabular}

1

\section*{Binary heap operations}

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
remove the maximum

\begin{tabular}{c|c|c|c|c|c|c|c|c|c|}
\hline G & P & R & N & H & O & A & E & I & S \\
\hline 1 & & & & & & & \\
\hline
\end{tabular}

\section*{Binary heap operations}

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
remove the maximum


\section*{Binary heap operations}

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
remove the maximum

\begin{tabular}{llllllllll}
\(R\) & \(P\) & \(G\) & \(N\) & \(H\) & \(O\) & \(A\) & \(E\) & \(I\) & \(S\) \\
\hline 1 & & 3 & & & & & & & \\
\hline
\end{tabular}

\section*{Binary heap operations}

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
remove the maximum

\begin{tabular}{l|l|l|l|l|l|l|l|l|l|}
\hline\(R\) & \(P\) & \(O\) & \(N\) & \(H\) & \(G\) & \(A\) & \(E\) & \(I\) & \(S\) \\
\hline 1 & & 3 & & & 6 & & & & \\
\hline
\end{tabular}

\section*{Binary heap operations}

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
heap ordered

\[
\begin{array}{llllllllll}
\text { R } & P & O & N & H & G & A & E & \text { I }
\end{array}
\]

\section*{Binary heap operations}

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
insert S

\[
\begin{array}{llllllllll}
R & P & O & N & H & G & A & E & I & S
\end{array}
\]

\section*{Binary heap operations}

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
insert S

\[
\begin{array}{llllllllll}
R & P & O & N & H & G & A & E & I & S
\end{array}
\]

\section*{Binary heap operations}

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
insert S

\begin{tabular}{lllllllllll}
\(R\) & \(P\) & \(O\) & \(N\) & \(S\) & \(G\) & \(A\) & \(E\) & \(I\) & \(H\) \\
\hline & & & & 5 & & & & & 10
\end{tabular}

\section*{Binary heap operations}

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
insert S

\begin{tabular}{llllllllll}
\(R\) & \(S\) & \(O\) & \(N\) & P & G & A & E & I & H \\
\hline & 2 & & & 5 & & & & & 10
\end{tabular}

\section*{Binary heap operations}

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
insert S

\begin{tabular}{lllllllllll} 
S & R & O & N & P & G & A & E & I & H \\
\hline 1 & 2 & & & 5 & & & & & 10
\end{tabular}

\section*{Binary heap operations}

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
heap ordered

\[
\begin{array}{lllllllllll}
S & R & O & N & P & G & A & E & I & H
\end{array}
\]

\section*{Binary heap: Java implementation}
```

public class MaxPQ<Key extends Comparable<Key>>
{
private Key[] pq;
private int N;
public MaxPQ(int capacity)
{ pq = (Key[]) new Comparable[capacity+1]; }
public boolean isEmpty()
{ return N == 0; }
public void insert(Key key)
{ /* see previous code */ }
public Key delMax()
{ /* see previous code */ }
private void swim(int k)
{ /* see previous code */ }
private void sink(int k)
{ /* see previous code */ }
private boolean less(int i, int j)
{ return pq[i].compareTo(pq[j]) < 0; }
private void exch(int i, int j)
{ Key t = pq[i]; pq[i] = pq[j]; pq[j] = t; }
}

```

\section*{Priority queues implementation cost summary}
order-of-growth of running time for priority queue with \(\mathbf{N}\) items
\begin{tabular}{|c|c|c|c|c|}
\hline implementation & insert & del max & max & \\
\hline unordered array & 1 & N & N & \\
\hline ordered array & N & 1 & 1 & \\
\hline binary heap & \(\log N\) & \(\log N\) & 1 & \\
\hline d-ary heap & \(\log _{d} N\) & \(d \log _{d} N\) & 1 & \\
\hline Fibonacci & 1 & \(\log \mathrm{N}+\) & 1 & \\
\hline impossible & 1 & 1 & 1 & why impossible? \\
\hline
\end{tabular}

\section*{Binary heap considerations}

Immutability of keys.
- Assumption: client does not change keys while they're on the PQ.
- Best practice: use immutable keys.

Underflow and overflow.
- Underflow: throw exception if deleting from empty PQ.
- Overflow: add no-arg constructor and use resizing array.
leads to \(\log N\)
Minimum-oriented priority queue.
amortized time per op
- Replace less() with greater().
- Implement greater ().

Other operations.
- Remove an arbitrary item.
- Change the priority of an item.

\section*{Immutability: implementing in Java}

Data type. Set of values and operations on those values. Immutable data type. Can't change the data type value once created.


Immutable. String, Integer, Double, Color, Vector, Transaction, Point2D. Mutable. StringBuilder, Stack, Counter, Java array.

\section*{Immutability: properties}

Data type. Set of values and operations on those values. Immutable data type. Can't change the data type value once created.

Advantages.
- Simplifies debugging.
- Safer in presence of hostile code.
- Simplifies concurrent programming.

- Safe to use as key in priority queue or symbol table.

Disadvantage. Must create new object for each data type value.
" Classes should be immutable unless there's a very good reason to make them mutable.... If a class cannot be made immutable, you should still limit its mutability as much as possible. "
- Joshua Bloch (Java architect)


\section*{Priority Queues and Heapsort}
- Heapsort
- API
- Elementary implementations
- Binary heaps
- Heapsort

\section*{Heapsort}

Basic plan for in-place sort.
- Create max-heap with all \(N\) keys.
- Repeatedly remove the maximum key.

in arbitrary order
\(\underset{\substack{\text { build a max-heap } \\ \text { (in place) }}}{\longrightarrow}\)


\section*{Heapsort}

Starting point. Array in arbitrary order.
we assume array entries are indexed 1 to N

\begin{tabular}{cccccccccccc|}
S & O & R & T & E & X & A & M & P & L & E \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11
\end{tabular}

\section*{Heapsort}

Heap construction. Build max heap using bottom-up method.

\begin{tabular}{c|c|c|c|c|c|c|c|c|c|c|}
S & O & R & T & E & X & A & M & P & L & E \\
\hline & & & & 7 & 8 & 9 & 10 & 11
\end{tabular}

\section*{Heapsort}

Heap construction. Build max heap using bottom-up method.
sink 5

\[
\begin{array}{l|l|l|l|l|l|l|l|l|l|l}
\mathrm{S} & \mathrm{O} & \mathrm{R} & \mathrm{~T} & \mathrm{E} & \mathrm{X} & \mathrm{~A} & \mathrm{M} & \mathrm{P} & \mathrm{~L} & \mathrm{E} \\
\hline
\end{array}
\]

\section*{Heapsort}

Heap construction. Build max heap using bottom-up method.
sink 5


\section*{Heapsort}

Heap construction. Build max heap using bottom-up method.
sink 5

\[
\begin{array}{lllllllllll}
S & O & R & T & L & X & A & M & P & E & E
\end{array}
\]

\section*{Heapsort}

Heap construction. Build max heap using bottom-up method.
sink 4

\begin{tabular}{l|l|l|l|l|l|l|l|l|l} 
S & O & R & T & L & X & A & M & P & E \\
\hline
\end{tabular}

\section*{Heapsort}

Heap construction. Build max heap using bottom-up method.
sink 4

\[
\begin{array}{l|l|l|l|l|l|l|l|l|l}
\hline S & O & R & T & L & X & A & M & P & E
\end{array}
\]

\section*{Heapsort}

Heap construction. Build max heap using bottom-up method.
sink 3

\[
\begin{array}{llllllllll|l}
S & O & R & T & L & X & A & M & P & E & E \\
\hline
\end{array}
\]

\section*{Heapsort}

Heap construction. Build max heap using bottom-up method.
sink 3

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline S & 0 & \(X\) & T & L & R & A & M & P & \(E\) & E \\
\hline & & 3 & & & 6 & & & & & \\
\hline
\end{tabular}

\section*{Heapsort}

Heap construction. Build max heap using bottom-up method.
sink 3

\[
\begin{array}{l|l|l|l|l|l|l|l|l}
\hline S & O & X & T & L & A & A & M & P \\
\hline
\end{array}
\]

\section*{Heapsort}

Heap construction. Build max heap using bottom-up method.
sink 2

\[
\begin{array}{l|llllllllll}
\mathrm{S} & \mathrm{O} & \mathrm{X} & \mathrm{~T} & \mathrm{~L} & \mathrm{R} & \mathrm{~A} & \mathrm{M} & \mathrm{P} & \mathrm{E} & \mathrm{E} \\
& 2 & & & & & & & & &
\end{array}
\]

\section*{Heapsort}

Heap construction. Build max heap using bottom-up method.
sink 2

\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|}
\hline S & T & X & O & L & R & A & M & P & E & E \\
\hline & 2 & & 4 & & & & & & & \\
\hline
\end{tabular}

\section*{Heapsort}

Heap construction. Build max heap using bottom-up method.
sink 2

\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|}
\hline S & T & X & P & L & R & A & M & O & E & E \\
\hline & 2 & & 4 & & & & & 9 & & \\
\hline
\end{tabular}

\section*{Heapsort}

Heap construction. Build max heap using bottom-up method.
sink 2

\[
\begin{array}{l|llllllllll}
\text { S } & \mathrm{T} & \mathrm{X} & \mathrm{P} & \mathrm{~L} & \mathrm{R} & \mathrm{~A} & \mathrm{M} & \mathrm{O} & \mathrm{E} & \mathrm{E}
\end{array}
\]

\section*{Heapsort}

Heap construction. Build max heap using bottom-up method.
sink 1

\[
\begin{array}{lllllllllll}
\text { S } & \text { T } & \text { X } & \text { P } & \text { L } & \text { R } & \text { A } & \text { M } & \text { O } & \text { E } & \text { E } \\
\hline 1 & & & & & & & & & &
\end{array}
\]

\section*{Heapsort}

Heap construction. Build max heap using bottom-up method.
sink 1

\[
\begin{array}{l|l|l|l|l|l|l|l|l|l}
\hline X & T & S & P & L & R & A & M & O & E
\end{array}
\]

\section*{Heapsort}

Heap construction. Build max heap using bottom-up method.

\[
\begin{array}{l|llllllllll}
X & T & S & P & L & R & A & M & O & E & E
\end{array}
\]

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 11

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline\(X\) & \(T\) & \(S\) & \(P\) & \(L\) & \(R\) & \(A\) & \(M\) & \(O\) & \(E\) & \(E\) \\
\hline 1 & & & & & \\
\hline
\end{tabular}

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 11

\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l}
E & T & S & P & L & R & A & M & O & E & X \\
\hline 1 & & & & &
\end{tabular}

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
sink 1

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & E T & S & P & L & R & A & M & 0 & E & x \\
\hline
\end{tabular}

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
sink 1

\[
\begin{array}{l|l|l|l|l|l|l|l|l|l}
\hline \text { T } & \mathrm{E} & \mathrm{~S} & \mathrm{P} & \mathrm{~L} & \mathrm{R} & \mathrm{~A} & \mathrm{M} & \mathrm{O} & \mathrm{E}
\end{array} \mathrm{X}
\]

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
sink 1

\begin{tabular}{lllllllll|l|l}
T & P & S & E & L & R & A & M & O & E & X \\
\hline 1 & 2 & & 4 & & & & & & &
\end{tabular}

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
sink 1

\begin{tabular}{llllllllll|l|}
\hline T & P & S & O & L & R & A & M & E & E & X \\
\hline 1 & 2 & & 4 & & & & & 9 & & \\
\hline
\end{tabular}

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.

\[
\begin{array}{l|l|l|l|l|l|l|lll} 
& T & P & S & O & L & R & A & M & E
\end{array} \quad E \quad X
\]

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 10

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline T & P & S & O & L & R & A & M & E & E & X \\
\hline 1 & & & & & & & & & 10 & \\
\hline
\end{tabular}

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 10

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline E & P & S & O & L & R & A & M & E & T & X \\
\hline 1 & & & & & & & & & & 10 \\
\hline
\end{tabular}

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
sink 1

\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l} 
E & P & S & O & L & R & A & M & E & T & X
\end{tabular}

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
sink 1

\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|}
\hline\(S\) & \(P\) & \(E\) & \(O\) & \(L\) & \(R\) & \(A\) & \(M\) & \(E\) & \(T\) & \(X\) \\
\hline 1 & & 3 & & & & & & & & \\
\hline
\end{tabular}

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
sink 1

\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|}
\hline S & P & R & O & L & E & A & M & E & T & X \\
\hline 1 & & 3 & & & 6 & & & & &
\end{tabular}

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.

\[
\begin{array}{l|l|l|l|l|l|l|ll}
\mathrm{S} & \mathrm{P} & \mathrm{R} & \mathrm{O} & \mathrm{~L} & \mathrm{E} & \mathrm{~A} & \mathrm{M} & \mathrm{E} \\
\hline
\end{array}
\]

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 9

\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|}
\hline S & P & R & O & L & E & A & M & E & T & X \\
\hline 1 & & & & & & & & & \\
\hline
\end{tabular}

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 9


\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
sink 1

\begin{tabular}{ll|l|l|l|l|l|l|l|l}
\hline E & P & R & O & L & E & A & M & S & T \\
\hline
\end{tabular}

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
sink 1

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline\(R\) & \(P\) & \(E\) & \(O\) & \(L\) & \(E\) & \(A\) & \(M\) & \(S\) & \(T\) & \(X\) \\
\hline
\end{tabular}

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.

\[
\begin{array}{l|l|l|l|l|l|l|l|l|l}
\hline R & P & E & O & L & E & A & M & S & T
\end{array}
\]

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 8

\begin{tabular}{l|l|l|l|l|l|l|l|l|l|}
\hline\(R\) & P & E & O & L & E & A & M & S & T
\end{tabular} X

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 8

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline\(M\) & \(P\) & \(E\) & \(O\) & \(L\) & \(E\) & \(A\) & \(R\) & \(S\) & \(T\) & \(X\) \\
\hline 1 & & & & & & & 8 & & & \\
\hline
\end{tabular}

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
sink 1

\[
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l}
\hline \text { M } & \text { P } & \text { E } & \text { O } & \text { L } & \text { E } & \text { A } & \text { R } & \text { S } & \text { T } & \text { X } \\
\hline 1 & & & & & & & & & & \\
\hline
\end{array}
\]

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
sink 1

\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|}
\hline\(P\) & M & E & O & L & E & A & R & S & T & X \\
\hline 1 & 2 & & & & & & & & & \\
\hline
\end{tabular}

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
sink 1

\begin{tabular}{l|l|l|l|l|l|l|l|l|l|}
\hline\(P\) & O & E & M & L & E & A & R & S & T \\
\hline 1 & 2 & & 4 & & & & & & \\
\hline
\end{tabular}

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.

\[
\begin{array}{ll|l|l|l|l|l|ll}
\text { P } & O & E & M & L & E & A & R & S \\
\hline
\end{array}
\]

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 7

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline P & O & E & M & L & E & A & R & S & T & X \\
\hline 1 & & & & & & 7 & & & & \\
\hline
\end{tabular}

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 7

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline A & O & E & M & L & E & P & R & S & T & X \\
\hline 1 & & & & & & 7 & & & & \\
\hline
\end{tabular}

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
sink 1


\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
sink 1


\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
sink 1


\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
sink 1

\[
\begin{array}{l|l|l|l|l|l|l|l|l}
O & M & E & A & L & E & P & R & S \\
\hline
\end{array}
\]

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 6


\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 6


\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
sink 1


\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
sink 1


\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
sink 1


\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.


\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 5


P
\(\begin{array}{llll}R & S & T\end{array}\)
\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|}
\hline\(M\) & \(L\) & \(E\) & \(A\) & \(E\) & \(O\) & \(P\) & \(R\) & \(S\) & \(T\) & \(X\) \\
\hline 1 & & & & 5 & & & & & &
\end{tabular}

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 5


P
\(\begin{array}{llll}R & S & T\end{array}\)
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline E & L & E & A & M & O & P & R & S & T & X \\
\hline 1 & \multicolumn{5}{|l|}{} & \\
\hline
\end{tabular}

\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
sink 1


\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
sink 1


\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.


\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 4


\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 4


\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
sink 1


\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
sink 1


\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.


\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 3


\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 3


\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
sink 1


\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.


\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 2


\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 2


\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.


\section*{Heapsort}

Sortdown. Repeatedly delete the largest remaining item.
end of sortdown phase


\section*{Heapsort}

Ending point. Array in sorted order.


\section*{Heapsort: heap construction}

First pass. Build heap using bottom-up method.
```

for (int k = N/2; k >= 1; k--)
sink(a, k, N);

```


\section*{Heapsort: sortdown}

\section*{Second pass.}
- Remove the maximum, one at a time.
- Leave in array, instead of nulling out.
```

while (N > 1)
{
exch(a, 1, N--);
sink(a, 1, N);
}

```


\section*{Heapsort: Java implementation}
```

public class Heap
{
public static void sort(Comparable[] pq)
{
int N = pq.length;
for (int k = N/2; k >= 1; k--)
sink(pq, k, N);
while (N > 1)
{
exch(pq, 1, N);
sink(pq, 1, --N);
}
}
private static void sink(Comparable[] pq, int k, int N)
{ /* as before */ }
private static boolean less(Comparable[] pq, int i, int j)
{ /* as before */ }
private static void exch(Comparable[] pq, int i, int j)
{ /* as before */
}
but convert from
1-based indexing to
0-base indexing

```

\section*{Heapsort: trace}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & [i] & & & & & & \\
\hline N & k & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline \multicolumn{2}{|l|}{initial values} & & S & 0 & R & T & E & X & A & M & P & L & E \\
\hline 11 & 5 & & S & 0 & R & T & L & X & A & M & P & E & E \\
\hline 11 & 4 & & S & 0 & R & T & L & X & A & M & P & E & E \\
\hline 11 & 3 & & S & 0 & X & T & L & R & A & M & P & E & E \\
\hline 11 & 2 & & S & T & X & P & L & R & A & M & 0 & E & E \\
\hline 11 & 1 & & X & T & S & P & L & R & A & M & 0 & E & E \\
\hline heap-o & dered & & X & T & S & P & L & R & A & M & 0 & E & E \\
\hline 10 & 1 & & T & P & S & 0 & L & R & A & M & E & E & X \\
\hline 9 & 1 & & S & P & R & 0 & L & E & A & M & E & T & X \\
\hline 8 & 1 & & R & P & E & 0 & L & E & A & M & S & T & X \\
\hline 7 & 1 & & P & 0 & E & M & L & E & A & R & S & T & X \\
\hline 6 & 1 & & 0 & M & E & A & L & E & P & R & S & T & X \\
\hline 5 & 1 & & M & L & E & A & E & 0 & P & R & S & T & X \\
\hline 4 & 1 & & L & E & E & A & M & 0 & P & R & S & T & X \\
\hline 3 & 1 & & E & A & E & L & M & 0 & P & R & S & T & X \\
\hline 2 & 1 & & E & A & E & L & M & 0 & P & R & S & T & X \\
\hline 1 & 1 & & A & E & E & L & M & 0 & P & R & S & T & x \\
\hline \multicolumn{2}{|l|}{sorted result} & & A & E & E & L & M & 0 & P & R & S & T & X \\
\hline \multicolumn{14}{|c|}{Heapsort trace (array contents just after each sink)} \\
\hline
\end{tabular}

\section*{Heapsort animation}

50 random items


A algorithm position
in order
not in order
http://www.sorting-algorithms.com/heap-sort

\section*{Heapsort: mathematical analysis}

Proposition. Heap construction uses fewer than \(2 N\) compares and exchanges.
Proposition. Heapsort uses at most \(2 N \lg N\) compares and exchanges.

Significance. In-place sorting algorithm with \(N \log N\) worst-case.
- Mergesort: no, linear extra space.
\(\longleftarrow \quad\) in-place merge possible, not practical
- Quicksort: no, quadratic time in worst case. \(\longleftarrow \mathrm{N} \log \mathrm{N}\) worst-case quicksort possible, not
- Heapsort: yes!

Bottom line. Heapsort is optimal for both time and space, but:
- Inner loop longer than quicksort's.
- Makes poor use of cache memory.
- Not stable.

\section*{Sorting algorithms: summary}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & inplace? & stable? & worst & average & best & remarks \\
\hline selection & x & & N \(2 / 2\) & N 2 / 2 & N \(2 / 2\) & \(N\) exchanges \\
\hline insertion & x & x & N \(2 / 2\) & N \(2 / 4\) & N & use for small N or partially ordered \\
\hline shell & x & & ? & ? & N & tight code, subquadratic \\
\hline quick & x & & N \(2 / 2\) & \(2 \mathrm{~N} \ln \mathrm{~N}\) & \(N \lg N\) & \(N \log N\) probabilistic guarantee fastest in practice \\
\hline 3-way quick & x & & N \(2 / 2\) & \(2 \mathrm{~N} \ln \mathrm{~N}\) & N & improves quicksort in presence of duplicate keys \\
\hline merge & & x & \(N \lg N\) & \(N \lg N\) & \(N \lg N\) & \(N\) log \(N\) guarantee, stable \\
\hline heap & x & & \(2 N \lg N\) & \(2 N \lg N\) & \(N \lg N\) & \(N \log \mathrm{~N}\) guarantee, in-place \\
\hline ??? & x & x & \(N \lg N\) & \(N \lg N\) & \(N \lg N\) & holy sorting grail \\
\hline
\end{tabular}```

