BBM 202 - ALGORITHMS

HACETTEPE UNIVERSITY

DEPT. OF COMPUTER ENGINEERING

GREEDY ALGORITHMS

Acknowledgement: The course slides are adapted from the slides prepared by K. Wayne of Princeton
University.

Greedy Choice

 Optimal substructure property exploited by both Greedy and DP strategies

- Greedy Choice Property: A sequence of locally optimal choices = an optimal
solution
- We make the choice that seems best at the moment
- Then solve the subproblem arising after the choice is made

DP: We also make a choice/decision at each step, but the choice may depend on
the optimal solutions to subproblems

Greedy: The choice may depend on the choices made so far, but it cannot depend
on any future choices or on the solutions to subproblems

Proof of Correctness

- Examine a globally optimal solution
 Apply induction to show that a greedy choice can be used at every step
- Show that this solution can be modified so that

1.A greedy choice is made as the first step

2.This choice reduces the problem to a similar but smaller problem

Showing (2) reduces the proof of correctness to proving that the problem exhibits
optimal substructure property

Proof of Correctness

Greedy Choice Property: A globally optimal solution can be arrived at by making

locally optimal (greedy) choices

 In DP, we make a choice at each step but the choice may depend on the solutions

to subproblems
- In Greedy Algorithms, we make the choice that seems best at that moment then

solve the subproblems arising after the choice is made
- The choice may depend on choices so far, but it cannot depend on any future

choice or on the solutions to subproblems

* DP solves the problem bottom-up
- Greedy usually progresses in a top-down fashion by making one greedy choice

after another reducing each given problem instance to a smaller one

Proof of Correctness

« We must prove that a greedy choice at each step yields a globally optimal solution

 The proof examines a globally optimal solution

- Shows that the solution can be modified so that a greedy choice made as the first
step reduces the problem to a similar but smaller subproblem

- Then induction is applied to show that a greedy choice can be used at each step

« Hence, this induction proof reduces the proof of correctness to demonstrating that
an optimal solution must exhibit optimal substructure property

Optimal Substructure

+ Optimal substructure property is exploited by both Greedy and dynamic
programming strategies

- Hence one may
- Try to generate a dynamic programming solution to a problem when a greedy
strategy suffices
- Or, may mistakenly think that a greedy solution works when in fact a DP
solution is required

Example: Knapsack Problems(S, w)

Knapsack Problems

The 0-1Knapsack Problem (S,W)
. A thief robbing a store finds n items S ={i;, 1,, . . ., 1, }, the ith item is worth v,
dollars and weighs w; pounds, where v; and w; are integers

- He wants to take as valuable a load as possible, but he can carry at most W
pounds in his knapsack, where W is an integer
 The thief cannot take a fractional amount of an item

The Fractional Knapsack Problem (S, W)
- The scenario is the same

» But, the thief can take fractions of items rather than having to make binary (0-1)
choice for each item

Knapsack Problems

Although the problems are similar

- the Fractional Knapsack Problem is solvable by Greedy strategy
- whereas, the 0-1 Knapsack Problem is not

l Vi Wi
I $1 1k
[weights and values

2 $6 2 kg can be arbitrary
. 3 $18 5 kg / positive integers

') 4 822 6ke

< >
— 5 $28 7Tke

knapsack instance
(weight limit W = 11)

Greedy Solution to Fractional Knapsack

1.Compute the value per pound v;/w; for each item

2.The thief begins by taking, as much as possible, of the item with the greatest
value per pound

3.If the supply of that item is exhausted before filling the knapsack he takes, as
much as possible, of the item with the next greatest value per pound

4.Repeat (2-3) until his knapsack becomes full

Thus, by sorting the items by value per pound the greedy algorithm runs in
O(nlogn) time

GREEDY ALGORITHMS

» coin changing

Coin changing

Goal. Given U. S. currency denominations{ 1, 5, 10, 25, 100 },
devise a method to pay amount to customer using fewest coins.

Ex. 34¢.

Cashier’s algorithm. At each iteration, add coin of the largest value that does not
take us past the amount to be paid.

Ex. $2.89.

11

Cashier’s algorithm

At each iteration, add coin of the largest value that does not take us past the amount

to be paid.

CASHIERS-ALGORITHM (x, c1, C2, ..., Cn)

SORT n coin denominations sothat0 < ci <2 < ... <cp.
S «— J. <«—— muittiset of coins selected
WHILE (x > 0)
k < largest coin denomination ¢k such that cx < x.
IF (no such k)
RETURN “no solution.”
ELSE
X < X — Ck.
S <—<SU{k}.

RETURN S§.

12

Cashier’s algorithm (for arbitrary coin denominations)

Q. Is cashier’s algorithm optimal for any set of denominations?

A. No. Consider U.S. postage: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.
* Cashier’s algorithm: 140¢ =100+34 +1+1+1+1+1+1.
* Optimal: 140¢ =70 + 70.

VVVVVVVVVVVYY

A. No. It may not even lead to a feasible solutionif ¢; > 1: 7, 8, 9.
* Cashier’s algorithm: 15¢ =9 + ?.
* Optimal: 15¢ =7 + 8.

13

Properties of any optimal solution (for U.S. coin denominations)

Property. Number of pennies < 4.
Pf. Replace 5 pennies with 1 nickel.

Property. Number of nickels < 1.
Property. Number of quarters < 3.

Property. Number of nickels + number of dimes < 2.

Pf.
* Recall: = 1nickel.
* Replace 3 dimes and 0 nickels with 1 quarter and 1 nickel,;
* Replace 2 dimes and 1 nickel with 1 quarter.

dollars quarters dimes nickels pennies
(100¢) (25¢) (10¢) (5¢) (1¢)

Optimality of cashier’s algorithm (for U.S. coin denominations)

Theorem. Cashier’s algorithm is optimal for U.S. coins { 1, 5, 10, 25, 100 }.
Pf. [by induction on amount to be paid x |
» Consider optimal way to change ¢, < x<c¢,,, : greedy takes coin k.
* We claim that any optimal solution must take coin .
- if not, it needs enough coins of type ¢,, ..., ¢,_; to add up to x
- table below indicates no optimal solution can do this
* Problem reduces to coin-changing x — ¢, cents, which, by induction,
Is optimally solved by cashier’s algorithm. =

K . all optimal solutions max value of coin denominations
k must satisfy C1,C2, ..., Ck—1 in @any optimal solution

1 1 P <4 -

2 5 N =<1 4

3 10 N+D <2 4+5=9
4 25 Q=<3 20 +4 =24

5 100 no limit 75 + 24 =99

15

GREEDY ALGORITHMS

» interval scheduling

Interval scheduling

* Jobj starts at s; and finishes at f;.
* Two jobs are compatible if they don’t overlap.
* Goal: find maximum subset of mutually compatible jobs.

a
C
d —_
\\
f /
g
0 1 2 3 4 5 6 7 8 9 10

e

jobs d and g
are incompatible

time

17

Interval scheduling: greedy algorithms

Greedy template. Consider jobs in some natural order.

Take each job provided it’'s compatible with the ones already taken.

[Earliest start time] Consider jobs in ascending order of s..

[Earliest finish time] Consider jobs in ascending order of f..

[Shortest interval] Consider jobs in ascending order of f; — ..

[Fewest conflicts] For each job j, count the number of
conflicting jobs c;. Schedule in ascending order of c;.

18

Interval scheduling: greedy algorithms

Greedy template. Consider jobs in some natural order.

Take each job provided it’'s compatible with the ones already taken.

counterexample for earliest start time

counterexample for shortest interval

counterexample for fewest conflicts

19

Interval scheduling: earliest-finish-time-first algorithm

EARLIEST-FINISH-TIME-FIRST (n, 81, 82, ..., Sn» f1, f2, «+., fn)

SORT jobs by finish times and renumber so that fi < > < ... < fa.
S «— J. «— setof jobs selected
FOR j=1 TO n
IF (job j is compatible with S)
S<SU{j}.

RETURN S§.

Proposition. Can implement earliest-finish-time first in O(n log n) time.
* Keep track of job j* that was added last to S.
* Job j is compatible with S iff s; > f..
* Sorting by finish times takes O(n log n) time.

20

Earliest-finish-time-first algorithm demo

10 11
0 1 2 3 4 5 6 7 8 10 11

>

time

21

Earliest-finish-time-first algorithm demo

H
job B is compatible (add to schedule)
B
0 1 2 3 4 5 6 7 8 9 10 11

>

time

22

Earliest-finish-time-first algorithm demo

10 11
B
0 1 2 3 4 5 6 7 8 10 11

>

time

23

Earliest-finish-time-first algorithm demo

H
job C is incompatible (do not add to schedule)
B C
0 1 2 3 4 5 6 7 8 9 10 11

>

time

24

Earliest-finish-time-first algorithm demo

10 11
B
0 1 2 3 4 5 6 7 8 10 11

>

time

25

Earliest-finish-time-first algorithm demo

H
job A is incompatible (do not add to schedule)
0 1 2 3 4 5 6 7 8 9 10 11

>

time

26

Earliest-finish-time-first algorithm demo

G
0 1 2 3 4 5 6 7 8 10 11
B
0 1 2 3 4 5 6 7 8 10 11

>

time

27

Earliest-finish-time-first algorithm demo

G
0 1 2 3 4 5 6 7 8 10 11
job E is compatible (add to schedule)
B :
0 1 2 3 4 5 6 7 8 10 11

>

time

28

Earliest-finish-time-first algorithm demo

G
0 1 2 3 4 5 6 7 8 10 11
I
0 1 2 3 4 5 6 7 8 10 11

>

time

29

Earliest-finish-time-first algorithm demo

G
0 1 2 3 4 5 6 7 8 10 11
job D is incompatible (do not add to schedule)
M 5 B
0 1 2 3 4 5 6 7 8 10 11

>

time

30

Earliest-finish-time-first algorithm demo

11

G
0 1 2 3 4 5 6 7 8 10
I
0 1 2 3 4 5 6 7 8 10

11

time

31

Earliest-finish-time-first algorithm demo

11

G
0 1 2 3 4 5 6 7 8 10
job F is incompatible (do not add to schedule)
8
0 1 2 3 4 5 6 7 8 10

11

time

32

Earliest-finish-time-first algorithm demo

11

G
0 1 2 3 4 5 6 7 8 10
I
0 1 2 3 4 5 6 7 8 10

11

time

33

Earliest-finish-time-first algorithm demo

11

G
0 1 2 3 4 5 6 7 8 10
job G is incompatible (do not add to schedule)
B
0 1 2 3 4 5 6 7 8 10

11

time

34

Earliest-finish-time-first algorithm demo

G
0 1 2 3 4 5 6 7 8 10 11
job G is incompatible (do not add to schedule)
s I
0 1 2 3 4 5 6 7 8 10

11

time

35

Earliest-finish-time-first algorithm demo

10

11

10

11

time

36

Earliest-finish-time-first algorithm demo

10

11

10

11

time

37

Earliest-finish-time-first algorithm demo

10

11

10

11

time

38

Earliest-finish-time-first algorithm demo

10

11

10

11

time

39

Interval scheduling: analysis of earliest-finish-time-first algorithm

Theorem. The earliest-finish-time-first algorithm is optimal.

Pf. [by contradiction]
* Assume greedy is not optimal, and let’s see what happens.
- Leti, i), ... i, denote set of jobs selected by greedy.
- Letj, j,, ... j,, denote set of jobs in an optimal solution with
i, =Jj,=j5, ..., i, = j.fOr the largest possible value of r.

job i,., exists and finishes no later than j,,

Greedy:

A\ 4

Optimal: Ji J2 Jr

job j,.,; exists why not replace
because m > k job j,,; with job 7,.,,?

40

Interval scheduling: analysis of earliest-finish-time-first algorithm

Theorem. The earliest-finish-time-first algorithm is optimal.

Pf. [by contradiction]
* Assume greedy is not optimal, and let’s see what happens.
- Leti, i), ... i, denote set of jobs selected by greedy.
- Letj, j,, ... j,, denote set of jobs in an optimal solution with
i, =Jj,=j5, ..., i, = j.fOr the largest possible value of r.

job i, exists and finishes before j,,,

Greedy:

A\ 4

Optimal: Ji J2 Jr

El

solution still feasible and optimal
(but contradicts maximality of r)

GREEDY ALGORITHMS

» interval partitioning

Interval partitioning

* Lecture j starts at s; and finishes at f,.
* Goal: find minimum number of classrooms to schedule all lectures
so that no two lectures occur at the same time in the same room.

Ex. This schedule uses 4 classrooms to schedule 10 lectures.

jobs e and g
are incompatible

4 & J
3 C d g

2 b h

1 a f :

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30

\ 4

time

43

Interval partitioning

* Lecture j starts at s; and finishes at f,.
* Goal: find minimum number of classrooms to schedule all lectures
so that no two lectures occur at the same time in the same room.

Ex. This schedule uses 3 classrooms to schedule 10 lectures.

intervals are open
(need only 3 classrooms at 2pm)

3 C d I J
2 b g i
1 a e h

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30

\ 4

time

44

Interval partitioning: greedy algorithms

Greedy template. Consider lectures in some natural order. Assign each lecture to
an available classroom (which one?); allocate a new classroom
If none are available.

[Earliest start time] Consider lectures in ascending order of s..

[Earliest finish time] Consider lectures in ascending order of f..

[Shortest interval] Consider lectures in ascending order of f; — ..

[Fewest conflicts] For each lecture j, count the number of
conflicting lectures c;. Schedule in ascending order of c;.

45

Interval partitioning: greedy algorithms

Greedy template. Consider lectures in some natural order. Assign each lecture to
an available classroom (which one?); allocate a new classroom
If none are available.

counterexample for earliest finish time

counterexample for shortest interval

counterexample for fewest conflicts

46

Interval partitioning: earliest-start-time-first algorithm

EARLIEST-START-TIME-FIRST (1, 1, 82, ..., Su s f1, /2, vy f1)

SORT lectures by start times and renumber so that s; < s2 < ... < sa.
d <— 0. <— number of allocated classrooms
FOR j=1TOn
IF (lecture j is compatible with some classroom)
Schedule lecture j in any such classroom k.
ELSE
Allocate a new classroom d + 1.
Schedule lecture j in classroom d + 1.
d<—d+ 1.

RETURN schedule.

Earliest-start-time-first algorithm demo

Consider lectures in order of start time:
* Assign next lecture to any compatible classroom (if one exists).
* Otherwise, open up a new classroom.

S 930 10 10:30 11 11:30 12 12:30 1 1:30 2 230 3 330 4

4:30

time

48

Earliest-start-time-first algorithm demo

Consider lectures in order of start time:
* Assign next lecture to any compatible classroom (if one exists).
* Otherwise, open up a new classroom.

no compatible classroom: open up a new classroom and assign lecture to it

S 930 10 10:30 11 11:30 12 12:30 1 1:30 2 230 3 330 4

4:30

time

49

Earliest-start-time-first algorithm demo

Consider lectures in order of start time:
* Assign next lecture to any compatible classroom (if one exists).
* Otherwise, open up a new classroom.

no compatible classroom: open up a new classroom and assign lecture to it

it

jo
jo rlo
jo

|_\

Q

S 930 10 10:30 11 11:30 12 12:30 1 1:30 2 230 3 330 4

4:30

time

50

Earliest-start-time-first algorithm demo

Consider lectures in order of start time:
* Assign next lecture to any compatible classroom (if one exists).
* Otherwise, open up a new classroom.

no compatible classroom: open up a new classroom and assign lecture to it

it

jo
[T lio
[T
N
O

jo
jo Iio
jo

|—\

Q

S 930 10 10:30 11 11:30 12 12:30 1 1:30 2 230 3 330 4

4:30

time

51

Earliest-start-time-first algorithm demo

Consider lectures in order of start time:
* Assign next lecture to any compatible classroom (if one exists).
* Otherwise, open up a new classroom.

lecture d is compatible with classrooms 1 and 3

it

jo
[T lio
[T
N
O

jo
jo rlo
jo

|—\

Q

S 930 10 10:30 11 11:30 12 12:30 1 1:30 2 230 3 330 4

4:30

time

52

Earliest-start-time-first algorithm demo

Consider lectures in order of start time:
* Assign next lecture to any compatible classroom (if one exists).
* Otherwise, open up a new classroom.

lecture e is compatible with classroom 1

it

jo
[T lio
jo
N
O

jo
jo Iio
jo

|_\

Q

S 930 10 10:30 11 11:30 12 12:30 1 1:30 2 230 3 330 4

4:30

time

53

Earliest-start-time-first algorithm demo

Consider lectures in order of start time:
* Assign next lecture to any compatible classroom (if one exists).
* Otherwise, open up a new classroom.

lecture f is compatible with classroom 2 and 3

it

jo
[T lio
[T
N
O

jo
jo rlo
jo
|—\
Q
Q)

S 930 10 10:30 11 11:30 12 12:30 1 1:30 2 230 3 330 4

4:30

time

54

Earliest-start-time-first algorithm demo

Consider lectures in order of start time:
* Assign next lecture to any compatible classroom (if one exists).
* Otherwise, open up a new classroom.

lecture g is compatible with classroom 2

it

jo
[T lio
[T
N
O

jo
jo rlo
jo
|—\
Q
Q)

S 930 10 10:30 11 11:30 12 12:30 1 1:30 2 230 3 330 4

4:30

time

55

Earliest-start-time-first algorithm demo

Consider lectures in order of start time:
* Assign next lecture to any compatible classroom (if one exists).
* Otherwise, open up a new classroom.

lecture h is compatible with classroom 1

it

jo
[T lio
jo
N
O
(@]

jo
jo rlo
jo
|_\
Q
)

S 930 10 10:30 11 11:30 12 12:30 1 1:30 2 230 3 330 4

4:30

time

56

Earliest-start-time-first algorithm demo

Consider lectures in order of start time:
* Assign next lecture to any compatible classroom (if one exists).
* Otherwise, open up a new classroom.

lecture j is compatible with classrooms 2 and 3

it

jo
[T lio
[T
N
O
(@]

jo
jo rlo
jo
|—\
Q
Q)
>

S 930 10 10:30 11 11:30 12 12:30 1 1:30 2 230 3 330 4

4:30

time

57

Earliest-start-time-first algorithm demo

Consider lectures in order of start time:
* Assign next lecture to any compatible classroom (if one exists).
* Otherwise, open up a new classroom.

lecture i is compatible with classroom 2

it

jo
[T lio
[T
N
O
(@]

jo
jo rlo
jo
|_\
Q
)
>

S 930 10 10:30 11 11:30 12 12:30 1 1:30 2 230 3 330 4

4:30

time

58

Earliest-start-time-first algorithm demo

Consider lectures in order of start time:
* Assign next lecture to any compatible classroom (if one exists).
* Otherwise, open up a new classroom.

done

(o]

- 3

20892

(o]

- 2

900

A 40 60

=
| >
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3:30 4:30 time

59

Interval partitioning: earliest-start-time-first algorithm

Proposition. The earliest-start-time-first algorithm can be implemented in O(n log n)

time.

Pf.
* Sorting by start times takes O(n log n) time.
* Store classrooms in a priority queue (key = finish time of its last lecture).
- to allocate a new classroom, INSERT classroom onto priority queue.
- to schedule lecture j in classroom &, INCREASE-KEY of classroom % to f.
- to determine whether lecture j is compatible with any classroom,

compare s; to FIND-MIN
* Total # of priority queue operations is O(n); each takes O(log n) time. =

Remark. This implementation chooses a classroom k£ whose finish time
of its last lecture is the earliest.

60

Interval partitioning: lower bound on optimal solution

Def. The depth of a set of open intervals is the maximum number of intervals that

contain any given point.
Key observation. Number of classrooms needed = depth.

Q. Does minimum number of classrooms needed always equal depth?
A. Yes! Moreover, earliest-start-time-first algorithm finds a schedule
whose number of classrooms equals the depth.

depth = 3
3 C d f J
2 b g I
1 a e h

\ 4

S 930 10 10:30 11 11:30 12 12:30 1 1:30 2 230 3 330 4 4:30 time

61

Interval partitioning: analysis of earliest-start-time-first algorithm

Observation. The earliest-start-time first algorithm never schedules two
Incompatible lectures in the same classroom.

Theorem. Earliest-start-time-first algorithm is optimal.
Pf.
* Let d = number of classrooms that the algorithm allocates.
* Classroom d is opened because we needed to schedule a lecture, say j,
that is incompatible with a lecture in each of d — 1 other classrooms.

Thus, these d lectures each end after s..
Since we sorted by start time, each of these incompatible lectures start no later

than S;.

Thus, we have d lectures overlapping at time s; + .

Key observation = all schedules use = d classrooms. =

62

GREEDY ALGORITHMS

» scheduling to minimize lateness

Scheduling to minimizing lateness

Single resource processes one job at a time.

Job j requires 7; units of processing time and is due at time d;.

If j starts at time s, it finishes at time fj =s;+1;.

Lateness: ti=max {0, f;—d, }.

Goal: schedule all jobs to minimize maximum lateness L = max; £;.

1]z 34056
3 2 1 4 3 2

5

6 8 9 9 14 15

lateness = 2 lateness = 0 max lateness = 6

/ / /

d;=9 dy=8 dg =15 d =6 ds =14 d,=9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

64

Minimizing lateness: greedy algorithms

Greedy template. Schedule jobs according to some natural order.

* [Shortest processing time first] Schedule jobs in ascending order of processing
time ¢,.

* [Earliest deadline first] Schedule jobs in ascending order of deadline d..

* [Smallest slack] Schedule jobs in ascending order of slack d; - ¢.

65

Minimizing lateness: greedy algorithms

Greedy template. Schedule jobs according to some natural order.

* [Shortest processing time first] Schedule jobs in ascending order of processing
time .

counterexample

counterexample

66

Minimizing lateness: earliest deadline first

EARLIEST-DEADLINE-FIRST (n, t1, t2, ..., tn ,d1,d2, ..., dn)

SORT jobs by due times and renumber so thatd; < d> < ... < d,.
t < 0.
FOR j=1TOn

Assign job j to interval [, 1 + ¢].

Sj <t fi <1+

t — 1+t

RETURN intervals [s1, fil, [$2, /2], ..., [Sn, ful.

max lateness L =1

|

d1=6 d2=8 d3=9 d4=9 d5=14 d6=15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

67

Minimizing lateness: no idle time

Observation 1. There exists an optimal schedule with no idle time.

an optimal schedule d=4 d=6 d=12
0 1 2 3 4 5 6 7 8 9 10 11 .
an optimal schedule d=4 d=6 d=12 | | }
with no idle time 1 2 3 4 5 6 7 8 9 10 11 !

Observation 2. The earliest-deadline-first schedule has no idle time.

68

Minimizing lateness: inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that:
i <jbutjis scheduled before i.

inversion if 1 < j
 schedule with
an inversion

recall: we assume the jobs are numbered so thatdi <d> < ... <d,

Observation 3. The earliest-deadline-first schedule is the unique idle-free schedule

with no inversions.

69

Minimizing lateness: inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that:
i <jbutjis scheduled before i.

inversion if 1 < j

 schedule with i
an inversion

recall: we assume the jobs are numbered so thatdi <d> < ... <d,

Observation 4. If an idle-free schedule has an inversion, then it has an adjacent
Inversion.

Pf. two inverted jobs scheduled consecutively

Let i— j be a closest inversion.

Let k be element immediately to the right of ;.

Case 1. [j > k] Then j—k is an adjacent inversion.

Case 2. [j< k] Then i—kis a closer inversion since i <j< k. %

70

Minimizing lateness: inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that:
i <jbutjis scheduled before i.

inversion if 1 < j

before
exchange

after
exchange

Key claim. Exchanging two adjacent, inverted jobs i and j reduces the number of
Inversions by 1 and does not increase the max lateness.
Pf. Let £ be the lateness before the swap, and let £’ be it afterwards.
* =L forall k=i,j.
* U< 1.
* Ifjob jis late, £

f} — aj € definition

fi — dj <«— jnow finishes at time f;

IA

fi—di <—i<j = d=d

IA
o

i* <€«— definition

71

Minimizing lateness: analysis of earliest-deadline-first algorithm

Theorem. The earliest-deadline-first schedule S is optimal.

optimal schedule can

Pf. [by contradiction] / have inversions
Define S* to be an optimal schedule with the fewest inversions.
* Can assume S* has no idle time. = <—— Observation 1
* Case 1. [$* has no inversions | Then S = S*. <—— Observation 3
* Case 2. [$* has an inversion]
- let i—j be an adjacent inversion <—— Observation 4
- exchanging jobs i and j decreases the number of inversions by 1
without increasing the max lateness «<—— key claim
- contradicts “fewest inversions” part of the definition of §*

72

Google’s foo.bar challenge

A “secret” web tool that Google uses to recruit developers.
» Triggered by specific searches related to programming.
- Algorithmic coding challenges of increasing difficulty.

@ Chrome File Edit View History Bookmarks Window Help ¥ I\4 A O] 2 = o) = @) Sun
& @ gmutex lock - Google Searc X ggoogle search game - Goo X New Tab X
C https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#qg=mutex%20lock
m mutex lock \0/ n - 555 Q
Search tools -

Web Shopping Videos News Images More ~

You're speaking our language. Up for a challenge?

About 1,300,000 results (0.22 seconds)

Mutual exclusion - Wikipedia, the free encyclopedia

en.wikipedia.org/wiki/Mutual_exclusion ¥ Wikipedia
"mutex" redirects here. For the computer program object that negotiates mutual

exclusion among threads, see lock (computer science). Figure 1: Two nodes,
Lock - Dekker's algorithm - Critical section - Reentrant mutex

Mutex Lock Code Examples (Multithreaded Programming ...
» Using Mutual Exclusion Locks ¥ Oracle Corporation

docs.oracle.com» ...
The two functions in Example 4—1 use the mutex lock for different purposes. The
increment_count() function uses the mutex lock simply to ensure an atomic ...

mutex::lock - C++ Reference - Cplusplus.com
www.cplusplus.com » Reference » <mutex> > mutex ~

73

Google’s foo.bar challenge

https://foobar.withgoogle.com/

Quantum antimatter fuel comes in small pellets, which is convenient since the many
moving parts of the LAMBCHOP each need to be fed fuel one pellet at a time. However,
minions dump pellets in bulk into the fuel intake. You need to figure out the most

efficient way to sort and shift the pellets down to a single pellet at a time.

The fuel control mechanisms have three operations:
e Add 1 fuel pellet
e Remove 1 fuel pellet
e Divide the entire group of fuel pellets by 2 (due to the destructive energy released
when a quantum antimatter pellet is cut in half, the safety controls will only allow

this to happen if there is an even number of pellets)

Write a function called answer(n) which takes a positive integer n as a string and returns

the minimum number of operations needed to transform the number of pellets to 1.

29 >28 >14—>7—>8—>4—>2—>1 N

Google’s foo.bar challenge

Level

Level
Level
Level
Level
Level

complete. You are now on level 4. Challenges to complete level: 2.

100%
100%
100%

Excellent! You've destroyed Commander Lambda's doomsday device and saved Bunny Planet! But
there's one small problem: the LAMBCHOP was a wool-y important part of her space station,
and when you blew 1t up, you triggered a chain reaction that's tearing the station apart.
Can you rescue the i1mprisoned bunnies and escape before the entire thing explodes?

Type request to request a new challenge now, or come back later.

[#1] The code is strong with this one. Share solutions with a Google recruiter?

[Y]es [N]o [A]lsk me later: A

Response: contact postponed.
To share your progress at any time, use the recruitme command.

GREEDY ALGORITHMS

» optimal caching

Optimal offline caching

Caching.

* Cache with capacity to store k items.

« Sequence of m item requests d,,d,, ...,d,.
* Cache hit: item in cache when requested.
* Cache miss: item not in cache when requested.

(must evict some item from cache and bring requested item into cache)

Applications. CPU, RAM, hard drive, web, browser,

Goal. Eviction schedule that minimizes the number of evictions.

cache cache miss
l n a b (eviction)
e a b
Ex. k=2, Initial cache = ab, requests: a,b,c,b,c,a,b. u
: - oL o C b
Optimal eviction schedule. 2 evictions. 2
1 B
.
v u a | b &

Optimal offline caching: greedy algorithms

LIFO/FIFO. Evict item brought in least (most) recently.
LRU. Evict item whose most recent access was earliest.
LFU. Evict item that was least frequently requested.

cache

<

a <

S
QU U & |8 <

a <

s1sanbau

.H“HHH!HHHH.

SN TN S
!

a

z FIFO: eject a

z LRU: eject d

e LIFO: eject e

OEDD -

cache miss
(which item to eject?)

78

Optimal offline caching: farthest-in-future (clairvoyant algorithm)

Farthest-in-future. Evict item in the cache that is not requested until
farthest in the future.

cache

u a b C d e
(

which item to eject?)

si1sonbau

FF: eject d

Theorem. [Bélady 1966] FF is optimal eviction schedule.
Pf. Algorithm and theorem are intuitive; proof is subtle.

79

Reduced eviction schedules

Def. Areduced schedule is a schedule that brings an item d into the cache in step j

only if there is a request for d in step j and d is not already in the cache.

L
o
o
b
I
N -
.

d enters cache
without a request

Q
QAU Q& & ¢ ¢ &
o

d enters cache
even though already
in cache

o
S &~ O

QU & &

an unreduced schedule a reduced schedule

Reduced eviction schedules

Claim. Given any unreduced schedule S, can transform it into a reduced schedule
S" with no more evictions.
Pf. [by induction on number of steps j |

* Suppose S brings d into the cache in step j without a request.

* Let c be the item S evicts when it brings d into the cache.

* Case 1a: d evicted before next request for d.

unreduced schedule S S’

step j — d enters cache . |
without a request might as well
¢ <— leave cincache
until d is evicted
C
., d evicted before
step j e

next request for d

d
QU
mm&&qum

d d
.!!!....
d d d

81

Reduced eviction schedules

Claim. Given any unreduced schedule §, can transform it into a reduced schedule
S’ with no more evictions.
Pf. [by induction on number of steps j |

Suppose S brings d into the cache in step j without a request.

Let c be the item § evicts when it brings d into the cache.

Case 1a: d evicted before next request for d.

Case 1b: next request for d occurs before d is evicted.

unreduced schedule S S’

step j s d enters cache c
without a request might as well
¢ <— leave cincache
until d is requested
d still in cache before
step j’ «

next request for d

d
N
&&&&HGQG

d d
d d d

Reduced eviction schedules

Claim. Given any unreduced schedule S, can transform it into a reduced schedule
S" with no more evictions.
Pf. [by induction on number of steps j |

* Suppose S brings d into the cache in step j even though d is in cache.

* Let c be the item S evicts when it brings d into the cache.

* Case 2a: d evicted before it is needed.

4

unreduced schedule S

S
N
o

di a C

M- -

- di a c d3 enters cache - d a c
even though d; is might as well

step j i

PJ di a el < already in cache di a cC — eave ¢ in cache
di a di3 <«— dsnotneeded di a ¢ until d3 in evicted

¢ a4 «

step j’ u C a b <«— d;evicted u c a b

C a | d3 <— dsneeded C a da

83

Reduced eviction schedules

Claim. Given any unreduced schedule §, can transform it into a reduced schedule

S’ with no more evictions.

Pf. [by induction on number of steps ;]

Case 2a: d evicted before it is needed.
Case 2b: d needed before it is evicted.

unreduced schedule S

K
M
-
step j di
i
:
B -
step j’ C

a

C

C

c d3 enters cache

even though d is
el «—— already in cache

ds <«— d3not needed
d3
d3

d; <«— d3needed

Let c be the item § evicts when it brings d into the cache.

S5 W

Suppose S brings d into the cache in step j even though d is in cache.

might as well
C <~ 9)
leave c in cache
c until d3 in needed
C
C
ds

84

Reduced eviction schedules

Claim. Given any unreduced schedule §, can transform it into a reduced schedule S’

with no more evictions.
Pf. [by induction on number of steps j |
* Case 1: S brings d into the cache in step j without a request. v

* Case 2: S brings d into the cache in step j even though d is in cache. ¢/
* If multiple unreduced items in step j, apply each one in turn,
dealing with Case 1 before Case 2. =

\

resolving Case 1 might trigger Case 2

85

Farthest-in-future: analysis

Theorem. FF is optimal eviction algorithm.
Pf. Follows directly from the following invariant.

Invariant. There exists an optimal reduced schedule § that has the same eviction
schedule as Sy through the first j steps.

Pf. [by induction on number of steps j]

Base case: j=0.
Let S be reduced schedule that satisfies invariant through j steps.

We produce S’ that satisfies invariant after j + 1 steps.

Let d denote the item requested in step j + 1.
Since S and Sy have agreed up until now, they have the same cache contents

before step j + 1.
Case 1: dis already in the cache.

S' = § satisfies invariant.
Case 2: dis not in the cache and S and S, evict the same item.

S' = § satisfies invariant.

86

Farthest-in-future: analysis

Pf. [continued]
* Case 3: dis notin the cache; S; evicts e; S evicts f # e.
- begin construction of S’ from S by evicting e instead of f

same e f step] same e f

same e d step j+1 same d f

- now S’ agrees with Sy for first j + 1 steps; we show that having item fin
cache is no worse than having item e in cache

- let S’ behave the same as S until S’ is forced to take a different action
(because either S evicts ¢; or because either ¢ or f is requested)

87

Farthest-in-future: analysis

Let j' be the first step after j + 1 that S" must take a different action from S;

let ¢ denote the item requested in step j'. t
involves either e or f (or both)

same e step j’ same f
S S’
~
« Case 3a: g=e¢ / S’ agrees with Srr through first j + 1 steps
Can’t happen with FF since there must be a request for f before e.
N\

* Case 3b: g=T.
Element f can’t be in cache of S; let ¢’ be the item that § evicts.
- ife' =¢, §" accesses f from cache; now S and S’ have same cache
- if ' 2 ¢, we make S’ evict ¢’ and bring e into the cache;
now S and S’ have the same cache
We let S’ behave§<actly like S for remaining requests.

S’ is no longer reduced, but can be transformed into a
reduced schedule that agrees with FF through first j + 1 steps

Farthest-in-future: analysis

Let ;' be the first step after j + 1 that S’ must take a different action from §;
let ¢ denote the item requested in step j'. t

involves wither e or f (or both)

=7
same e step J same f

otherwise S’ could have taken the same action

|

* Case 3c: g#e,f. Sevictse.
- make §' evict f.

same g step j’ same g

S S’

- now S and S’ have the same cache
- let S’ behave exactly like S for the remaining requests =

Caching perspective

Online vs. offline algorithms.
* Offline: full sequence of requests is known a priori.
* Online (reality): requests are not known in advance.
* Caching is among most fundamental online problems in CS.

LIFO. Evict item brought in most recently.
LRU. Evict item whose most recent access was earliest.

f

FF with direction of time reversed!

Theorem. FF is optimal offline eviction algorithm.
* Provides basis for understanding and analyzing online algorithms.
* LIFO can be arbitrarily bad.
* LRU is k-competitive: for any sequence of requests o, LRU(0) < k FF(0) + k.

- Raang IS O(log k)-competitive.

see SECTION 13.8

90

Greedy analysis strategies

Greedy algorithm stays ahead. Show that after each step of the greedy algorithm,
its solution is at least as good as any other algorithm’s.

Structural. Discover a simple “structural” bound asserting that every possible
solution must have a certain value. Then show that your algorithm always achieves
this bound.

Exchange argument. Gradually transform any solution to the one found by the

greedy algorithm without hurting its quality.

Other greedy algorithms. Gale—Shapley, Kruskal, Prim, Dijkstra, Huffman, ...

GREED 1s GOOD

91

