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TODAY 

‣ Directed Graphs
‣ Digraph API
‣ Digraph search
‣ Topological sort
‣ Strong components  



Digraph.  Set of vertices connected pairwise by directed edges.
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Directed graphs

directed
cycle

directed path
from 0 to 2

vertex of 
outdegree 4 

and indegree 2
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Road network

Vertex = intersection; edge = one-way street.
Address Holland Tunnel

New York, NY 10013

©2008 Google - Map data ©2008 Sanborn, NAVTEQ™ - Terms of Use

To see all  the details  that  are visible  on the screen,use the
"Print" link next  to the map.
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Digraph applications

digraph vertex directed edge

transportation street intersection one-way street

web web page hyperlink

food web species predator-prey relationship

WordNet synset hypernym

scheduling task precedence constraint

financial bank transaction

cell phone person placed call

infectious disease person infection

game board position legal move

citation journal article citation

object graph object pointer

inheritance hierarchy class inherits from

control flow code block jump
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Some digraph problems

Path.  Is there a directed path from s to t ?
 
Shortest path.  What is the shortest directed path  
from s to t ?
 
Topological sort.  Can you draw the digraph so that  
all edges point upwards?
 
Strong connectivity.  Is there a directed path between all pairs of vertices?
 
Transitive closure.  For which vertices v and w is there a path from v to w ?
 
PageRank.  What is the importance of a web page?

s

t



DIRECTED GRAPHS

‣ Digraph API
‣ Digraph search
‣ Topological sort
‣ Strong components
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Digraph API

       public class Digraph

Digraph(int V) create an empty digraph with V vertices

Digraph(In in) create a digraph from input stream

void addEdge(int v, int w) add a directed edge v→w

Iterable<Integer> adj(int v) vertices pointing from v

int V() number of vertices

int E() number of edges

Digraph reverse() reverse of this digraph

String toString() string representation

In in = new In(args[0]); 
Digraph G = new Digraph(in); 

for (int v = 0; v < G.V(); v++)  
   for (int w : G.adj(v)) 
      StdOut.println(v + "->" + w);

read digraph from 
input stream

print out each 
edge (once)
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Digraph API

In in = new In(args[0]); 
Digraph G = new Digraph(in); 

for (int v = 0; v < G.V(); v++)  
   for (int w : G.adj(v)) 
      StdOut.println(v + "->" + w);

% java Digraph tinyDG.txt 
0->5 
0->1 
2->0 
2->3 
3->5 
3->2 
4->3 
4->2 
5->4 
⋮ 
11->4 
11->12 
12-9

read digraph from 
input stream

print out each 
edge (once)

adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 2

3 2

0 3

5 1

6

0

11 10

6 9

4 12

4

12

9

9 4 8

13
22
 4  2
 2  3
 3  2
 6  0
 0  1
 2  0
11 12
12  9
 9 10
 9 11
 7  9
10 12
11  4
 4  3
 3  5
 6  8
 8  6
 5  4
 0  5
 6  4
 6  9
 7  6

tinyDG.txt
V

E

⋮



Maintain vertex-indexed array of lists.

adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 2

3 2

0 3

5 1

6

0

11 10

6 9

4 12

4

12

9

9 4 8

13
22
 4  2
 2  3
 3  2
 6  0
 0  1
 2  0
11 12
12  9
 9 10
 9 11
 7  9
10 12
11  4
 4  3
 3  5
 6  8
 8  6
 5  4
 0  5
 6  4
 6  9
 7  6

tinyDG.txt
V

E
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Adjacency-lists digraph representation

adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 2

3 2

0 3

5 1

6

0

11 10

6 9

4 12

4

12

9

9 4 8

13
22
 4  2
 2  3
 3  2
 6  0
 0  1
 2  0
11 12
12  9
 9 10
 9 11
 7  9
10 12
11  4
 4  3
 3  5
 6  8
 8  6
 5  4
 0  5
 6  4
 6  9
 7  6

tinyDG.txt
V

E
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Adjacency-lists graph representation:  Java implementation

public class Graph 
{ 
   private final int V; 
   private final Bag<Integer>[] adj; 

   public Graph(int V) 
   { 
      this.V = V; 
      adj = (Bag<Integer>[]) new Bag[V]; 
      for (int v = 0; v < V; v++) 
         adj[v] = new Bag<Integer>(); 
   } 

   public void addEdge(int v, int w) 
   { 
      adj[v].add(w);   
      adj[w].add(v);   
   } 

   public Iterable<Integer> adj(int v) 
   {  return adj[v];  } 
}

adjacency lists

create empty graph 
with V vertices

iterator for vertices 
adjacent to v

add edge v–w  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Adjacency-lists digraph representation:  Java implementation

public class Digraph 
{ 
   private final int V; 
   private final Bag<Integer>[] adj; 

   public Digraph(int V) 
   { 
      this.V = V; 
      adj = (Bag<Integer>[]) new Bag[V]; 
      for (int v = 0; v < V; v++) 
         adj[v] = new Bag<Integer>(); 
   } 

   public void addEdge(int v, int w) 
   { 
      adj[v].add(w);   

   } 

   public Iterable<Integer> adj(int v) 
   {  return adj[v];  } 
}

adjacency lists

create empty digraph 
with V vertices

add edge v→w 

iterator for vertices 
pointing from v



In practice.  Use adjacency-lists representation.
• Algorithms based on iterating over vertices pointing from v.

• Real-world digraphs tend to be sparse.
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Digraph representations

representation space
insert edge  
from v to w

edge from
v to w?

iterate over vertices 
pointing from v?

list of edges E 1 E E

adjacency matrix V 2    1 † 1 V

adjacency lists E + V 1 outdegree(v) outdegree(v)

huge number of vertices, 
small average vertex degree

† disallows parallel edges



DIRECTED GRAPHS

‣ Digraph API
‣ Digraph search
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Reachability

Problem.  Find all vertices reachable from s along a directed path.

s



Same method as for undirected graphs.
• Every undirected graph is a digraph (with edges in both directions).

• DFS is a digraph algorithm.
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Depth-first search in digraphs

Mark v as visited.
Recursively visit all unmarked
          vertices w pointing from v.

DFS (to visit a vertex v)

adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 2

3 2

0 3

5 1

6

0

11 10

6 9

4 12

4

12

9

9 4 8

13
22
 4  2
 2  3
 3  2
 6  0
 0  1
 2  0
11 12
12  9
 9 10
 9 11
 7  9
10 12
11  4
 4  3
 3  5
 6  8
 8  6
 5  4
 0  5
 6  4
 6  9
 7  6

tinyDG.txt
V

E



To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

Depth-first search
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a directed graph

4→2

2→3

3→2

6→0

0→1 

2→0

11→12

12→9

9→10

9→11

8→9

10→12

11→4

4→3

3→5

6→8

8→6

5→4

0→5

6→4

6→9

7→6

1

4

9

2

5

3

0

1211

10

8 76



To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices pointing from v.

T

T 

T

T

T 

T

F

F

F

F 

F

F

F

marked[]

1

9

2

5

3

0

1211

10

8 76

Depth-first search
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reachable from 0

reachable
from vertex 0

0 

1 

2

3

4 

5

6

7

8

9 

10

11

12

–

0 

3

4

5 

0

–

–

–

– 

–

–

–

v edgeTo[]

4



Recall code for undirected graphs.

public class DepthFirstSearch 
{ 
   private boolean[] marked; 

   public DepthFirstSearch(Graph G, int s) 
   { 
      marked = new boolean[G.V()]; 
      dfs(G, s); 
   } 

   private void dfs(Graph G, int v) 
   { 
      marked[v] = true; 
      for (int w : G.adj(v)) 
         if (!marked[w]) dfs(G, w); 
   } 

   public boolean visited(int v) 
   {  return marked[v];  } 
}

19

Depth-first search (in undirected graphs)

true if path to s

constructor marks vertices 
connected to s

recursive DFS does the work

client can ask whether any 
vertex is connected to s



Code for directed graphs identical to undirected one. 
[substitute Digraph for Graph]

public class DirectedDFS 
{ 
   private boolean[] marked; 

   public DirectedDFS(Digraph G, int s) 
   { 
      marked = new boolean[G.V()]; 
      dfs(G, s); 
   } 

   private void dfs(Digraph G, int v) 
   { 
      marked[v] = true; 
      for (int w : G.adj(v)) 
         if (!marked[w]) dfs(G, w); 
   } 

   public boolean visited(int v) 
   {  return marked[v];  } 
}

20

Depth-first search (in directed graphs)

true if path from s

constructor marks vertices 
reachable from s

recursive DFS does the work

client can ask whether any 
vertex is reachable from s
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Reachability application:  program control-flow analysis

Every program is a digraph.
• Vertex = basic block of instructions (straight-line program).

• Edge = jump.

 
Dead-code elimination.  
Find (and remove) unreachable code. 
 
Infinite-loop detection. 
Determine whether exit is unreachable.



Every data structure is a digraph.
• Vertex = object.

• Edge = reference.

 
Roots.  Objects known to be directly accessible by program (e.g., stack).
 
Reachable objects.  Objects indirectly accessible by program 
(starting at a root and following a chain of pointers).

22

Reachability application:  mark-sweep garbage collector

roots
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Reachability application:  mark-sweep garbage collector

Mark-sweep algorithm.  [McCarthy, 1960]
• Mark:  mark all reachable objects.

• Sweep:  if object is unmarked, it is garbage (so add to free list).

 
Memory cost.  Uses 1 extra mark bit per object (plus DFS stack).

roots



DFS enables direct solution of simple digraph problems.
• Reachability.

• Path finding.

• Topological sort.

• Directed cycle detection.          

 
Basis for solving difficult digraph problems.
• 2-satisfiability.

• Directed Euler path.

• Strongly-connected components.
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Depth-first search in digraphs summary

✓

SIAM J. COMPUT.
Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN"

Abstract. The value of depth-first search or "bacltracking" as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and ar algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
k1V + k2E d- k for some constants kl, k2, and ka, where Vis the number of vertices and E is the number
of edges of the graph being examined.

Key words. Algorithm, backtracking, biconnectivity, connectivity, depth-first, graph, search,
spanning tree, strong-connectivity.

1. Introduction. Consider a graph G, consisting of a set of vertices U and a
set of edges g. The graph may either be directed (the edges are ordered pairs (v, w)
of vertices; v is the tail and w is the head of the edge) or undirected (the edges are
unordered pairs of vertices, also represented as (v, w)). Graphs form a suitable
abstraction for problems in many areas; chemistry, electrical engineering, and
sociology, for example. Thus it is important to have the most economical algo-
rithms for answering graph-theoretical questions.

In studying graph algorithms we cannot avoid at least a few definitions.
These definitions are more-or-less standard in the literature. (See Harary [3],
for instance.) If G (, g) is a graph, a path p’v w in G is a sequence of vertices
and edges leading from v to w. A path is simple if all its vertices are distinct. A path
p’v v is called a closed path. A closed path p’v v is a cycle if all its edges are
distinct and the only vertex to occur twice in p is v, which occurs exactly twice.
Two cycles which are cyclic permutations of each other are considered to be the
same cycle. The undirected version of a directed graph is the graph formed by
converting each edge of the directed graph into an undirected edge and removing
duplicate edges. An undirected graph is connected if there is a path between every
pair of vertices.

A (directed rooted) tree T is a directed graph whose undirected version is
connected, having one vertex which is the head of no edges (called the root),
and such that all vertices except the root are the head of exactly one edge. The
relation "(v, w) is an edge of T" is denoted by v- w. The relation "There is a
path from v to w in T" is denoted by v w. If v - w, v is the father ofw and w is a
son of v. If v w, v is an ancestor ofw and w is a descendant of v. Every vertex is an
ancestor and a descendant of itself. If v is a vertex in a tree T, T is the subtree of T
having as vertices all the descendants of v in T. If G is a directed graph, a tree T
is a spanning tree of G if T is a subgraph of G and T contains all the vertices of G.

If R and S are binary relations, R* is the transitive closure of R, R-1 is the
inverse of R, and

RS {(u, w)lZlv((u, v) R & (v, w) e S)}.

* Received by the editors August 30, 1971, and in revised form March 9, 1972.

" Department of Computer Science, Cornell University, Ithaca, New York 14850. This research
was supported by the Hertz Foundation and the National Science Foundation under Grant GJ-992.

146



Same method as for undirected graphs.
• Every undirected graph is a digraph (with edges in both directions).

• BFS is a digraph algorithm.

 
 
 
 
 
 
 
 
 
Proposition.  BFS computes shortest paths (fewest number of edges) 
from s to all other vertices n a digraph in time proportional to E+V.
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Breadth-first search in digraphs

Is w reachable from v in this digraph?

v

w

s

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:
  -  remove the least recently added vertex v
  -  for each unmarked vertex pointing from v:  
     add to queue and mark as visited.

BFS (from source vertex s)



Multiple-source shortest paths.  Given a digraph and a set of source 
vertices, find shortest path from any vertex in the set to each other vertex.
 
Ex.  S={ 1, 7, 10 }. 
• Shortest path to 4 is 7→6→4.

• Shortest path to 5 is 7→6→0→5.

• Shortest path to 12 is 10→12.

 
 
 
 
 
 
Q.  How to implement multi-source constructor?
A.  Use BFS, but initialize by enqueuing all source vertices.
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Multiple-source shortest paths

adj[]
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Breadth-first search in digraphs application:  web crawler

Goal.  Crawl web, starting from some root web page, say www.princeton.edu.
Solution.  BFS with implicit graph.
 
BFS.
• Choose root web page as source s.
• Maintain a Queue of websites to explore.

• Maintain a SET of discovered websites.

• Dequeue the next website and enqueue 
websites to which it links 
(provided you haven't done so before).

 
 
 
Q.  Why not use DFS?

18

31

6

42 13

28

32

49

22

45

1 14

40

48

7

44

10

41
29

0

39

11

9

12

30
26

21

46

5

24

37

43

35

47

38

23

16

36

4

3 17

27

20

34

15

2

19 33

25

8

How many strong components are there in this digraph?

http://www.princeton.edu
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Bare-bones web crawler:  Java implementation

 Queue<String> queue = new Queue<String>(); 
 SET<String> discovered = new SET<String>(); 

 String root = "http://www.princeton.edu"; 
 queue.enqueue(root); 
 discovered.add(root); 

 while (!queue.isEmpty()) 
 { 
    String v = queue.dequeue(); 
    StdOut.println(v); 
    In in = new In(v); 
    String input = in.readAll(); 

    String regexp = "http://(\\w+\\.)*(\\w+)"; 
    Pattern pattern = Pattern.compile(regexp); 
    Matcher matcher = pattern.matcher(input); 
    while (matcher.find()) 
    { 
       String w = matcher.group(); 
       if (!discovered.contains(w)) 
       { 
          discovered.add(w); 
          queue.enqueue(w); 
       } 
    } 
 }

read in raw html from next
website in queue

use regular expression to find all URLs 
in website of form http://xxx.yyy.zzz 

[crude pattern misses relative URLs]

if undiscovered, mark it as discovered 
and put on queue

start crawling from root website

queue of websites to crawl
set of discovered websites

http://www.princeton.edu
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Goal.  Given a set of tasks to be completed with precedence constraints, 
in which order should we schedule the tasks?

Digraph model.  vertex = task; edge = precedence constraint.

30

Precedence scheduling

tasks precedence constraint graph

0

1

4

52

6

3

feasible schedule

0.  Algorithms

1.  Complexity Theory

2.  Artificial Intelligence

3.  Intro to CS

4.  Cryptography

5.  Scientific Computing
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Topological sort

DAG.  Directed acyclic graph.

Topological sort.  Redraw DAG so all edges point upwards.

Solution.  DFS. What else?
topological order

directed edges DAG

  0→5   0→2 
  0→1   3→6 
  3→5   3→4 
  5→2   6→4 
  6→0   3→2 
  1→4

0

1

4

52

6

3



• Run depth-first search.

• Return vertices in reverse postorder.

0

1

4

52

6

3

Topological sort algorithm
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a directed acyclic graph

0→5 
0→2 
0→1 
3→6 
3→5  
3→4 
5→4 
6→4 
6→0 
3→2 
1→4

1

4

52

6

3

0



• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

33

0

1

4

52

6

3

0

4

52

6

3

visit 0: check 1, check 2, and check 5

postorder



• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

34

0

1

4

52

6

3

0

1

4

52

6

3

visit 1: check 4

postorder



• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

35

0

1

4

52

6

3

0

1

4

52

6

3

visit 4

postorder



• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

36

4

0

1

4

52

6

3

0

152

6

3

4 done

4

postorder

1



• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

37

4

0

1

4

52

6

3

0

152

6

3

visit 1

postorder



• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

38

4   1

0

1

4

52

6

3

0

52

6

3

1 done

1

postorder

0



• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

39

4   1

0

1

4

52

6

3

0

52

6

3

visit 0: check 1, check 2, and check 5

postorder



• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

40

4   1

0

1

4

52

6

3

0

52

6

3

visit 2

postorder



• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

41

4   1   2

0

1

4

52

6

3

0

5

6

3

2 done

2

postorder

0



• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

42

4   1   2

0

1

4

52

6

3

0

5

6

3

visit 0: check 1, check 2, and check 5

postorder



• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

43

4   1   2

0

1

4

52

6

3

0

5

6

3

visit 5: check 2

postorder



• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

44

4   1   2

0

1

4

52

6

3

0

5

6

3

visit 5

postorder



• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

45

4   1   2   5

0

1

4

52

6

3

0

6

3

5 done

5

postorder

0



• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

46

4   1   2   5

0

1

4

52

6

3

0

6

3

visit 0

postorder



• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

47

4   1   2   5   0

0

1

4

52

6

3

6

3

0 done

0

postorder



• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

48

4   1   2   5   0

0

1

4

52

6

3

6

3

check 1

postorder



• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

49

4   1   2   5   0

0

1

4

52

6

3

6

3

check 2

postorder



• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

50

4   1   2   5   0

0

1

4

52

6

3

6

3

visit 3: check 2, check 4, check 5, and check 6

postorder



• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

51

4   1   2   5   0

0

1

4

52

6

3

6

3

visit 3: check 2, check 4, check 5, and check 6

postorder



• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

52

4   1   2   5   0

0

1

4

52

6

3

6

3

visit 3: check 2, check 4, check 5, and check 6

postorder



• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

53

4   1   2   5   0

0

1

4

52

6

3

6

3

visit 3: check 2, check 4, check 5, and check 6

postorder



• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

54

4   1   2   5   0

0

1

4

52

6

3

6

3

visit 6: check 0 and check 4

postorder



• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

55

4   1   2   5   0

0

1

4

52

6

3

6

3

visit 6: check 0 and check 4

postorder



• Run depth-first search.

• Return vertices in reverse postorder.

6

Topological sort algorithm

56

4   1   2   5   0   6

0

1

4

52

33

6 done

postorder

3

6



• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

57

4   1   2   5   0   6

0

1

4

52

6

33

visit 3

postorder
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• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

58

4   1   2   5   0   6   3

0

1

4

52

6

3 done

postorder



• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm

59

4   1   2   5   0   6   3

0

1

4

52

6

3

check 4

postorder



• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm
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• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm
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• Run depth-first search.

• Return vertices in reverse postorder.

Topological sort algorithm
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Depth-first search order

public class DepthFirstOrder 
{ 
   private boolean[] marked; 
   private Stack<Integer> reversePost; 

   public DepthFirstOrder(Digraph G) 
   { 
      reversePost = new Stack<Integer>(); 
      marked = new boolean[G.V()]; 
      for (int v = 0; v < G.V(); v++) 
         if (!marked[v]) dfs(G, v); 
   } 

   private void dfs(Digraph G, int v) 
   { 
      marked[v] = true; 
      for (int w : G.adj(v)) 
         if (!marked[w]) dfs(G, w); 
      reversePost.push(v); 
   }  
  
   public Iterable<Integer> reversePost() 
   {  return reversePost;  } 
}

returns all vertices in
“reverse DFS postorder”



Proposition.  Reverse DFS postorder of a DAG is a topological order.
Pf. Consider any edge v→w. When dfs(v) is called: 

• Case 1:  dfs(w) has already been called and returned. 
Thus, w was done before v. 

• Case 2:  dfs(w) has not yet been called. 
dfs(w) will get called directly or indirectly 
by dfs(v) and will finish before dfs(v). 
Thus, w will be done before v. 

• Case 3:  dfs(w) has already been called,  
but has not yet returned.  
Can’t happen in a DAG: function call stack contains 
path from w to v, so v→w would complete a cycle.

dfs(0) 
  dfs(1) 
    dfs(4) 
    4 done 
  1 done   
  dfs(2)   
  2 done   
  dfs(5)   
    check 2 
  5 done    
0 done      
check 1     
check 2     
dfs(3)      
  check 2   
  check 4   
  check 5   
  dfs(6)    
  6 done    
3 done      
check 4     
check 5     
check 6     
done       
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Topological sort in a DAG:  correctness proof

all vertices pointing from 3 are done before 3 is done,
so they appear after 3 in topological order 

Ex:

case 1

case 2



Proposition.  A digraph has a topological order iff no directed cycle.
Pf.
• If directed cycle, topological order impossible.

• If no directed cycle, DFS-based algorithm finds a topological order.

 
 
 
 
 
 
 
 
 
Goal.  Given a digraph, find a directed cycle.
Solution.  DFS. What else? See textbook.
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Directed cycle detection

Finding a directed cycle in a digraph

dfs(0)
  dfs(5)
    dfs(4)
      dfs(3)
        check 5

  marked[]        edgeTo[]            onStack[]
0 1 2 3 4 5 ...   0 1 2 3 4 5 ...   0 1 2 3 4 5 ... 

1 0 0 0 0 0       - - - - - 0       1 0 0 0 0 0 
1 0 0 0 0 1       - - - - 5 0       1 0 0 0 0 1 
1 0 0 0 1 1       - - - 4 5 0       1 0 0 0 1 1 
1 0 0 1 1 1       - - - 4 5 0       1 0 0 1 1 1 

a digraph with a directed cycle



Scheduling.  Given a set of tasks to be completed with precedence 
constraints, in what order should we schedule the tasks?

Remark.  A directed cycle implies scheduling problem is infeasible.
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Directed cycle detection application:  precedence scheduling

http://xkcd.com/754
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Directed cycle detection application:  cyclic inheritance

The Java compiler does cycle detection.

public class A extends B 
{ 
   ... 
}

public class B extends C 
{ 
   ... 
}

public class C extends A 
{ 
   ... 
}

% javac A.java 
A.java:1: cyclic inheritance 
involving A 
public class A extends B { } 
       ^ 
1 error 



Microsoft Excel does cycle detection (and has a circular reference toolbar!)
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Directed cycle detection application:  spreadsheet recalculation
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Directed cycle detection applications

• Causalities.

• Email loops.

• Compilation units.

• Class inheritance.

• Course prerequisites.

• Deadlocking detection.

• Precedence scheduling.

• Temporal dependencies.

• Pipeline of computing jobs.

• Check for symbolic link loop. 

• Evaluate formula in spreadsheet.



DIRECTED GRAPHS

‣ Digraph API
‣ Digraph search
‣ Topological sort
‣ Strong components



Def.  Vertices v and w are strongly connected if there is a directed path 
from v to w and a directed path from w to v.
 
Key property.  Strong connectivity is an equivalence relation:
• v is strongly connected to v.

• If v is strongly connected to w, then w is strongly connected to v.

• If v is strongly connected to w and w to x, then v is strongly connected to x.

 
Def.  A strong component is a maximal subset of strongly-connected 
vertices.

Strongly-connected components
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A digraph and its strong components



Examples of strongly-connected digraphs
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public int connected(int v, int w) 
{  return cc[v] == cc[w];  }

Connected components vs. strongly-connected components

73

     0  1  2  3  4  5  6  7  8  9 10 11 12 
cc[] 0  0  0  0  0  0  1  1  1  2  2  2  2

• v and w are connected if there is 

a path between v and w

• v and w are strongly connected if there is a directed path 
from v to w and a directed path from w to v

      0  1  2  3  4  5  6  7  8  9 10 11 12 
scc[] 1  0  1  1  1  1  3  4  3  2  2  2  2

constant-time client connectivity query constant-time client strong-connectivity query

• 3 connected components • 5 strongly-connected components

connected component id (easy to compute with DFS) strongly-connected component id (how to compute?) 

A digraph and its strong componentsA graph and its connected components

public int stronglyConnected(int v, int w) 
{  return scc[v] == scc[w];  }

A digraph and its strong components
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Strong component application:  ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

Strong component.  Subset of species with common energy flow.

http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.gif



75

Strong component application:  software modules

Software module dependency graph.
• Vertex = software module.

• Edge:  from module to dependency.

 

Strong component.  Subset of mutually interacting modules. 
Approach 1.  Package strong components together.
Approach 2.  Use to improve design!

Internet ExplorerFirefox 



Strong components algorithms:  brief history

1960s:  Core OR problem.
• Widely studied; some practical algorithms.

• Complexity not understood.

 
1972:  linear-time DFS algorithm (Tarjan).
• Classic algorithm.

• Level of difficulty: Algs4++.

• Demonstrated broad applicability and importance of DFS.

 
1980s:  easy two-pass linear-time algorithm (Kosaraju-Sharir).
• Forgot notes for lecture; developed algorithm in order to teach it!

• Later found in Russian scientific literature (1972).

 
1990s:  more easy linear-time algorithms.
• Gabow: fixed old OR algorithm.

• Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

76



A digraph and its strong components

Reverse graph.  Strong components in G are same as in GR.
 
Kernel DAG.  Contract each strong component into a single vertex.
 
Idea.
• Compute topological order (reverse postorder) in kernel DAG.

• Run DFS, considering vertices in reverse topological order.
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Kosaraju's algorithm:  intuition

digraph G and its strong components kernel DAG of G (in reverse topological order)

how to compute?

Kernel DAG in reverse topological order

first vertex is a sink 
(has no edges pointing from it)



KOSARAJU'S ALGORITHM

‣ DFS in reverse graph
‣ DFS in original graph



Phase 1.  Compute reverse postorder in GR.
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Kosaraju-Sharir
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digraph G
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visit 6: check 8 and check 7
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visit 6: check 8 and check 7
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visit 5: check 3 and check 0
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visit 3: check 4 and check 2
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visit 3: check 4 and check 2
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Simple (but mysterious) algorithm for computing strong components.
• Run DFS on GR to compute reverse postorder.

• Run DFS on G, considering vertices in order given by first DFS.

119

Kosaraju's algorithm

...

check unmarked vertices in the order 
0 1 2 3 4 5 6 7 8 9 10 11 12

dfs(0)
  dfs(6)
    dfs(8)
      check 6
    8 done
    dfs(7)
    7 done
  6 done
  dfs(2)
    dfs(4)
      dfs(11)
        dfs(9)
          dfs(12)
            check 11
            dfs(10)
              check 9
            10 done
          12 done
          check 7
          check 6
        9 done
      11 done
      check 6
      dfs(5)
        dfs(3)
          check 4
          check 2
        3 done
        check 0
      5 done
    4 done
    check 3
  2 done
0 done
dfs(1)
  check 0
1 done
check 2
check 3
check 4
check 5
check 6
check 7
check 8
check 9
check 10
check 11
check 12

 DFS in reverse digraph GR

reverse postorder for use in second dfs()
1 0 2 4 5 3 11 9 12 10 6 7 8



KOSARAJU'S ALGORITHM

‣ DFS in reverse graph
‣ DFS in original graph



Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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visit 0: check 5 and check 1

4

9

2

5

3

0

1211

10

0 

1 

2

3

4 

5

6

7

8

9 

10

11

12

8 76

1

1   0   2   4   5   3   11   9   12   10   6   7   8

scc[v]v



1

0 

–

–

– 

1

–

–

–

– 

–

–

–

Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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visit 4: check 3 and check 2
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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visit 3: check 5 and check 2
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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visit 2: check 0 and check 3

4

9

2

5

3

0

1211

10

0 

1 

2

3

4 

5

6

7

8

9 

10

11

12

8 76

1

1   0   2   4   5   3   11   9   12   10   6   7   8

scc[v]v



Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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visit 4: check 3 and check 2
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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visit 0: check 5 and check 1
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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visit 9: check 11 and check 10
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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visit 9: check 11 and check 10
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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visit 10: check 12
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.

1

4

9

2

5

3

0

1211

8 76

Kosaraju-Sharir

154

strong component:  9 10 11 12
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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visit 6: check 9, check 4, check 8, and check 0
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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visit 6: check 9, check 4, check 8, and check 0
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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visit 6: check 9, check 4, check 8, and check 0
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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visit 8: check 6
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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visit 6: check 9, check 4, check 8, and check 0
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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strong component:  6 8
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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visit 7: check 6 and check 9
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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visit 7: check 6 and check 9
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.

1

4

9

2

5

3

0

1211

8 76

Kosaraju-Sharir

168

7 done

0 

1 

2

3

4 

5

6

7

8

9 

10

11

12

1

0 

1

1

1 

1

3

4

3

2 

2

2

2

7

10

1   0   2   4   5   3   11   9   12   10   6   7   8

scc[v]v



Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.
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strong component:  7
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.

1

4

9

2

5

3

0

1211

86 7

Kosaraju-Sharir

170

check 8
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Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder 
of GR.

1

4

9

2

5

3

0

1211

10

86 7

Kosaraju-Sharir

171

done

0 

1 

2

3

4 

5

6

7

8

9 

10

11

12

1

0 

1

1

1 

1

3

4

3

2 

2

2

2

1   0   2   4   5   3   11   9   12   10   6   7   8

scc[v]v



Simple (but mysterious) algorithm for computing strong components.
• Run DFS on GR to compute reverse postorder.

• Run DFS on G, considering vertices in order given by first DFS.

Proposition.  Second DFS gives strong components. (!!) 
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Kosaraju's algorithm

dfs(7)
  check 6
  check 9
7 done
check 8
    

check unmarked vertices in the order 
1 0 2 4 5 3 11 9 12 10 6 7 8

 DFS in original digraph G

dfs(1)
1 done

dfs(0)
  dfs(5)
    dfs(4)
      dfs(3)
        check 5
        dfs(2)
          check 0
          check 3
        2 done
      3 done
      check 2
    4 done
  5 done
  check 1
0 done
check 2
check 4
check 5
check 3

dfs(11)
  check 4
  dfs(12)
    dfs(9)
      check 11
      dfs(10)
        check 12
      10 done
    9 done
  12 done
11 done
check 9
check 12
check 10

dfs(6)
  check 9
  check 4
  dfs(8)
    check 6
  8 done
  check 0
6 done
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Connected components in an undirected graph (with DFS)

public class CC 
{ 
   private boolean marked[]; 
   private int[] id; 
   private int count; 

   public CC(Graph G) 
   { 
      marked = new boolean[G.V()]; 
      id = new int[G.V()]; 

      for (int v = 0; v < G.V(); v++) 
      { 
         if (!marked[v]) 
         { 
            dfs(G, v); 
            count++; 
         } 
      } 
   } 

   private void dfs(Graph G, int v) 
   { 
      marked[v] = true; 
      id[v] = count; 
      for (int w : G.adj(v)) 
         if (!marked[w]) 
            dfs(G, w); 
   } 

   public boolean connected(int v, int w) 
   {  return id[v] == id[w];  } 
}
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Strong components in a digraph (with two DFSs)

public class KosarajuSCC 
{ 
   private boolean marked[]; 
   private int[] id; 
   private int count; 

   public KosarajuSCC(Digraph G) 
   { 
      marked = new boolean[G.V()]; 
      id = new int[G.V()]; 
      DepthFirstOrder dfs = new DepthFirstOrder(G.reverse()); 
      for (int v : dfs.reversePost()) 
      { 
         if (!marked[v]) 
         { 
            dfs(G, v); 
            count++; 
         } 
      } 
   } 

   private void dfs(Digraph G, int v) 
   { 
      marked[v] = true; 
      id[v] = count; 
      for (int w : G.adj(v)) 
         if (!marked[w]) 
            dfs(G, w); 
   } 

   public boolean stronglyConnected(int v, int w) 
   {  return id[v] == id[w];  } 
}



Digraph-processing summary:  algorithms of the day
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single-source 
reachability DFS

topological sort
(DAG) DFS

strong
components

Kosaraju
DFS (twice)
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